kicad/pcbnew/exporters/idf.cpp

1836 lines
48 KiB
C++
Raw Normal View History

/**
* file: idf.cpp
*
* This program source code file is part of KiCad, a free EDA CAD application.
*
2014-01-29 16:42:21 +00:00
* Copyright (C) 2013-2014 Cirilo Bernardo
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
// TODO: Consider using different precision formats for THOU vs MM output
// Keep in mind that THOU cannot represent MM very well although MM can
// represent 1 THOU with 4 decimal places. For modern manufacturing we
// are interested in a resolution of about 0.1 THOU.
#include <list>
#include <string>
#include <iostream>
#include <fstream>
#include <sstream>
#include <algorithm>
#include <cstdio>
#include <cmath>
#include <ctime>
#include <cctype>
#include <strings.h>
#include <appl_wxstruct.h>
#include <wx/file.h>
#include <wx/filename.h>
#include <macros.h>
2014-01-29 16:42:21 +00:00
#include <richio.h>
#include <idf.h>
#include <build_version.h>
// differences in angle smaller than MIN_ANG are considered equal
#define MIN_ANG (0.01)
// minimum drill diameter (nanometers) - 10000 is a 0.01mm drill
#define IDF_MIN_DIA ( 10000.0 )
// minimum board thickness; this is about 0.012mm (0.5 mils)
// which is about the thickness of a single kapton layer typically
// used in a flexible design.
#define IDF_MIN_BRD_THICKNESS (12000)
// START: a few routines to help IDF_LIB but which may be of general use in the future
// as IDF support develops
// fetch a line from the given input file and trim the ends
static bool FetchIDFLine( std::ifstream& aModel, std::string& aLine, bool& isComment );
// extract an IDF string and move the index to point to the character after the substring
static bool GetIDFString( const std::string& aLine, std::string& aIDFString,
bool& hasQuotes, int& aIndex );
// END: IDF_LIB helper routines
bool IDF_POINT::Matches( const IDF_POINT& aPoint, double aRadius )
{
double dx = x - aPoint.x;
double dy = y - aPoint.y;
double d2 = dx * dx + dy * dy;
if( d2 <= aRadius * aRadius )
return true;
return false;
}
double IDF_POINT::CalcDistance( const IDF_POINT& aPoint ) const
{
double dx = aPoint.x - x;
double dy = aPoint.y - y;
double dist = sqrt( dx * dx + dy * dy );
return dist;
}
double IDF3::CalcAngleRad( const IDF_POINT& aStartPoint, const IDF_POINT& aEndPoint )
{
return atan2( aEndPoint.y - aStartPoint.y, aEndPoint.x - aStartPoint.x );
}
double IDF3::CalcAngleDeg( const IDF_POINT& aStartPoint, const IDF_POINT& aEndPoint )
{
double ang = CalcAngleRad( aStartPoint, aEndPoint );
// round to thousandths of a degree
int iang = int (ang / M_PI * 1800000.0);
ang = iang / 10000.0;
return ang;
}
IDF_SEGMENT::IDF_SEGMENT()
{
angle = 0.0;
offsetAngle = 0.0;
radius = 0.0;
}
IDF_SEGMENT::IDF_SEGMENT( const IDF_POINT& aStartPoint, const IDF_POINT& aEndPoint )
{
angle = 0.0;
offsetAngle = 0.0;
radius = 0.0;
startPoint = aStartPoint;
endPoint = aEndPoint;
}
IDF_SEGMENT::IDF_SEGMENT( const IDF_POINT& aStartPoint,
const IDF_POINT& aEndPoint,
double aAngle,
bool aFromKicad )
{
double diff = abs( aAngle ) - 360.0;
if( ( diff < MIN_ANG
&& diff > -MIN_ANG ) || ( aAngle < MIN_ANG && aAngle > -MIN_ANG ) || (!aFromKicad) )
{
angle = 0.0;
startPoint = aStartPoint;
endPoint = aEndPoint;
if( diff < MIN_ANG && diff > -MIN_ANG )
{
angle = 360.0;
center = aStartPoint;
offsetAngle = 0.0;
radius = aStartPoint.CalcDistance( aEndPoint );
}
else if( aAngle < MIN_ANG && aAngle > -MIN_ANG )
{
CalcCenterAndRadius();
}
return;
}
// we need to convert from the KiCad arc convention
angle = aAngle;
center = aStartPoint;
offsetAngle = IDF3::CalcAngleDeg( aStartPoint, aEndPoint );
radius = aStartPoint.CalcDistance( aEndPoint );
startPoint = aEndPoint;
double ang = offsetAngle + aAngle;
ang = (ang / 180.0) * M_PI;
endPoint.x = ( radius * cos( ang ) ) + center.x;
endPoint.y = ( radius * sin( ang ) ) + center.y;
}
bool IDF_SEGMENT::MatchesStart( const IDF_POINT& aPoint, double aRadius )
{
return startPoint.Matches( aPoint, aRadius );
}
bool IDF_SEGMENT::MatchesEnd( const IDF_POINT& aPoint, double aRadius )
{
return endPoint.Matches( aPoint, aRadius );
}
void IDF_SEGMENT::CalcCenterAndRadius( void )
{
// NOTE: this routine does not check if the points are the same
// or too close to be sensible in a production setting.
double offAng = IDF3::CalcAngleRad( startPoint, endPoint );
double d = startPoint.CalcDistance( endPoint ) / 2.0;
double xm = ( startPoint.x + endPoint.x ) * 0.5;
double ym = ( startPoint.y + endPoint.y ) * 0.5;
radius = d / sin( angle * M_PI / 180.0 );
if( radius < 0.0 )
{
radius = -radius;
}
// calculate the height of the triangle with base d and hypotenuse r
double dh2 = radius * radius - d * d;
if( dh2 < 0 )
{
// this should only ever happen due to rounding errors when r == d
dh2 = 0;
}
double h = sqrt( dh2 );
if( angle > 0.0 )
offAng += M_PI2;
else
offAng -= M_PI2;
if( ( angle > M_PI ) || ( angle < -M_PI ) )
offAng += M_PI;
center.x = h * cos( offAng ) + xm;
center.y = h * sin( offAng ) + ym;
offsetAngle = IDF3::CalcAngleDeg( center, startPoint );
}
bool IDF_SEGMENT::IsCircle( void )
{
double diff = abs( angle ) - 360.0;
if( ( diff < MIN_ANG ) && ( diff > -MIN_ANG ) )
return true;
return false;
}
double IDF_SEGMENT::GetMinX( void )
{
if( angle == 0.0 )
return std::min( startPoint.x, endPoint.x );
// Calculate the leftmost point of the circle or arc
if( IsCircle() )
{
// if only everything were this easy
return center.x - radius;
}
// cases:
// 1. CCW arc: if offset + included angle >= 180 deg then
// MinX = center.x - radius, otherwise MinX is the
// same as for the case of a line.
// 2. CW arc: if offset + included angle <= -180 deg then
// MinX = center.x - radius, otherwise MinX is the
// same as for the case of a line.
if( angle > 0 )
{
// CCW case
if( ( offsetAngle + angle ) >= 180.0 )
{
return center.x - radius;
}
else
{
return std::min( startPoint.x, endPoint.x );
}
}
// CW case
if( ( offsetAngle + angle ) <= -180.0 )
{
return center.x - radius;
}
return std::min( startPoint.x, endPoint.x );
}
void IDF_SEGMENT::SwapEnds( void )
{
if( IsCircle() )
{
// reverse the direction
angle = -angle;
return;
}
IDF_POINT tmp = startPoint;
startPoint = endPoint;
endPoint = tmp;
if( ( angle < MIN_ANG ) && ( angle > -MIN_ANG ) )
return; // nothing more to do
// change the direction of the arc
angle = -angle;
// calculate the new offset angle
offsetAngle = IDF3::CalcAngleDeg( center, startPoint );
}
2014-01-29 16:42:21 +00:00
void IDF_OUTLINE::push( IDF_SEGMENT* item )
{
if( !outline.empty() )
{
if( item->IsCircle() )
{
// not allowed
wxString msg = wxT( "INVALID GEOMETRY: a circle is being added to a non-empty outline" );
THROW_IO_ERROR( msg );
}
else
{
if( outline.back()->IsCircle() )
{
// we can't add lines to a circle
wxString msg = wxT( "INVALID GEOMETRY: a line is being added to a circular outline" );
THROW_IO_ERROR( msg );
}
else if( !item->MatchesStart( outline.back()->endPoint ) )
{
// startPoint[N] != endPoint[N -1]
wxString msg = wxT( "INVALID GEOMETRY: disjoint segments" );
THROW_IO_ERROR( msg );
}
}
}
outline.push_back( item );
dir += ( outline.back()->endPoint.x - outline.back()->startPoint.x )
* ( outline.back()->endPoint.y + outline.back()->startPoint.y );
}
IDF_DRILL_DATA::IDF_DRILL_DATA( double aDrillDia, double aPosX, double aPosY,
IDF3::KEY_PLATING aPlating,
const std::string aRefDes,
const std::string aHoleType,
IDF3::KEY_OWNER aOwner )
{
if( aDrillDia < 0.3 )
dia = 0.3;
else
dia = aDrillDia;
x = aPosX;
y = aPosY;
plating = aPlating;
if( !aRefDes.compare( "BOARD" ) )
{
kref = IDF3::BOARD;
}
else if( aRefDes.empty() || !aRefDes.compare( "NOREFDES" ) )
{
kref = IDF3::NOREFDES;
}
else if( !aRefDes.compare( "PANEL" ) )
{
kref = IDF3::PANEL;
}
else
{
kref = IDF3::REFDES;
refdes = aRefDes;
}
if( !aHoleType.compare( "PIN" ) )
{
khole = IDF3::PIN;
}
else if( !aHoleType.compare( "VIA" ) )
{
khole = IDF3::VIA;
}
else if( aHoleType.empty() || !aHoleType.compare( "MTG" ) )
{
khole = IDF3::MTG;
}
else if( !aHoleType.compare( "TOOL" ) )
{
khole = IDF3::TOOL;
}
else
{
khole = IDF3::OTHER;
holetype = aHoleType;
}
owner = aOwner;
} // IDF_DRILL_DATA::IDF_DRILL_DATA( ... )
bool IDF_DRILL_DATA::Write( FILE* aLayoutFile )
{
// TODO: check stream integrity and return 'false' as appropriate
if( !aLayoutFile )
return false;
std::string holestr;
std::string refstr;
std::string ownstr;
std::string pltstr;
switch( khole )
{
case IDF3::PIN:
holestr = "PIN";
break;
case IDF3::VIA:
holestr = "VIA";
break;
case IDF3::TOOL:
holestr = "TOOL";
break;
case IDF3::OTHER:
holestr = "\"" + holetype + "\"";
break;
default:
holestr = "MTG";
break;
}
switch( kref )
{
case IDF3::BOARD:
refstr = "BOARD";
break;
case IDF3::PANEL:
refstr = "PANEL";
break;
case IDF3::REFDES:
refstr = "\"" + refdes + "\"";
break;
default:
refstr = "NOREFDES";
break;
}
if( plating == IDF3::PTH )
pltstr = "PTH";
else
pltstr = "NPTH";
switch( owner )
{
case IDF3::MCAD:
ownstr = "MCAD";
break;
case IDF3::ECAD:
ownstr = "ECAD";
break;
default:
ownstr = "UNOWNED";
}
fprintf( aLayoutFile, "%.3f %.5f %.5f %s %s %s %s\n",
dia, x, y, pltstr.c_str(), refstr.c_str(), holestr.c_str(), ownstr.c_str() );
return true;
} // IDF_DRILL_DATA::Write( aLayoutFile )
IDF_BOARD::IDF_BOARD()
{
2014-01-29 16:42:21 +00:00
refdesIndex = 0;
outlineIndex = 0;
scale = 1e-6;
boardThickness = 1.6; // default to 1.6mm thick boards
useThou = false; // by default we want mm output
hasBrdOutlineHdr = false;
layoutFile = NULL;
libFile = NULL;
}
IDF_BOARD::~IDF_BOARD()
{
2014-01-29 16:42:21 +00:00
// simply close files if they are open; do not attempt
// anything else since a previous exception may have left
// data in a bad state.
if( layoutFile != NULL )
{
fclose( layoutFile );
layoutFile = NULL;
}
if( libFile != NULL )
{
fclose( libFile );
libFile = NULL;
}
}
bool IDF_BOARD::Setup( wxString aBoardName,
wxString aFullFileName,
bool aUseThou,
int aBoardThickness )
{
if( aBoardThickness < IDF_MIN_BRD_THICKNESS )
return false;
if( aUseThou )
{
useThou = true;
scale = 1e-3 / 25.4;
}
else
{
useThou = false;
scale = 1e-6;
}
boardThickness = aBoardThickness * scale;
wxFileName brdname( aBoardName );
wxFileName idfname( aFullFileName );
// open the layout file
idfname.SetExt( wxT( "emn" ) );
layoutFile = wxFopen( aFullFileName, wxT( "wt" ) );
if( layoutFile == NULL )
return false;
// open the library file
idfname.SetExt( wxT( "emp" ) );
libFile = wxFopen( idfname.GetFullPath(), wxT( "wt" ) );
if( libFile == NULL )
{
fclose( layoutFile );
layoutFile = NULL;
return false;
}
wxDateTime tdate( time( NULL ) );
fprintf( layoutFile, ".HEADER\n"
"BOARD_FILE 3.0 \"Created by KiCad %s\""
" %.4u/%.2u/%.2u.%.2u:%.2u:%.2u 1\n"
"\"%s\" %s\n"
".END_HEADER\n\n",
TO_UTF8( GetBuildVersion() ),
tdate.GetYear(), tdate.GetMonth() + 1, tdate.GetDay(),
tdate.GetHour(), tdate.GetMinute(), tdate.GetSecond(),
TO_UTF8( brdname.GetFullName() ), useThou ? "THOU" : "MM" );
fprintf( libFile, ".HEADER\n"
2014-01-29 16:42:21 +00:00
"LIBRARY_FILE 3.0 \"Created by KiCad %s\" %.4d/%.2d/%.2d.%.2d:%.2d:%.2d 1\n"
".END_HEADER\n\n",
TO_UTF8( GetBuildVersion() ),
tdate.GetYear(), tdate.GetMonth() + 1, tdate.GetDay(),
tdate.GetHour(), tdate.GetMinute(), tdate.GetSecond() );
return true;
}
bool IDF_BOARD::Finish( void )
{
// Steps to finalize the board and library files:
// 1. (emn) close the BOARD_OUTLINE section
// 2. (emn) write out the DRILLED_HOLES section
// 3. (emp) finalize the library file
// 4. (emn) write out the COMPONENT_PLACEMENT section
if( layoutFile == NULL || libFile == NULL )
return false;
// Finalize the board outline section
fprintf( layoutFile, ".END_BOARD_OUTLINE\n\n" );
// Write out the drill section
bool ok = WriteDrills();
// populate the library (*.emp) file and write the
// PLACEMENT section
if( ok )
ok = IDFLib.WriteFiles( layoutFile, libFile );
fclose( libFile );
libFile = NULL;
fclose( layoutFile );
layoutFile = NULL;
return ok;
}
bool IDF_BOARD::AddOutline( IDF_OUTLINE& aOutline )
{
if( !layoutFile )
return false;
// TODO: check the stream integrity
std::list<IDF_SEGMENT*>::iterator bo;
std::list<IDF_SEGMENT*>::iterator eo;
if( !hasBrdOutlineHdr )
{
fprintf( layoutFile, ".BOARD_OUTLINE ECAD\n%.5f\n", boardThickness );
hasBrdOutlineHdr = true;
}
if( aOutline.size() == 1 )
{
if( !aOutline.front()->IsCircle() )
return false; // this is a bad outline
// NOTE: a circle always has an angle of 360, never -360,
// otherwise SolidWorks chokes on the file.
fprintf( layoutFile, "%d %.5f %.5f 0\n", outlineIndex,
aOutline.front()->startPoint.x, aOutline.front()->startPoint.y );
fprintf( layoutFile, "%d %.5f %.5f 360\n", outlineIndex,
aOutline.front()->endPoint.x, aOutline.front()->endPoint.y );
++outlineIndex;
return true;
}
// ensure that the very last point is the same as the very first point
aOutline.back()-> endPoint = aOutline.front()->startPoint;
// check if we must reverse things
if( ( aOutline.IsCCW() && ( outlineIndex > 0 ) )
|| ( ( !aOutline.IsCCW() ) && ( outlineIndex == 0 ) ) )
{
eo = aOutline.begin();
bo = aOutline.end();
--bo;
// for the first item we write out both points
if( aOutline.front()->angle < MIN_ANG && aOutline.front()->angle > -MIN_ANG )
{
fprintf( layoutFile, "%d %.5f %.5f 0\n", outlineIndex,
aOutline.front()->endPoint.x, aOutline.front()->endPoint.y );
fprintf( layoutFile, "%d %.5f %.5f 0\n", outlineIndex,
aOutline.front()->startPoint.x, aOutline.front()->startPoint.y );
}
else
{
fprintf( layoutFile, "%d %.5f %.5f 0\n", outlineIndex,
aOutline.front()->endPoint.x, aOutline.front()->endPoint.y );
fprintf( layoutFile, "%d %.5f %.5f %.5f\n", outlineIndex,
aOutline.front()->startPoint.x, aOutline.front()->startPoint.y,
-aOutline.front()->angle );
}
// for all other segments we only write out the start point
while( bo != eo )
{
if( (*bo)->angle < MIN_ANG && (*bo)->angle > -MIN_ANG )
{
fprintf( layoutFile, "%d %.5f %.5f 0\n", outlineIndex,
(*bo)->startPoint.x, (*bo)->startPoint.y );
}
else
{
fprintf( layoutFile, "%d %.5f %.5f %.5f\n", outlineIndex,
(*bo)->startPoint.x, (*bo)->startPoint.y, -(*bo)->angle );
}
--bo;
}
}
else
{
bo = aOutline.begin();
eo = aOutline.end();
// for the first item we write out both points
if( (*bo)->angle < MIN_ANG && (*bo)->angle > -MIN_ANG )
{
fprintf( layoutFile, "%d %.5f %.5f 0\n", outlineIndex,
(*bo)->startPoint.x, (*bo)->startPoint.y );
fprintf( layoutFile, "%d %.5f %.5f 0\n", outlineIndex,
(*bo)->endPoint.x, (*bo)->endPoint.y );
}
else
{
fprintf( layoutFile, "%d %.5f %.5f 0\n", outlineIndex,
(*bo)->startPoint.x, (*bo)->startPoint.y );
fprintf( layoutFile, "%d %.5f %.5f %.5f\n", outlineIndex,
(*bo)->endPoint.x, (*bo)->endPoint.y, (*bo)->angle );
}
++bo;
// for all other segments we only write out the last point
while( bo != eo )
{
if( (*bo)->angle < MIN_ANG && (*bo)->angle > -MIN_ANG )
{
fprintf( layoutFile, "%d %.5f %.5f 0\n", outlineIndex,
(*bo)->endPoint.x, (*bo)->endPoint.y );
}
else
{
fprintf( layoutFile, "%d %.5f %.5f %.5f\n", outlineIndex,
(*bo)->endPoint.x, (*bo)->endPoint.y, (*bo)->angle );
}
++bo;
}
}
++outlineIndex;
return true;
}
bool IDF_BOARD::AddDrill( double dia, double x, double y,
IDF3::KEY_PLATING plating,
const std::string refdes,
const std::string holeType,
IDF3::KEY_OWNER owner )
{
if( dia < IDF_MIN_DIA * scale )
return false;
IDF_DRILL_DATA* dp = new IDF_DRILL_DATA( dia, x, y, plating, refdes, holeType, owner );
drills.push_back( dp );
return true;
}
bool IDF_BOARD::AddSlot( double aWidth, double aLength, double aOrientation,
double aX, double aY )
{
if( aWidth < IDF_MIN_DIA * scale )
return false;
if( aLength < IDF_MIN_DIA * scale )
return false;
IDF_POINT c[2]; // centers
IDF_POINT pt[4];
double a1 = aOrientation / 180.0 * M_PI;
double a2 = a1 + M_PI2;
double d1 = aLength / 2.0;
double d2 = aWidth / 2.0;
double sa1 = sin( a1 );
double ca1 = cos( a1 );
double dsa2 = d2 * sin( a2 );
double dca2 = d2 * cos( a2 );
c[0].x = aX + d1 * ca1;
c[0].y = aY + d1 * sa1;
c[1].x = aX - d1 * ca1;
c[1].y = aY - d1 * sa1;
pt[0].x = c[0].x - dca2;
pt[0].y = c[0].y - dsa2;
pt[1].x = c[1].x - dca2;
pt[1].y = c[1].y - dsa2;
pt[2].x = c[1].x + dca2;
pt[2].y = c[1].y + dsa2;
pt[3].x = c[0].x + dca2;
pt[3].y = c[0].y + dsa2;
IDF_OUTLINE outline;
// first straight run
IDF_SEGMENT* seg = new IDF_SEGMENT( pt[0], pt[1] );
outline.push( seg );
// first 180 degree cap
seg = new IDF_SEGMENT( c[1], pt[1], -180.0, true );
outline.push( seg );
// final straight run
seg = new IDF_SEGMENT( pt[2], pt[3] );
outline.push( seg );
// final 180 degree cap
seg = new IDF_SEGMENT( c[0], pt[3], -180.0, true );
outline.push( seg );
return AddOutline( outline );
}
bool IDF_BOARD::PlaceComponent( const wxString aComponentFile, const std::string aRefDes,
double aXLoc, double aYLoc, double aZLoc,
double aRotation, bool isOnTop )
{
return IDFLib.PlaceComponent( aComponentFile, aRefDes,
aXLoc, aYLoc, aZLoc,
aRotation, isOnTop );
}
2014-01-29 16:42:21 +00:00
std::string IDF_BOARD::GetRefDes( void )
{
std::ostringstream ostr;
ostr << "NOREFDES_" << refdesIndex++;
return ostr.str();
}
bool IDF_BOARD::WriteDrills( void )
{
if( !layoutFile )
return false;
// TODO: check the stream integrity and return false as appropriate
if( drills.empty() )
return true;
fprintf( layoutFile, ".DRILLED_HOLES\n" );
std::list<struct IDF_DRILL_DATA*>::iterator ds = drills.begin();
std::list<struct IDF_DRILL_DATA*>::iterator de = drills.end();
while( ds != de )
{
if( !(*ds)->Write( layoutFile ) )
return false;
++ds;
}
fprintf( layoutFile, ".END_DRILLED_HOLES\n" );
return true;
}
double IDF_BOARD::GetScale( void )
{
return scale;
}
void IDF_BOARD::SetOffset( double x, double y )
{
offsetX = x;
offsetY = y;
}
void IDF_BOARD::GetOffset( double& x, double& y )
{
x = offsetX;
y = offsetY;
}
void IDF3::GetOutline( std::list<IDF_SEGMENT*>& aLines,
IDF_OUTLINE& aOutline )
{
aOutline.Clear();
// NOTE: To tell if the point order is CCW or CW,
// sum all: (endPoint.X[n] - startPoint.X[n])*(endPoint[n] + startPoint.Y[n])
// If the result is >0, the direction is CW, otherwise
// it is CCW. Note that the result cannot be 0 unless
// we have a bounded area of 0.
// First we find the segment with the leftmost point
std::list<IDF_SEGMENT*>::iterator bl = aLines.begin();
std::list<IDF_SEGMENT*>::iterator el = aLines.end();
std::list<IDF_SEGMENT*>::iterator idx = bl++; // iterator for the object with minX
double minx = (*idx)->GetMinX();
double curx;
while( bl != el )
{
curx = (*bl)->GetMinX();
if( curx < minx )
{
minx = curx;
idx = bl;
}
++bl;
}
aOutline.push( *idx );
aLines.erase( idx );
// If the item is a circle then we're done
if( aOutline.front()->IsCircle() )
return;
// Assemble the loop
bool complete = false; // set if loop is complete
bool matched; // set if a segment's end point was matched
while( !complete )
{
matched = false;
bl = aLines.begin();
el = aLines.end();
while( bl != el && !matched )
{
if( (*bl)->MatchesStart( aOutline.back()->endPoint ) )
{
if( (*bl)->IsCircle() )
{
// a circle on the perimeter is pathological but we just ignore it
++bl;
}
else
{
matched = true;
aOutline.push( *bl );
aLines.erase( bl );
}
continue;
}
++bl;
}
if( !matched )
{
// attempt to match the end points
bl = aLines.begin();
el = aLines.end();
while( bl != el && !matched )
{
if( (*bl)->MatchesEnd( aOutline.back()->endPoint ) )
{
if( (*bl)->IsCircle() )
{
// a circle on the perimeter is pathological but we just ignore it
++bl;
}
else
{
matched = true;
(*bl)->SwapEnds();
aOutline.push( *bl );
aLines.erase( bl );
}
continue;
}
++bl;
}
}
if( !matched )
{
// still no match - attempt to close the loop
if( (aOutline.size() > 1) || ( aOutline.front()->angle < -MIN_ANG )
|| ( aOutline.front()->angle > MIN_ANG ) )
{
// close the loop
IDF_SEGMENT* seg = new IDF_SEGMENT( aOutline.back()->endPoint,
aOutline.front()->startPoint );
if( seg )
{
complete = true;
aOutline.push( seg );
break;
}
}
// the outline is bad; drop the segments
aOutline.Clear();
return;
}
// check if the loop is complete
if( aOutline.front()->MatchesStart( aOutline.back()->endPoint ) )
{
complete = true;
break;
}
}
}
IDF_LIB::~IDF_LIB()
{
while( !components.empty() )
{
delete components.back();
components.pop_back();
}
}
bool IDF_LIB::writeLib( FILE* aLibFile )
{
if( !aLibFile )
return false;
// TODO: check stream integrity and return false as appropriate
// export models
std::list< IDF_COMP* >::const_iterator mbeg = components.begin();
std::list< IDF_COMP* >::const_iterator mend = components.end();
while( mbeg != mend )
{
if( !(*mbeg)->WriteLib( aLibFile ) )
return false;
++mbeg;
}
libWritten = true;
return true;
}
bool IDF_LIB::writeBrd( FILE* aLayoutFile )
{
if( !aLayoutFile || !libWritten )
return false;
if( components.empty() )
return true;
// TODO: check stream integrity and return false as appropriate
// write out the board placement information
std::list< IDF_COMP* >::const_iterator mbeg = components.begin();
std::list< IDF_COMP* >::const_iterator mend = components.end();
fprintf( aLayoutFile, "\n.PLACEMENT\n" );
while( mbeg != mend )
{
if( !(*mbeg)->WritePlacement( aLayoutFile ) )
return false;
++mbeg;
}
fprintf( aLayoutFile, ".END_PLACEMENT\n" );
return true;
}
bool IDF_LIB::WriteFiles( FILE* aLayoutFile, FILE* aLibFile )
{
if( !aLayoutFile || !aLibFile )
return false;
libWritten = false;
regOutlines.clear();
if( !writeLib( aLibFile ) )
return false;
return writeBrd( aLayoutFile );
}
bool IDF_LIB::RegisterOutline( const std::string aGeomPartString )
{
std::set< std::string >::const_iterator it = regOutlines.find( aGeomPartString );
if( it != regOutlines.end() )
return true;
regOutlines.insert( aGeomPartString );
return false;
}
bool IDF_LIB::PlaceComponent( const wxString aComponentFile, const std::string aRefDes,
double aXLoc, double aYLoc, double aZLoc,
double aRotation, bool isOnTop )
{
IDF_COMP* comp = new IDF_COMP( this );
if( comp == NULL )
{
std::cerr << "IDF_LIB: *ERROR* could not allocate memory for a component\n";
return false;
}
components.push_back( comp );
if( !comp->PlaceComponent( aComponentFile, aRefDes,
aXLoc, aYLoc, aZLoc,
aRotation, isOnTop ) )
{
std::cerr << "IDF_LIB: file does not exist (or is symlink):\n";
std::cerr << " FILE: " << TO_UTF8( aComponentFile ) << "\n";
return false;
}
return true;
}
IDF_COMP::IDF_COMP( IDF_LIB* aParent )
{
parent = aParent;
}
bool IDF_COMP::PlaceComponent( const wxString aComponentFile, const std::string aRefDes,
double aXLoc, double aYLoc, double aZLoc,
double aRotation, bool isOnTop )
{
componentFile = aComponentFile;
refdes = aRefDes;
if( refdes.empty() || !refdes.compare("~") || !refdes.compare("0") )
refdes = "NOREFDES";
loc_x = aXLoc;
loc_y = aYLoc;
loc_z = aZLoc;
rotation = aRotation;
top = isOnTop;
if( !wxFileName::FileExists( aComponentFile ) )
{
wxFileName fn = aComponentFile;
wxString fname = wxGetApp().FindLibraryPath( fn );
if( fname.IsEmpty() )
return false;
else
componentFile = fname;
}
return true;
}
bool IDF_COMP::WritePlacement( FILE* aLayoutFile )
{
if( aLayoutFile == NULL )
{
std::cerr << "IDF_COMP: *ERROR* WritePlacement() invoked with aLayoutFile = NULL\n";
return false;
}
if( parent == NULL )
{
std::cerr << "IDF_COMP: *ERROR* no valid pointer \n";
return false;
}
if( componentFile.empty() )
{
std::cerr << "IDF_COMP: *BUG* empty componentFile name in WritePlacement()\n";
return false;
}
if( geometry.empty() && partno.empty() )
{
std::cerr << "IDF_COMP: *BUG* geometry and partno strings are empty in WritePlacement()\n";
return false;
}
// TODO: monitor stream integrity and respond accordingly
// PLACEMENT, RECORD 2:
fprintf( aLayoutFile, "\"%s\" \"%s\" \"%s\"\n",
geometry.c_str(), partno.c_str(), refdes.c_str() );
// PLACEMENT, RECORD 3:
if( rotation >= -MIN_ANG && rotation <= -MIN_ANG )
{
fprintf( aLayoutFile, "%.6f %.6f %.6f 0 %s ECAD\n",
loc_x, loc_y, loc_z, top ? "TOP" : "BOTTOM" );
}
else
{
fprintf( aLayoutFile, "%.6f %.6f %.6f %.3f %s ECAD\n",
loc_x, loc_y, loc_z, rotation, top ? "TOP" : "BOTTOM" );
}
return true;
}
bool IDF_COMP::WriteLib( FILE* aLibFile )
{
// 1. parse the file for the .ELECTRICAL or .MECHANICAL section
// and extract the Geometry and PartNumber strings
// 2. Register the name; check if it already exists
// 3. parse the rest of the file until .END_ELECTRICAL or
// .END_MECHANICAL; validate that each entry conforms
// to a valid outline
// 4. write lines to library file
//
// NOTE on parsing (the order matters):
// + store each line which begins with '#'
// + strip blanks from both ends of the line
// + drop each blank line
// + the first non-blank non-comment line must be
// .ELECTRICAL or .MECHANICAL (as per spec, case does not matter)
// + the first non-blank line after RECORD 1 must be RECORD 2
// + following RECORD 2, only blank lines, valid outline entries,
// and .END_{MECHANICAL,ELECTRICAL} are allowed
// + only a single outline may be specified; the order may be
// CW or CCW.
// + all valid lines are stored and written to the library file
//
// return: false if we do could not write model data; we may return
// true even if we could not read an IDF file for some reason, provided
// that the default model was written. In such a case, warnings will be
// written to stderr.
if( aLibFile == NULL )
{
std::cerr << "IDF_COMP: *ERROR* WriteLib() invoked with aLibFile = NULL\n";
return false;
}
if( parent == NULL )
{
std::cerr << "IDF_COMP: *ERROR* no valid pointer \n";
return false;
}
if( componentFile.empty() )
{
std::cerr << "IDF_COMP: *BUG* empty componentFile name in WriteLib()\n";
return false;
}
std::list< std::string > records;
std::ifstream model;
std::string fname = TO_UTF8( componentFile );
model.open( fname.c_str(), std::ios_base::in );
if( !model.is_open() )
{
std::cerr << "* IDF EXPORT: could not open file " << fname << "\n";
return substituteComponent( aLibFile );
}
std::string entryType; // will be one of ELECTRICAL or MECHANICAL
std::string endMark; // will be one of .END_ELECTRICAL or .END_MECHANICAL
std::string iline; // the input line
int state = 1;
bool isComment; // true if a line just read in is a comment line
bool isNewItem = false; // true if the outline is a previously unsaved IDF item
// some vars for parsing record 3
int loopIdx = -1; // direction of points in outline (0=CW, 1=CCW, -1=no points yet)
double firstX;
double firstY;
bool lineClosed = false; // true when outline has been closed; only one outline is permitted
while( state )
{
while( !FetchIDFLine( model, iline, isComment ) && model.good() );
if( !model.good() )
{
// this should not happen; we should at least
// have encountered the .END_ statement;
// however, we shall make a concession if the
// last line is an .END_ statement which had
// not been correctly terminated
if( !endMark.empty() && !strncasecmp( iline.c_str(), endMark.c_str(), 15 ) )
{
std::cerr << "IDF EXPORT: *WARNING* IDF file is not properly terminated\n";
std::cerr << "* FILE: " << fname << "\n";
records.push_back( endMark );
break;
}
std::cerr << "IDF EXPORT: *ERROR* faulty IDF file\n";
std::cerr << "* FILE: " << fname << "\n";
return substituteComponent( aLibFile );
}
switch( state )
{
case 1:
// accept comment lines, .ELECTRICAL, or .MECHANICAL;
// all others are simply ignored
if( isComment )
{
records.push_back( iline );
break;
}
if( !strncasecmp( iline.c_str(), ".electrical", 11 ) )
{
entryType = ".ELECTRICAL";
endMark = ".END_ELECTRICAL";
records.push_back( entryType );
state = 2;
break;
}
if( !strncasecmp( iline.c_str(), ".mechanical", 11 ) )
{
entryType = ".MECHANICAL";
endMark = ".END_MECHANICAL";
records.push_back( entryType );
state = 2;
break;
}
break;
case 2:
// accept only a RECORD 2 compliant line;
// anything else constitutes a malformed IDF file
if( isComment )
{
std::cerr << "IDF EXPORT: bad IDF file\n";
std::cerr << "* LINE: " << iline << "\n";
std::cerr << "* FILE: " << fname << "\n";
std::cerr << "* REASON: comment within "
<< entryType << " section\n";
model.close();
return substituteComponent( aLibFile );
}
if( !parseRec2( iline, isNewItem ) )
{
std::cerr << "IDF EXPORT: bad IDF file\n";
std::cerr << "* LINE: " << iline << "\n";
std::cerr << "* FILE: " << fname << "\n";
std::cerr << "* REASON: expecting RECORD 2 of "
<< entryType << " section\n";
model.close();
return substituteComponent( aLibFile );
}
if( isNewItem )
{
records.push_back( iline );
state = 3;
}
else
{
model.close();
return true;
}
break;
case 3:
// accept outline entries or end of section
if( isComment )
{
std::cerr << "IDF EXPORT: bad IDF file\n";
std::cerr << "* LINE: " << iline << "\n";
std::cerr << "* FILE: " << fname << "\n";
std::cerr << "* REASON: comment within "
<< entryType << " section\n";
model.close();
return substituteComponent( aLibFile );
}
if( !strncasecmp( iline.c_str(), endMark.c_str(), 15 ) )
{
records.push_back( endMark );
state = 0;
break;
}
if( lineClosed )
{
// there should be no further points
std::cerr << "IDF EXPORT: faulty IDF file\n";
std::cerr << "* LINE: " << iline << "\n";
std::cerr << "* FILE: " << fname << "\n";
std::cerr << "* REASON: more than 1 outline in "
<< entryType << " section\n";
model.close();
return substituteComponent( aLibFile );
}
if( !parseRec3( iline, loopIdx, firstX, firstY, lineClosed ) )
{
std::cerr << "IDF EXPORT: unexpected line in IDF file\n";
std::cerr << "* LINE: " << iline << "\n";
std::cerr << "* FILE: " << fname << "\n";
model.close();
return substituteComponent( aLibFile );
}
records.push_back( iline );
break;
default:
std::cerr << "IDF EXPORT: BUG in " << __FUNCTION__ << ": unexpected state\n";
model.close();
return substituteComponent( aLibFile );
break;
} // switch( state )
} // while( state )
model.close();
if( !lineClosed )
{
std::cerr << "IDF EXPORT: component outline not closed\n";
std::cerr << "* FILE: " << fname << "\n";
return substituteComponent( aLibFile );
}
std::list< std::string >::iterator lbeg = records.begin();
std::list< std::string >::iterator lend = records.end();
// TODO: check stream integrity
while( lbeg != lend )
{
fprintf( aLibFile, "%s\n", lbeg->c_str() );
++lbeg;
}
fprintf( aLibFile, "\n" );
return true;
}
bool IDF_COMP::substituteComponent( FILE* aLibFile )
{
// the component outline does not exist or could not be
// read; substitute a placeholder
// TODO: check the stream integrity
geometry = "NOGEOM";
partno = "NOPART";
if( parent->RegisterOutline( "NOGEOM_NOPART" ) )
return true;
fprintf( aLibFile, ".ELECTRICAL\n" );
fprintf( aLibFile, "\"NOGEOM\" \"NOPART\" MM 5\n" );
// TODO: for now we shall use a simple cylinder; a more intricate
// and readily recognized feature (a stylistic X) would be of
// much greater value.
fprintf( aLibFile, "0 0 0 0\n" );
fprintf( aLibFile, "0 2.5 0 360\n" );
fprintf( aLibFile, ".END_ELECTRICAL\n\n" );
return true;
}
bool IDF_COMP::parseRec2( const std::string aLine, bool& isNewItem )
{
// RECORD 2:
// + "Geometry Name"
// + "Part Number"
// + MM or THOU
// + height (float)
isNewItem = false;
int idx = 0;
bool quoted = false;
std::string entry;
if( !GetIDFString( aLine, entry, quoted, idx ) )
{
std::cerr << "IDF_COMP: *ERROR* invalid RECORD 2 in model file (no Geometry Name entry)\n";
return false;
}
geometry = entry;
if( !GetIDFString( aLine, entry, quoted, idx ) )
{
std::cerr << "IDF_COMP: *ERROR* invalid RECORD 2 in model file (no Part No. entry)\n";
return false;
}
partno = entry;
if( geometry.empty() && partno.empty() )
{
std::cerr << "IDF_COMP: *ERROR* invalid RECORD 2 in model file\n";
std::cerr << " Geometry Name and Part Number are both empty.\n";
return false;
}
if( !GetIDFString( aLine, entry, quoted, idx ) )
{
std::cerr << "IDF_COMP: *ERROR* invalid RECORD 2, missing FIELD 3\n";
return false;
}
if( strcasecmp( "MM", entry.c_str() ) && strcasecmp( "THOU", entry.c_str() ) )
{
std::cerr << "IDF_COMP: *ERROR* invalid RECORD 2, invalid FIELD 3 \""
<< entry << "\"\n";
return false;
}
if( !GetIDFString( aLine, entry, quoted, idx ) )
{
std::cerr << "IDF_COMP: *ERROR* invalid RECORD 2, missing FIELD 4\n";
return false;
}
if( quoted )
{
std::cerr << "IDF_COMP: *ERROR* invalid RECORD 2, invalid FIELD 4 (quoted)\n";
std::cerr << " LINE: " << aLine << "\n";
return false;
}
// ensure that we have a valid value
double val;
std::stringstream teststr;
teststr << entry;
if( !( teststr >> val ) )
{
std::cerr << "IDF_COMP: *ERROR* invalid RECORD 2, invalid FIELD 4 (must be numeric)\n";
std::cerr << " LINE: " << aLine << "\n";
return false;
}
2014-01-29 16:42:21 +00:00
teststr.clear();
teststr << geometry << "_" << partno;
2014-01-29 16:42:21 +00:00
if( !parent->RegisterOutline( teststr.str() ) )
isNewItem = true;
return true;
}
bool IDF_COMP::parseRec3( const std::string aLine, int& aLoopIndex,
double& aX, double& aY, bool& aClosed )
{
// RECORD 3:
// + 0,1 (loop label)
// + X coord (float)
// + Y coord (float)
// + included angle (0 for line, +ang for CCW, -ang for CW, +360 for circle)
//
// notes:
// 1. first entry may not be a circle or arc
// 2. it would be nice, but not essential, to ensure that the
// winding is indeed as specified by the loop label
//
double x, y, ang;
bool ccw = false;
bool quoted = false;
int idx = 0;
std::string entry;
if( !GetIDFString( aLine, entry, quoted, idx ) )
{
std::cerr << "IDF_COMP: *ERROR* invalid RECORD 3, no data\n";
return false;
}
if( quoted )
{
std::cerr << "IDF_COMP: *ERROR* invalid RECORD 3, FIELD 1 is quoted\n";
std::cerr << " LINE: " << aLine << "\n";
return false;
}
if( entry.compare( "0" ) && entry.compare( "1" ) )
{
std::cerr << "IDF_COMP: *ERROR* invalid RECORD 3, FIELD 1 is invalid (must be 0 or 1)\n";
std::cerr << " LINE: " << aLine << "\n";
return false;
}
if( !entry.compare( "0" ) )
ccw = true;
if( aLoopIndex == 0 && !ccw )
{
std::cerr << "IDF_COMP: *ERROR* invalid RECORD 3, LOOP INDEX changed from 0 to 1\n";
std::cerr << " LINE: " << aLine << "\n";
return false;
}
if( aLoopIndex == 1 && ccw )
{
std::cerr << "IDF_COMP: *ERROR* invalid RECORD 3, LOOP INDEX changed from 1 to 0\n";
std::cerr << " LINE: " << aLine << "\n";
return false;
}
if( !GetIDFString( aLine, entry, quoted, idx ) )
{
std::cerr << "IDF_COMP: *ERROR* invalid RECORD 3, FIELD 2 does not exist\n";
std::cerr << " LINE: " << aLine << "\n";
return false;
}
if( quoted )
{
std::cerr << "IDF_COMP: *ERROR* invalid RECORD 3, FIELD 2 is quoted\n";
std::cerr << " LINE: " << aLine << "\n";
return false;
}
std::stringstream tstr;
tstr.str( entry );
if( !(tstr >> x ) )
{
std::cerr << "IDF_COMP: *ERROR* invalid RECORD 3, invalid X value in FIELD 2\n";
std::cerr << " LINE: " << aLine << "\n";
return false;
}
if( !GetIDFString( aLine, entry, quoted, idx ) )
{
std::cerr << "IDF_COMP: *ERROR* invalid RECORD 3, FIELD 3 does not exist\n";
std::cerr << " LINE: " << aLine << "\n";
return false;
}
if( quoted )
{
std::cerr << "IDF_COMP: *ERROR* invalid RECORD 3, FIELD 3 is quoted\n";
std::cerr << " LINE: " << aLine << "\n";
return false;
}
tstr.clear();
tstr.str( entry );
if( !(tstr >> y ) )
{
std::cerr << "IDF_COMP: *ERROR* invalid RECORD 3, invalid Y value in FIELD 3\n";
std::cerr << " LINE: " << aLine << "\n";
return false;
}
if( !GetIDFString( aLine, entry, quoted, idx ) )
{
std::cerr << "IDF_COMP: *ERROR* invalid RECORD 3, FIELD 4 does not exist\n";
std::cerr << " LINE: " << aLine << "\n";
return false;
}
if( quoted )
{
std::cerr << "IDF_COMP: *ERROR* invalid RECORD 3, FIELD 4 is quoted\n";
std::cerr << " LINE: " << aLine << "\n";
return false;
}
tstr.clear();
tstr.str( entry );
if( !(tstr >> ang ) )
{
std::cerr << "IDF_COMP: *ERROR* invalid RECORD 3, invalid ANGLE value in FIELD 3\n";
std::cerr << " LINE: " << aLine << "\n";
return false;
}
if( aLoopIndex == -1 )
{
// this is the first point; there are some special checks
aLoopIndex = ccw ? 0 : 1;
aX = x;
aY = y;
aClosed = false;
// ensure that the first point is not an arc specification
if( ang < -MIN_ANG || ang > MIN_ANG )
{
std::cerr << "IDF_COMP: *ERROR* invalid RECORD 3, first point has non-zero angle\n";
std::cerr << " LINE: " << aLine << "\n";
return false;
}
}
else
{
// does this close the outline?
if( ang < 0.0 ) ang = -ang;
ang -= 360.0;
if( ang > -MIN_ANG && ang < MIN_ANG )
{
// this is a circle; the loop is closed
aClosed = true;
}
else
{
x = (aX - x) * (aX - x);
y = (aY - y) * (aY - y) + x;
if( y <= 1e-6 )
{
// the points are close enough; the loop is closed
aClosed = true;
}
}
}
// NOTE:
// 1. ideally we would ensure that there are no arcs with a radius of 0; this entails
// actively calculating the last point as the previous entry could have been an instruction
// to create an arc. This check is sacrificed in the interest of speed.
// 2. a bad outline can be crafted by giving at least one valid segment and then introducing
// a circle; such a condition is not checked for here in the interest of speed.
// 3. a circle specified with an angle of -360 is invalid, but that condition is not
// tested here.
return true;
}
// fetch a line from the given input file and trim the ends
static bool FetchIDFLine( std::ifstream& aModel, std::string& aLine, bool& isComment )
{
aLine = "";
std::getline( aModel, aLine );
isComment = false;
// A comment begins with a '#' and must be the first character on the line
if( aLine[0] == '#' )
isComment = true;
while( !aLine.empty() && isspace( *aLine.begin() ) )
aLine.erase( aLine.begin() );
while( !aLine.empty() && isspace( *aLine.rbegin() ) )
aLine.erase( --aLine.end() );
if( aLine.empty() )
return false;
return true;
}
// extract an IDF string and move the index to point to the character after the substring
static bool GetIDFString( const std::string& aLine, std::string& aIDFString,
bool& hasQuotes, int& aIndex )
{
// 1. drop all leading spaces
// 2. if the first character is '"', read until the next '"',
// otherwise read until the next space or EOL.
std::ostringstream ostr;
int len = aLine.length();
int idx = aIndex;
if( idx < 0 || idx >= len )
return false;
while( isspace( aLine[idx] ) && idx < len ) ++idx;
if( idx == len )
{
aIndex = idx;
return false;
}
if( aLine[idx] == '"' )
{
hasQuotes = true;
++idx;
while( aLine[idx] != '"' && idx < len )
ostr << aLine[idx++];
if( idx == len )
{
std::cerr << "GetIDFString(): *ERROR*: unterminated quote mark in line:\n";
std::cerr << "LINE: " << aLine << "\n";
aIndex = idx;
return false;
}
++idx;
}
else
{
hasQuotes = false;
while( !isspace( aLine[idx] ) && idx < len )
ostr << aLine[idx++];
}
aIDFString = ostr.str();
aIndex = idx;
return true;
}