sca/ascad: fft methods
This commit is contained in:
parent
07482a4c58
commit
62e0abb3ae
|
@ -1 +1,2 @@
|
||||||
/ASCAD_databases
|
/ASCAD_databases
|
||||||
|
__pycache__
|
||||||
|
|
|
@ -6,8 +6,10 @@ logger = logging.getLogger(__name__)
|
||||||
import h5py
|
import h5py
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
import numpy
|
import numpy
|
||||||
|
import scipy.fft
|
||||||
import scipy.signal
|
import scipy.signal
|
||||||
import tqdm
|
import tqdm
|
||||||
|
# import opt_einsum
|
||||||
|
|
||||||
import numpy_popcount
|
import numpy_popcount
|
||||||
|
|
||||||
|
@ -79,6 +81,7 @@ def align(db, ntraces):
|
||||||
# P - (n,m) array of n predictions for each of the m candidates
|
# P - (n,m) array of n predictions for each of the m candidates
|
||||||
# O - (n,t) array of n traces with t samples each
|
# O - (n,t) array of n traces with t samples each
|
||||||
# returns an (m,t) correlation matrix of m traces t samples each
|
# returns an (m,t) correlation matrix of m traces t samples each
|
||||||
|
# TODO : is opt_einsum faster?
|
||||||
class Correlator:
|
class Correlator:
|
||||||
def __init__(self, P):
|
def __init__(self, P):
|
||||||
self.P = P - numpy.mean(P, axis=0)
|
self.P = P - numpy.mean(P, axis=0)
|
||||||
|
@ -118,6 +121,80 @@ def attack_firstorder(db, traces, ntraces):
|
||||||
plt.show()
|
plt.show()
|
||||||
|
|
||||||
|
|
||||||
|
def attack_firstorder_fft(db, traces, ntraces):
|
||||||
|
# lol
|
||||||
|
ntraces = 2000
|
||||||
|
db = h5py.File("./ASCAD_databases/ASCAD_desync100.h5", "r")["Attack_traces"]
|
||||||
|
traces = db["traces"][0:ntraces, :].astype("double")
|
||||||
|
|
||||||
|
logger.info("making first order model")
|
||||||
|
model = numpy.repeat(numpy.arange(256, dtype='uint8'), ntraces).reshape((256, ntraces))
|
||||||
|
for i in tqdm.trange(ntraces):
|
||||||
|
(pt, ct, key, mask, desync) = db["metadata"][i]
|
||||||
|
pt_v = pt[2]
|
||||||
|
mask_v = mask[15]
|
||||||
|
model[:, i] = AES_SBOX[model[:, i] ^ pt_v] ^ mask_v
|
||||||
|
model = numpy_popcount.popcount(model).astype("double").transpose()
|
||||||
|
|
||||||
|
logger.info("making fft traces")
|
||||||
|
fft_traces = numpy.zeros(traces.shape, traces.dtype)
|
||||||
|
for i in range(traces.shape[0]):
|
||||||
|
fft_traces[i, :] = numpy.abs(scipy.fft.fft(traces[i, :]))
|
||||||
|
|
||||||
|
traces = fft_traces[:, 1:350]
|
||||||
|
avg = numpy.mean(traces, axis=0)
|
||||||
|
peaks = avg.argsort()[-50:][::-1]
|
||||||
|
traces = numpy.hstack([traces[:, i:i+1] for i in peaks])
|
||||||
|
|
||||||
|
correlator = Correlator(model)
|
||||||
|
coefs = correlator.corr_submatrix(traces)
|
||||||
|
|
||||||
|
# plot absmax
|
||||||
|
coefs = numpy.abs(coefs)
|
||||||
|
max_by_key = numpy.max(coefs, axis=1)
|
||||||
|
plt.plot(max_by_key)
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
|
||||||
|
# def attack_secondorder_fft(db, traces, ntraces):
|
||||||
|
# # needs work
|
||||||
|
# # lol
|
||||||
|
# ntraces = 10000
|
||||||
|
# db = h5py.File("./ASCAD_databases/ASCAD.h5", "r")["Attack_traces"]
|
||||||
|
# traces = db["traces"][0:ntraces, :].astype("double")
|
||||||
|
#
|
||||||
|
# logger.info("making second order model")
|
||||||
|
# model = numpy.repeat(numpy.arange(256, dtype='uint8'), ntraces).reshape((256, ntraces))
|
||||||
|
# for i in tqdm.trange(ntraces):
|
||||||
|
# (pt, ct, key, mask, desync) = db["metadata"][i]
|
||||||
|
# pt_v = pt[2]
|
||||||
|
# mask_v = mask[15]
|
||||||
|
# model[:, i] = AES_SBOX[model[:, i] ^ pt_v] ^ mask_v
|
||||||
|
# model = numpy_popcount.popcount(model).astype("double").transpose()
|
||||||
|
#
|
||||||
|
# logger.info("making fft traces")
|
||||||
|
# fft_traces = numpy.zeros((traces.shape[0], traces.shape[1]), traces.dtype)
|
||||||
|
# for i in range(traces.shape[0]):
|
||||||
|
# fft_i = numpy.abs(scipy.fft.fft(traces[i, :]))
|
||||||
|
# conv_i = numpy.abs(numpy.conj(fft_i) * fft_i)
|
||||||
|
# fft_traces[i, :] = conv_i
|
||||||
|
#
|
||||||
|
# traces = fft_traces
|
||||||
|
# # traces = fft_traces[:, 1:350]
|
||||||
|
# # avg = numpy.mean(traces, axis=0)
|
||||||
|
# # peaks = avg.argsort()[-50:][::-1]
|
||||||
|
# # traces = numpy.hstack([traces[:, i:i+1] for i in peaks])
|
||||||
|
#
|
||||||
|
# correlator = Correlator(model)
|
||||||
|
# coefs = correlator.corr_submatrix(traces)
|
||||||
|
#
|
||||||
|
# # plot absmax
|
||||||
|
# coefs = numpy.abs(coefs)
|
||||||
|
# max_by_key = numpy.max(coefs, axis=1)
|
||||||
|
# plt.plot(max_by_key)
|
||||||
|
# plt.show()
|
||||||
|
|
||||||
|
|
||||||
def attack_secondorder(db, traces, ntraces):
|
def attack_secondorder(db, traces, ntraces):
|
||||||
logger.info("making second order model")
|
logger.info("making second order model")
|
||||||
model = numpy.repeat(numpy.arange(256, dtype='uint8'), ntraces).reshape((256, ntraces))
|
model = numpy.repeat(numpy.arange(256, dtype='uint8'), ntraces).reshape((256, ntraces))
|
||||||
|
@ -157,6 +234,11 @@ def attack_secondorder(db, traces, ntraces):
|
||||||
|
|
||||||
def main(db):
|
def main(db):
|
||||||
ntraces = 2000
|
ntraces = 2000
|
||||||
|
|
||||||
|
# traces = None
|
||||||
|
# attack_firstorder_fft(db, traces, ntraces)
|
||||||
|
# return
|
||||||
|
|
||||||
traces = align(db, ntraces)
|
traces = align(db, ntraces)
|
||||||
|
|
||||||
# for i in range(10):
|
# for i in range(10):
|
||||||
|
|
Loading…
Reference in New Issue