kicad/pcbnew/import_gfx/dxf_import_plugin.cpp

1485 lines
44 KiB
C++
Raw Normal View History

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
2019-01-24 17:23:57 +00:00
* Copyright (C) 2019 Jean-Pierre Charras, jp.charras at wanadoo.fr
* Copyright (C) 2019 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
// The DXF reader lib (libdxfrw) comes from dxflib project used in QCAD
// See http://www.ribbonsoft.com
// Each time a dxf entity is read, a "call back" function is called
// like void DXF_IMPORT_PLUGIN::addLine( const DL_LineData& data ) when a line is read.
// this function just add the BOARD entity from dxf parameters (start and end point ...)
#include "dxf_import_plugin.h"
#include <wx/arrstr.h>
#include <wx/regex.h>
#include <trigo.h>
#include <macros.h>
2020-11-29 16:29:58 +00:00
#include <cmath> // isnan
#include <board.h>
#include "common.h"
/*
* Important notes
* 1. All output coordinates of this importer are in mm
* 2. DXFs have a concept of world (WCS) and object coordinates (OCS)
3. The following objects are world coordinates:
- Line
- Point
- Polyline (3D)
- Vertex (3D)
- Polymesh
- Polyface
- Viewport
4. The following entities are object coordinates
- Circle
- Arc
- Solid
- Trace
- Attrib
- Shape
- Insert
- Polyline (2D)
- Vertex (2D)
- LWPolyline
- Hatch
- Image
- Text
* 5. Object coordinates must be run through the arbitrary axis
* translation even though they are 2D drawings and most of the time
* the import is fine. Sometimes, against all logic, CAD tools like
* SolidWorks may randomly insert circles "mirror" that must be unflipped
* by following the object to world conversion
* 6. Blocks are virtual groups, blocks must be placed by a INSERT entity
* 7. Blocks may be repeated multiple times
* 8. There is no sane way to make text look perfect like the original CAD.
* DXF simply does mpt secifying text/font enough to make it portable.
* We however make do try to get it somewhat close/visually appealing.
* 9. We silently drop the z coordinate on 3d polylines
*/
// minimum bulge value before resorting to a line segment;
// the value 0.0218 is equivalent to about 5 degrees arc,
#define MIN_BULGE 0.0218
#define SCALE_FACTOR(x) (x)
DXF_IMPORT_PLUGIN::DXF_IMPORT_PLUGIN() : DL_CreationAdapter()
{
m_xOffset = 0.0; // X coord offset for conversion (in mm)
m_yOffset = 0.0; // Y coord offset for conversion (in mm)
m_version = 0; // the dxf version, not yet used
m_defaultThickness = 0.2; // default thickness (in mm)
m_brdLayer = Dwgs_User; // The default import layer
m_importAsFPShapes = true;
m_minX = m_minY = std::numeric_limits<double>::max();
m_maxX = m_maxY = std::numeric_limits<double>::min();
m_currentUnit = DXF_IMPORT_UNITS::DEFAULT;
m_importCoordinatePrecision = 4; // initial value per dxf spec
m_importAnglePrecision = 0; // initial value per dxf spec
// placeholder layer so we can fallback to something later
std::unique_ptr<DXF_IMPORT_LAYER> layer0 =
std::make_unique<DXF_IMPORT_LAYER>( "", DXF_IMPORT_LINEWEIGHT_BY_LW_DEFAULT );
m_layers.push_back( std::move( layer0 ) );
m_currentBlock = nullptr;
}
DXF_IMPORT_PLUGIN::~DXF_IMPORT_PLUGIN()
{
}
bool DXF_IMPORT_PLUGIN::Load( const wxString& aFileName )
{
try
{
return ImportDxfFile( aFileName );
}
catch( const std::bad_alloc& )
{
m_layers.clear();
m_blocks.clear();
m_styles.clear();
m_internalImporter.ClearShapes();
reportMsg( _( "Memory was exhausted trying to load the DXF, it may be too large." ) );
return false;
}
}
bool DXF_IMPORT_PLUGIN::Import()
{
wxCHECK( m_importer, false );
m_internalImporter.ImportTo( *m_importer );
return true;
}
double DXF_IMPORT_PLUGIN::GetImageWidth() const
{
return m_maxX - m_minX;
}
double DXF_IMPORT_PLUGIN::GetImageHeight() const
{
return m_maxY - m_minY;
}
void DXF_IMPORT_PLUGIN::SetImporter( GRAPHICS_IMPORTER* aImporter )
{
GRAPHICS_IMPORT_PLUGIN::SetImporter( aImporter );
if( m_importer )
SetDefaultLineWidthMM( m_importer->GetLineWidthMM() );
}
double DXF_IMPORT_PLUGIN::mapX( double aDxfCoordX )
{
return SCALE_FACTOR( m_xOffset + ( aDxfCoordX * getCurrentUnitScale() ) );
}
double DXF_IMPORT_PLUGIN::mapY( double aDxfCoordY )
{
return SCALE_FACTOR( m_yOffset - ( aDxfCoordY * getCurrentUnitScale() ) );
}
double DXF_IMPORT_PLUGIN::mapDim( double aDxfValue )
{
return SCALE_FACTOR( aDxfValue * getCurrentUnitScale() );
}
bool DXF_IMPORT_PLUGIN::ImportDxfFile( const wxString& aFile )
{
DL_Dxf dxf_reader;
// wxFopen takes care of unicode filenames across platforms
2022-02-05 13:25:43 +00:00
FILE* fp = wxFopen( aFile, wxT( "rt" ) );
if( fp == nullptr )
return false;
// Note the dxf reader takes care of switching to "C" locale before reading the file
// and will close the file after reading
bool success = dxf_reader.in( fp, this );
return success;
}
void DXF_IMPORT_PLUGIN::reportMsg( const wxString& aMessage )
{
// Add message to keep trace of not handled dxf entities
m_messages += aMessage;
m_messages += '\n';
}
void DXF_IMPORT_PLUGIN::addSpline( const DL_SplineData& aData )
{
// Called when starting reading a spline
m_curr_entity.Clear();
m_curr_entity.m_EntityParseStatus = 1;
m_curr_entity.m_EntityFlag = aData.flags;
m_curr_entity.m_EntityType = DL_ENTITY_SPLINE;
m_curr_entity.m_SplineDegree = aData.degree;
m_curr_entity.m_SplineTangentStartX = aData.tangentStartX;
m_curr_entity.m_SplineTangentStartY = aData.tangentStartY;
m_curr_entity.m_SplineTangentEndX = aData.tangentEndX;
m_curr_entity.m_SplineTangentEndY = aData.tangentEndY;
m_curr_entity.m_SplineKnotsCount = aData.nKnots;
m_curr_entity.m_SplineControlCount = aData.nControl;
m_curr_entity.m_SplineFitCount = aData.nFit;
}
void DXF_IMPORT_PLUGIN::addControlPoint( const DL_ControlPointData& aData )
{
// Called for every spline control point, when reading a spline entity
m_curr_entity.m_SplineControlPointList.emplace_back( aData.x , aData.y,
aData.w );
}
void DXF_IMPORT_PLUGIN::addFitPoint( const DL_FitPointData& aData )
{
// Called for every spline fit point, when reading a spline entity
// we store only the X,Y coord values in a VECTOR2D
m_curr_entity.m_SplineFitPointList.emplace_back( aData.x, aData.y );
}
void DXF_IMPORT_PLUGIN::addKnot( const DL_KnotData& aData)
{
// Called for every spline knot value, when reading a spline entity
m_curr_entity.m_SplineKnotsList.push_back( aData.k );
}
void DXF_IMPORT_PLUGIN::addLayer( const DL_LayerData& aData )
{
wxString name = wxString::FromUTF8( aData.name.c_str() );
int lw = attributes.getWidth();
if( lw == DXF_IMPORT_LINEWEIGHT_BY_LAYER )
{
lw = DXF_IMPORT_LINEWEIGHT_BY_LW_DEFAULT;
}
std::unique_ptr<DXF_IMPORT_LAYER> layer = std::make_unique<DXF_IMPORT_LAYER>( name, lw );
m_layers.push_back( std::move( layer ) );
}
void DXF_IMPORT_PLUGIN::addLinetype( const DL_LinetypeData& data )
{
#if 0
wxString name = FROM_UTF8( data.name.c_str() );
wxString description = FROM_UTF8( data.description.c_str() );
#endif
}
double DXF_IMPORT_PLUGIN::lineWeightToWidth( int lw, DXF_IMPORT_LAYER* aLayer )
{
if( lw == DXF_IMPORT_LINEWEIGHT_BY_LAYER && aLayer != nullptr )
{
lw = aLayer->m_lineWeight;
}
// All lineweights >= 0 are always in 100ths of mm
double mm = m_defaultThickness;
if( lw >= 0 )
{
mm = lw / 100.0;
}
return SCALE_FACTOR( mm );
}
DXF_IMPORT_LAYER* DXF_IMPORT_PLUGIN::getImportLayer( const std::string& aLayerName )
{
DXF_IMPORT_LAYER* layer = m_layers.front().get();
wxString layerName = wxString::FromUTF8( aLayerName.c_str() );
if( !layerName.IsEmpty() )
{
auto resultIt = std::find_if( m_layers.begin(), m_layers.end(),
[layerName]( const auto& it )
{
return it->m_layerName == layerName;
} );
if( resultIt != m_layers.end() )
layer = resultIt->get();
}
return layer;
}
DXF_IMPORT_BLOCK* DXF_IMPORT_PLUGIN::getImportBlock( const std::string& aBlockName )
{
DXF_IMPORT_BLOCK* block = nullptr;
wxString blockName = wxString::FromUTF8( aBlockName.c_str() );
if( !blockName.IsEmpty() )
{
auto resultIt = std::find_if( m_blocks.begin(), m_blocks.end(),
[blockName]( const auto& it )
{
return it->m_name == blockName;
} );
if( resultIt != m_blocks.end() )
block = resultIt->get();
}
return block;
}
DXF_IMPORT_STYLE* DXF_IMPORT_PLUGIN::getImportStyle( const std::string& aStyleName )
{
DXF_IMPORT_STYLE* style = nullptr;
wxString styleName = wxString::FromUTF8( aStyleName.c_str() );
if( !styleName.IsEmpty() )
{
auto resultIt = std::find_if( m_styles.begin(), m_styles.end(),
[styleName]( const auto& it ) { return it->m_name == styleName; } );
if( resultIt != m_styles.end() )
style = resultIt->get();
}
return style;
}
void DXF_IMPORT_PLUGIN::addLine( const DL_LineData& aData )
{
DXF_IMPORT_LAYER* layer = getImportLayer( attributes.getLayer() );
double lineWidth = lineWeightToWidth( attributes.getWidth(), layer );
VECTOR2D start( mapX( aData.x1 ), mapY( aData.y1 ) );
VECTOR2D end( mapX( aData.x2 ), mapY( aData.y2 ) );
GRAPHICS_IMPORTER_BUFFER* bufferToUse =
2020-11-23 16:18:02 +00:00
( m_currentBlock != nullptr ) ? &m_currentBlock->m_buffer : &m_internalImporter;
bufferToUse->AddLine( start, end, lineWidth );
updateImageLimits( start );
updateImageLimits( end );
}
void DXF_IMPORT_PLUGIN::addPolyline(const DL_PolylineData& aData )
{
// Convert DXF Polylines into a series of KiCad Lines and Arcs.
// A Polyline (as opposed to a LWPolyline) may be a 3D line or
// even a 3D Mesh. The only type of Polyline which is guaranteed
// to import correctly is a 2D Polyline in X and Y, which is what
// we assume of all Polylines. The width used is the width of the Polyline.
// per-vertex line widths, if present, are ignored.
m_curr_entity.Clear();
m_curr_entity.m_EntityParseStatus = 1;
m_curr_entity.m_EntityFlag = aData.flags;
m_curr_entity.m_EntityType = DL_ENTITY_POLYLINE;
}
void DXF_IMPORT_PLUGIN::addVertex( const DL_VertexData& aData )
{
if( m_curr_entity.m_EntityParseStatus == 0 )
return; // Error
DXF_IMPORT_LAYER* layer = getImportLayer( attributes.getLayer() );
double lineWidth = lineWeightToWidth( attributes.getWidth(), layer );
/* support for per-vertex-encoded linewidth (Cadence uses it) */
/* linewidths are scaled by 100 in DXF */
if( aData.startWidth > 0.0 )
lineWidth = aData.startWidth / 100.0;
else if ( aData.endWidth > 0.0 )
lineWidth = aData.endWidth / 100.0;
const DL_VertexData* vertex = &aData;
DXF_ARBITRARY_AXIS arbAxis = getArbitraryAxis( getExtrusion() );
VECTOR3D vertexCoords = ocsToWcs( arbAxis, VECTOR3D( vertex->x, vertex->y, vertex->z ) );
if( m_curr_entity.m_EntityParseStatus == 1 ) // This is the first vertex of an entity
{
m_curr_entity.m_LastCoordinate.x = mapX( vertexCoords.x );
m_curr_entity.m_LastCoordinate.y = mapY( vertexCoords.y );
m_curr_entity.m_PolylineStart = m_curr_entity.m_LastCoordinate;
m_curr_entity.m_BulgeVertex = vertex->bulge;
m_curr_entity.m_EntityParseStatus = 2;
return;
}
VECTOR2D seg_end( mapX( vertexCoords.x ), mapY( vertexCoords.y ) );
if( std::abs( m_curr_entity.m_BulgeVertex ) < MIN_BULGE )
insertLine( m_curr_entity.m_LastCoordinate, seg_end, lineWidth );
else
insertArc( m_curr_entity.m_LastCoordinate, seg_end, m_curr_entity.m_BulgeVertex,
lineWidth );
m_curr_entity.m_LastCoordinate = seg_end;
m_curr_entity.m_BulgeVertex = vertex->bulge;
}
void DXF_IMPORT_PLUGIN::endEntity()
{
DXF_IMPORT_LAYER* layer = getImportLayer( attributes.getLayer() );
double lineWidth = lineWeightToWidth( attributes.getWidth(), layer );
if( m_curr_entity.m_EntityType == DL_ENTITY_POLYLINE ||
m_curr_entity.m_EntityType == DL_ENTITY_LWPOLYLINE )
{
// Polyline flags bit 0 indicates closed (1) or open (0) polyline
if( m_curr_entity.m_EntityFlag & 1 )
{
if( std::abs( m_curr_entity.m_BulgeVertex ) < MIN_BULGE )
insertLine( m_curr_entity.m_LastCoordinate, m_curr_entity.m_PolylineStart,
lineWidth );
else
insertArc( m_curr_entity.m_LastCoordinate, m_curr_entity.m_PolylineStart,
m_curr_entity.m_BulgeVertex, lineWidth );
}
}
if( m_curr_entity.m_EntityType == DL_ENTITY_SPLINE )
{
insertSpline( lineWidth );
}
m_curr_entity.Clear();
}
void DXF_IMPORT_PLUGIN::addBlock( const DL_BlockData& aData )
{
wxString name = wxString::FromUTF8( aData.name.c_str() );
std::unique_ptr<DXF_IMPORT_BLOCK> block =
std::make_unique<DXF_IMPORT_BLOCK>( name, aData.bpx, aData.bpy );
m_blocks.push_back( std::move( block ) );
m_currentBlock = m_blocks.back().get();
}
void DXF_IMPORT_PLUGIN::endBlock()
{
m_currentBlock = nullptr;
}
void DXF_IMPORT_PLUGIN::addInsert( const DL_InsertData& aData )
{
DXF_IMPORT_BLOCK* block = getImportBlock( aData.name );
if( block == nullptr )
return;
DXF_ARBITRARY_AXIS arbAxis = getArbitraryAxis( getExtrusion() );
VECTOR3D insertCoords = ocsToWcs( arbAxis, VECTOR3D( aData.ipx, aData.ipy, aData.ipz ) );
VECTOR2D translation( mapX( insertCoords.x ), mapY( insertCoords.y ) );
translation -= VECTOR2D( mapX( block->m_baseX ), mapY( block->m_baseY ) );
2020-11-23 16:18:02 +00:00
for( auto& shape : block->m_buffer.GetShapes() )
{
std::unique_ptr<IMPORTED_SHAPE> newShape = shape->clone();
newShape->Translate( translation );
newShape->Scale( aData.sx, aData.sy );
m_internalImporter.AddShape( newShape );
}
}
void DXF_IMPORT_PLUGIN::addCircle( const DL_CircleData& aData )
{
DXF_ARBITRARY_AXIS arbAxis = getArbitraryAxis( getExtrusion() );
VECTOR3D centerCoords = ocsToWcs( arbAxis, VECTOR3D( aData.cx, aData.cy, aData.cz ) );
VECTOR2D center( mapX( centerCoords.x ), mapY( centerCoords.y ) );
DXF_IMPORT_LAYER* layer = getImportLayer( attributes.getLayer() );
double lineWidth = lineWeightToWidth( attributes.getWidth(), layer );
GRAPHICS_IMPORTER_BUFFER* bufferToUse =
2020-11-23 16:18:02 +00:00
( m_currentBlock != nullptr ) ? &m_currentBlock->m_buffer : &m_internalImporter;
bufferToUse->AddCircle( center, mapDim( aData.radius ), lineWidth, false );
VECTOR2D radiusDelta( mapDim( aData.radius ), mapDim( aData.radius ) );
updateImageLimits( center + radiusDelta );
updateImageLimits( center - radiusDelta );
}
void DXF_IMPORT_PLUGIN::addArc( const DL_ArcData& aData )
{
DXF_ARBITRARY_AXIS arbAxis = getArbitraryAxis( getExtrusion() );
VECTOR3D centerCoords = ocsToWcs( arbAxis, VECTOR3D( aData.cx, aData.cy, aData.cz ) );
// Init arc centre:
VECTOR2D center( mapX( centerCoords.x ), mapY( centerCoords.y ) );
// aData.anglex is in degrees.
EDA_ANGLE startangle( aData.angle1, DEGREES_T );
EDA_ANGLE endangle( aData.angle2, DEGREES_T );
// Init arc start point
VECTOR2D startPoint( aData.radius, 0.0 );
RotatePoint( startPoint, -startangle );
VECTOR2D arcStart( mapX( startPoint.x + centerCoords.x ),
mapY( startPoint.y + centerCoords.y ) );
// calculate arc angle (arcs are CCW, and should be < 0 in Pcbnew)
EDA_ANGLE angle = -( endangle - startangle );
if( angle > ANGLE_0 )
angle -= ANGLE_360;
DXF_IMPORT_LAYER* layer = getImportLayer( attributes.getLayer() );
double lineWidth = lineWeightToWidth( attributes.getWidth(), layer );
GRAPHICS_IMPORTER_BUFFER* bufferToUse = m_currentBlock ? &m_currentBlock->m_buffer
: &m_internalImporter;
bufferToUse->AddArc( center, arcStart, angle, lineWidth );
VECTOR2D radiusDelta( mapDim( aData.radius ), mapDim( aData.radius ) );
updateImageLimits( center + radiusDelta );
updateImageLimits( center - radiusDelta );
}
void DXF_IMPORT_PLUGIN::addText( const DL_TextData& aData )
{
DXF_ARBITRARY_AXIS arbAxis = getArbitraryAxis( getExtrusion() );
VECTOR3D refPointCoords = ocsToWcs( arbAxis, VECTOR3D( aData.ipx, aData.ipy, aData.ipz ) );
2020-11-29 16:29:58 +00:00
VECTOR3D secPointCoords = ocsToWcs( arbAxis, VECTOR3D( std::isnan( aData.apx ) ? 0 : aData.apx,
std::isnan( aData.apy ) ? 0 : aData.apy,
std::isnan( aData.apz ) ? 0 : aData.apz ) );
VECTOR2D refPoint( mapX( refPointCoords.x ), mapY( refPointCoords.y ) );
VECTOR2D secPoint( mapX( secPointCoords.x ), mapY( secPointCoords.y ) );
if( aData.vJustification != 0 || aData.hJustification != 0 || aData.hJustification == 4 )
{
if( aData.hJustification != 3 && aData.hJustification != 5 )
{
VECTOR2D tmp = secPoint;
secPoint = refPoint;
refPoint = tmp;
}
}
wxString text = toNativeString( wxString::FromUTF8( aData.text.c_str() ) );
DXF_IMPORT_STYLE* style = getImportStyle( aData.style.c_str() );
double textHeight = mapDim( aData.height );
// The 0.9 factor gives a better height/width base ratio with our font
double charWidth = textHeight * 0.9;
if( style != nullptr )
charWidth *= style->m_widthFactor;
double textWidth = charWidth * text.length(); // Rough approximation
double textThickness = textHeight/8.0; // Use a reasonable line thickness for this text
VECTOR2D bottomLeft(0.0, 0.0);
VECTOR2D bottomRight(0.0, 0.0);
VECTOR2D topLeft(0.0, 0.0);
VECTOR2D topRight(0.0, 0.0);
GR_TEXT_H_ALIGN_T hJustify = GR_TEXT_H_ALIGN_LEFT;
GR_TEXT_V_ALIGN_T vJustify = GR_TEXT_V_ALIGN_BOTTOM;
switch( aData.vJustification )
{
case 0: //DRW_Text::VBaseLine:
case 1: //DRW_Text::VBottom:
vJustify = GR_TEXT_V_ALIGN_BOTTOM;
topLeft.y = textHeight;
topRight.y = textHeight;
break;
case 2: //DRW_Text::VMiddle:
vJustify = GR_TEXT_V_ALIGN_CENTER;
bottomRight.y = -textHeight / 2.0;
bottomLeft.y = -textHeight / 2.0;
topLeft.y = textHeight / 2.0;
topRight.y = textHeight / 2.0;
break;
case 3: //DRW_Text::VTop:
vJustify = GR_TEXT_V_ALIGN_TOP;
bottomLeft.y = -textHeight;
bottomRight.y = -textHeight;
break;
}
switch( aData.hJustification )
{
case 0: //DRW_Text::HLeft:
case 3: //DRW_Text::HAligned: // no equivalent options in text pcb.
case 5: //DRW_Text::HFit: // no equivalent options in text pcb.
hJustify = GR_TEXT_H_ALIGN_LEFT;
bottomRight.x = textWidth;
topRight.x = textWidth;
break;
case 1: //DRW_Text::HCenter:
case 4: //DRW_Text::HMiddle: // no equivalent options in text pcb.
hJustify = GR_TEXT_H_ALIGN_CENTER;
bottomLeft.x = -textWidth / 2.0;
topLeft.x = -textWidth / 2.0;
bottomRight.x = textWidth / 2.0;
topRight.x = textWidth / 2.0;
break;
case 2: //DRW_Text::HRight:
hJustify = GR_TEXT_H_ALIGN_RIGHT;
bottomLeft.x = -textWidth;
topLeft.x = -textWidth;
break;
}
#if 0
wxString sty = wxString::FromUTF8( aData.style.c_str() );
sty = sty.ToLower();
if( aData.textgen == 2 )
{
// Text dir = left to right;
} else if( aData.textgen == 4 )
{
// Text dir = top to bottom;
} else
{
}
#endif
// dxf_lib imports text angle in radians (although there are no comment about that.
// So, for the moment, convert this angle to degrees
double angle_degree = aData.angle * 180 / M_PI;
// We also need the angle in radians. so convert angle_degree to radians
// regardless the aData.angle unit
double angleInRads = angle_degree * M_PI / 180.0;
double cosine = cos(angleInRads);
double sine = sin(angleInRads);
GRAPHICS_IMPORTER_BUFFER* bufferToUse =
2020-11-23 16:18:02 +00:00
( m_currentBlock != nullptr ) ? &m_currentBlock->m_buffer : &m_internalImporter;
bufferToUse->AddText( refPoint, text, textHeight, charWidth, textThickness, angle_degree,
hJustify, vJustify );
// Calculate the boundary box and update the image limits:
bottomLeft.x = bottomLeft.x * cosine - bottomLeft.y * sine;
bottomLeft.y = bottomLeft.x * sine + bottomLeft.y * cosine;
bottomRight.x = bottomRight.x * cosine - bottomRight.y * sine;
bottomRight.y = bottomRight.x * sine + bottomRight.y * cosine;
topLeft.x = topLeft.x * cosine - topLeft.y * sine;
topLeft.y = topLeft.x * sine + topLeft.y * cosine;
topRight.x = topRight.x * cosine - topRight.y * sine;
topRight.y = topRight.x * sine + topRight.y * cosine;
bottomLeft += refPoint;
bottomRight += refPoint;
topLeft += refPoint;
topRight += refPoint;
updateImageLimits( bottomLeft );
updateImageLimits( bottomRight );
updateImageLimits( topLeft );
updateImageLimits( topRight );
}
void DXF_IMPORT_PLUGIN::addMText( const DL_MTextData& aData )
{
wxString text = toNativeString( wxString::FromUTF8( aData.text.c_str() ) );
wxString attrib, tmp;
DXF_IMPORT_STYLE* style = getImportStyle( aData.style.c_str() );
double textHeight = mapDim( aData.height );
// The 0.9 factor gives a better height/width base ratio with our font
double charWidth = textHeight * 0.9;
if( style != nullptr )
charWidth *= style->m_widthFactor;
double textWidth = charWidth * text.length(); // Rough approximation
double textThickness = textHeight/8.0; // Use a reasonable line thickness for this text
VECTOR2D bottomLeft(0.0, 0.0);
VECTOR2D bottomRight(0.0, 0.0);
VECTOR2D topLeft(0.0, 0.0);
VECTOR2D topRight(0.0, 0.0);
/* Some texts start by '\' and have formatting chars (font name, font option...)
* ending with ';'
* Here are some mtext formatting codes:
* Format code Purpose
* \0...\o Turns overline on and off
* \L...\l Turns underline on and off
* \~ Inserts a nonbreaking space
\\ Inserts a backslash
\\\{...\} Inserts an opening and closing brace
\\ \File name; Changes to the specified font file
\\ \Hvalue; Changes to the text height specified in drawing units
\\ \Hvaluex; Changes the text height to a multiple of the current text height
\\ \S...^...; Stacks the subsequent text at the \, #, or ^ symbol
\\ \Tvalue; Adjusts the space between characters, from.75 to 4 times
\\ \Qangle; Changes oblique angle
\\ \Wvalue; Changes width factor to produce wide text
\\ \A Sets the alignment value; valid values: 0, 1, 2 (bottom, center, top) while( text.StartsWith( wxT("\\") ) )
*/
while( text.StartsWith( wxT( "\\" ) ) )
{
attrib << text.BeforeFirst( ';' );
tmp = text.AfterFirst( ';' );
text = tmp;
}
DXF_ARBITRARY_AXIS arbAxis = getArbitraryAxis( getExtrusion() );
VECTOR3D textposCoords = ocsToWcs( arbAxis, VECTOR3D( aData.ipx, aData.ipy, aData.ipz ) );
VECTOR2D textpos( mapX( textposCoords.x ), mapY( textposCoords.y ) );
// Initialize text justifications:
GR_TEXT_H_ALIGN_T hJustify = GR_TEXT_H_ALIGN_LEFT;
GR_TEXT_V_ALIGN_T vJustify = GR_TEXT_V_ALIGN_BOTTOM;
if( aData.attachmentPoint <= 3 )
{
vJustify = GR_TEXT_V_ALIGN_TOP;
bottomLeft.y = -textHeight;
bottomRight.y = -textHeight;
}
else if( aData.attachmentPoint <= 6 )
{
vJustify = GR_TEXT_V_ALIGN_CENTER;
bottomRight.y = -textHeight / 2.0;
bottomLeft.y = -textHeight / 2.0;
topLeft.y = textHeight / 2.0;
topRight.y = textHeight / 2.0;
}
else
{
vJustify = GR_TEXT_V_ALIGN_BOTTOM;
topLeft.y = textHeight;
topRight.y = textHeight;
}
if( aData.attachmentPoint % 3 == 1 )
{
hJustify = GR_TEXT_H_ALIGN_LEFT;
bottomRight.x = textWidth;
topRight.x = textWidth;
}
else if( aData.attachmentPoint % 3 == 2 )
{
hJustify = GR_TEXT_H_ALIGN_CENTER;
bottomLeft.x = -textWidth / 2.0;
topLeft.x = -textWidth / 2.0;
bottomRight.x = textWidth / 2.0;
topRight.x = textWidth / 2.0;
}
else
{
hJustify = GR_TEXT_H_ALIGN_RIGHT;
bottomLeft.x = -textWidth;
topLeft.x = -textWidth;
}
#if 0 // These setting have no meaning in Pcbnew
if( data.alignH == 1 )
{
// Text is left to right;
}
else if( data.alignH == 3 )
{
// Text is top to bottom;
}
else
{
// use ByStyle;
}
if( aData.alignV == 1 )
{
// use AtLeast;
}
else
{
// useExact;
}
#endif
// dxf_lib imports text angle in radians (although there are no comment about that.
// So, for the moment, convert this angle to degrees
double angle_degree = aData.angle * 180/M_PI;
// We also need the angle in radians. so convert angle_degree to radians
// regardless the aData.angle unit
double angleInRads = angle_degree * M_PI / 180.0;
double cosine = cos(angleInRads);
double sine = sin(angleInRads);
GRAPHICS_IMPORTER_BUFFER* bufferToUse =
2020-11-23 16:18:02 +00:00
( m_currentBlock != nullptr ) ? &m_currentBlock->m_buffer : &m_internalImporter;
bufferToUse->AddText( textpos, text, textHeight, charWidth,
textThickness, angle_degree, hJustify, vJustify );
bottomLeft.x = bottomLeft.x * cosine - bottomLeft.y * sine;
bottomLeft.y = bottomLeft.x * sine + bottomLeft.y * cosine;
bottomRight.x = bottomRight.x * cosine - bottomRight.y * sine;
bottomRight.y = bottomRight.x * sine + bottomRight.y * cosine;
topLeft.x = topLeft.x * cosine - topLeft.y * sine;
topLeft.y = topLeft.x * sine + topLeft.y * cosine;
topRight.x = topRight.x * cosine - topRight.y * sine;
topRight.y = topRight.x * sine + topRight.y * cosine;
bottomLeft += textpos;
bottomRight += textpos;
topLeft += textpos;
topRight += textpos;
updateImageLimits( bottomLeft );
updateImageLimits( bottomRight );
updateImageLimits( topLeft );
updateImageLimits( topRight );
}
double DXF_IMPORT_PLUGIN::getCurrentUnitScale()
{
double scale = 1.0;
switch( m_currentUnit )
{
case DXF_IMPORT_UNITS::INCHES:
scale = 25.4;
break;
case DXF_IMPORT_UNITS::FEET:
scale = 304.8;
break;
case DXF_IMPORT_UNITS::MILLIMETERS:
scale = 1.0;
break;
case DXF_IMPORT_UNITS::CENTIMETERS:
scale = 10.0;
break;
case DXF_IMPORT_UNITS::METERS:
scale = 1000.0;
break;
case DXF_IMPORT_UNITS::MICROINCHES:
scale = 2.54e-5;
break;
case DXF_IMPORT_UNITS::MILS:
scale = 0.0254;
break;
case DXF_IMPORT_UNITS::YARDS:
scale = 914.4;
break;
case DXF_IMPORT_UNITS::ANGSTROMS:
scale = 1.0e-7;
break;
case DXF_IMPORT_UNITS::NANOMETERS:
scale = 1.0e-6;
break;
case DXF_IMPORT_UNITS::MICRONS:
scale = 1.0e-3;
break;
case DXF_IMPORT_UNITS::DECIMETERS:
scale = 100.0;
break;
default:
// use the default of 1.0 for:
// 0: Unspecified Units
// 3: miles
// 7: kilometers
// 15: decameters
// 16: hectometers
// 17: gigameters
// 18: AU
// 19: lightyears
// 20: parsecs
scale = 1.0;
break;
}
return scale;
}
void DXF_IMPORT_PLUGIN::setVariableInt( const std::string& key, int value, int code )
{
// Called for every int variable in the DXF file (e.g. "$INSUNITS").
if( key == "$DWGCODEPAGE" )
{
m_codePage = value;
return;
}
if( key == "$AUPREC" )
{
m_importAnglePrecision = value;
return;
}
if( key == "$LUPREC" )
{
m_importCoordinatePrecision = value;
return;
}
if( key == "$INSUNITS" ) // Drawing units
{
switch( value )
{
case 1: // inches
m_currentUnit = DXF_IMPORT_UNITS::INCHES;
break;
case 2: // feet
m_currentUnit = DXF_IMPORT_UNITS::FEET;
break;
case 4: // mm
m_currentUnit = DXF_IMPORT_UNITS::MILLIMETERS;
break;
case 5: // centimeters
m_currentUnit = DXF_IMPORT_UNITS::CENTIMETERS;
break;
case 6: // meters
m_currentUnit = DXF_IMPORT_UNITS::METERS;
break;
case 8: // microinches
m_currentUnit = DXF_IMPORT_UNITS::MICROINCHES;
break;
case 9: // mils
m_currentUnit = DXF_IMPORT_UNITS::MILS;
break;
case 10: // yards
m_currentUnit = DXF_IMPORT_UNITS::YARDS;
break;
case 11: // Angstroms
m_currentUnit = DXF_IMPORT_UNITS::ANGSTROMS;
break;
case 12: // nanometers
m_currentUnit = DXF_IMPORT_UNITS::NANOMETERS;
break;
case 13: // micrometers
m_currentUnit = DXF_IMPORT_UNITS::MICRONS;
break;
case 14: // decimeters
m_currentUnit = DXF_IMPORT_UNITS::DECIMETERS;
break;
default:
// use the default of 1.0 for:
// 0: Unspecified Units
// 3: miles
// 7: kilometers
// 15: decameters
// 16: hectometers
// 17: gigameters
// 18: AU
// 19: lightyears
// 20: parsecs
m_currentUnit = DXF_IMPORT_UNITS::DEFAULT;
break;
}
return;
}
}
void DXF_IMPORT_PLUGIN::setVariableString( const std::string& key, const std::string& value,
int code )
{
// Called for every string variable in the DXF file (e.g. "$ACADVER").
}
wxString DXF_IMPORT_PLUGIN::toDxfString( const wxString& aStr )
{
wxString res;
int j = 0;
for( unsigned i = 0; i<aStr.length(); ++i )
{
int c = aStr[i];
if( c > 175 || c < 11 )
{
res.append( aStr.Mid( j, i - j ) );
j = i;
switch( c )
{
case 0x0A:
res += wxT( "\\P" );
break;
// diameter:
#ifdef _WIN32
// windows, as always, is special.
case 0x00D8:
#else
case 0x2205:
#endif
res += wxT( "%%C" );
break;
// degree:
case 0x00B0:
res += wxT( "%%D" );
break;
// plus/minus
case 0x00B1:
res += wxT( "%%P" );
break;
default:
j--;
break;
}
j++;
}
}
res.append( aStr.Mid( j ) );
return res;
}
wxString DXF_IMPORT_PLUGIN::toNativeString( const wxString& aData )
{
wxString res;
// Ignore font tags:
int j = 0;
for( unsigned i = 0; i < aData.length(); ++i )
{
if( aData[ i ] == 0x7B ) // is '{' ?
{
if( aData[ i + 1 ] == 0x5c && aData[ i + 2 ] == 0x66 ) // is "\f" ?
{
// found font tag, append parsed part
res.append( aData.Mid( j, i - j ) );
// skip to ';'
for( unsigned k = i + 3; k < aData.length(); ++k )
{
if( aData[ k ] == 0x3B )
{
i = j = ++k;
break;
}
}
// add to '}'
for( unsigned k = i; k < aData.length(); ++k )
{
if( aData[ k ] == 0x7D )
{
res.append( aData.Mid( i, k - i ) );
i = j = ++k;
break;
}
}
}
}
}
res.append( aData.Mid( j ) );
#if 1
wxRegEx regexp;
// Line feed:
regexp.Compile( wxT( "\\\\P" ) );
regexp.Replace( &res, wxT( "\n" ) );
// Space:
regexp.Compile( wxT( "\\\\~" ) );
regexp.Replace( &res, wxT( " " ) );
// diameter:
regexp.Compile( wxT( "%%[cC]" ) );
#ifdef __WINDOWS__
// windows, as always, is special.
regexp.Replace( &res, wxChar( 0xD8 ) );
#else
// Empty_set, diameter is 0x2300
regexp.Replace( &res, wxChar( 0x2205 ) );
#endif
// degree:
regexp.Compile( wxT( "%%[dD]" ) );
regexp.Replace( &res, wxChar( 0x00B0 ) );
// plus/minus
regexp.Compile( wxT( "%%[pP]" ) );
regexp.Replace( &res, wxChar( 0x00B1 ) );
#endif
return res;
}
void DXF_IMPORT_PLUGIN::addTextStyle( const DL_StyleData& aData )
{
wxString name = wxString::FromUTF8( aData.name.c_str() );
std::unique_ptr<DXF_IMPORT_STYLE> style =
std::make_unique<DXF_IMPORT_STYLE>( name, aData.fixedTextHeight, aData.widthFactor, aData.bold, aData.italic );
m_styles.push_back( std::move( style ) );
}
2021-09-12 23:38:22 +00:00
void DXF_IMPORT_PLUGIN::addPoint( const DL_PointData& aData )
{
DXF_ARBITRARY_AXIS arbAxis = getArbitraryAxis( getExtrusion() );
VECTOR3D centerCoords = ocsToWcs( arbAxis, VECTOR3D( aData.x, aData.y, aData.z ) );
VECTOR2D center( mapX( centerCoords.x ), mapY( centerCoords.y ) );
// we emulate points with filled circles
// set the linewidth to something that even small circles look good with
// thickness is optional for dxf points
// note: we had to modify the dxf library to grab the attribute for thickness
double lineWidth = 0.0001;
double thickness = mapDim( std::max( aData.thickness, 0.01 ) );
GRAPHICS_IMPORTER_BUFFER* bufferToUse =
( m_currentBlock != nullptr ) ? &m_currentBlock->m_buffer : &m_internalImporter;
bufferToUse->AddCircle( center, thickness, lineWidth, true );
VECTOR2D radiusDelta( SCALE_FACTOR( thickness ), SCALE_FACTOR( thickness ) );
updateImageLimits( center + radiusDelta );
updateImageLimits( center - radiusDelta );
}
void DXF_IMPORT_PLUGIN::insertLine( const VECTOR2D& aSegStart,
const VECTOR2D& aSegEnd, double aWidth )
{
VECTOR2D origin( SCALE_FACTOR( aSegStart.x ), SCALE_FACTOR( aSegStart.y ) );
VECTOR2D end( SCALE_FACTOR( aSegEnd.x ), SCALE_FACTOR( aSegEnd.y ) );
GRAPHICS_IMPORTER_BUFFER* bufferToUse =
2020-11-23 16:18:02 +00:00
( m_currentBlock != nullptr ) ? &m_currentBlock->m_buffer : &m_internalImporter;
bufferToUse->AddLine( origin, end, aWidth );
updateImageLimits( origin );
updateImageLimits( end );
}
void DXF_IMPORT_PLUGIN::insertArc( const VECTOR2D& aSegStart, const VECTOR2D& aSegEnd,
double aBulge, double aWidth )
{
VECTOR2D segment_startpoint( SCALE_FACTOR( aSegStart.x ), SCALE_FACTOR( aSegStart.y ) );
VECTOR2D segment_endpoint( SCALE_FACTOR( aSegEnd.x ), SCALE_FACTOR( aSegEnd.y ) );
// ensure aBulge represents an angle from +/- ( 0 .. approx 359.8 deg )
if( aBulge < -2000.0 )
aBulge = -2000.0;
else if( aBulge > 2000.0 )
aBulge = 2000.0;
double ang = 4.0 * atan( aBulge );
// reflect the Y values to put everything in a RHCS
VECTOR2D sp( aSegStart.x, -aSegStart.y );
VECTOR2D ep( aSegEnd.x, -aSegEnd.y );
// angle from end->start
double offAng = atan2( ep.y - sp.y, ep.x - sp.x );
// length of subtended segment = 1/2 distance between the 2 points
double d = 0.5 * sqrt( (sp.x - ep.x) * (sp.x - ep.x) + (sp.y - ep.y) * (sp.y - ep.y) );
// midpoint of the subtended segment
double xm = ( sp.x + ep.x ) * 0.5;
double ym = ( sp.y + ep.y ) * 0.5;
double radius = d / sin( ang * 0.5 );
if( radius < 0.0 )
radius = -radius;
// calculate the height of the triangle with base d and hypotenuse r
double dh2 = radius * radius - d * d;
// this should only ever happen due to rounding errors when r == d
if( dh2 < 0.0 )
dh2 = 0.0;
double h = sqrt( dh2 );
if( ang < 0.0 )
offAng -= M_PI_2;
else
offAng += M_PI_2;
// for angles greater than 180 deg we need to flip the
// direction in which the arc center is found relative
// to the midpoint of the subtended segment.
if( ang < -M_PI )
offAng += M_PI;
else if( ang > M_PI )
offAng -= M_PI;
// center point
double cx = h * cos( offAng ) + xm;
double cy = h * sin( offAng ) + ym;
VECTOR2D center( SCALE_FACTOR( cx ), SCALE_FACTOR( -cy ) );
VECTOR2D arc_start;
EDA_ANGLE angle( ang, RADIANS_T );
if( ang < 0.0 )
{
arc_start = VECTOR2D( SCALE_FACTOR( ep.x ), SCALE_FACTOR( -ep.y ) );
}
else
{
arc_start = VECTOR2D( SCALE_FACTOR( sp.x ), SCALE_FACTOR( -sp.y ) );
angle = -angle;
}
GRAPHICS_IMPORTER_BUFFER* bufferToUse = m_currentBlock ? &m_currentBlock->m_buffer
: &m_internalImporter;
bufferToUse->AddArc( center, arc_start, angle, aWidth );
VECTOR2D radiusDelta( SCALE_FACTOR( radius ), SCALE_FACTOR( radius ) );
updateImageLimits( center + radiusDelta );
updateImageLimits( center - radiusDelta );
return;
}
#include "tinysplinecxx.h"
void DXF_IMPORT_PLUGIN::insertSpline( double aWidth )
{
#if 0 // Debug only
wxLogMessage("spl deg %d kn %d ctr %d fit %d",
m_curr_entity.m_SplineDegree,
m_curr_entity.m_SplineKnotsList.size(),
m_curr_entity.m_SplineControlPointList.size(),
m_curr_entity.m_SplineFitPointList.size() );
#endif
unsigned imax = m_curr_entity.m_SplineControlPointList.size();
if( imax < 2 ) // malformed spline
return;
#if 0 // set to 1 to approximate the spline by segments between 2 control points
VECTOR2D startpoint( mapX( m_curr_entity.m_SplineControlPointList[0].m_x ),
mapY( m_curr_entity.m_SplineControlPointList[0].m_y ) );
for( unsigned int ii = 1; ii < imax; ++ii )
{
VECTOR2D endpoint( mapX( m_curr_entity.m_SplineControlPointList[ii].m_x ),
mapY( m_curr_entity.m_SplineControlPointList[ii].m_y ) );
if( startpoint != endpoint )
{
m_internalImporter.AddLine( startpoint, endpoint, aWidth );
updateImageLimits( startpoint );
updateImageLimits( endpoint );
startpoint = endpoint;
}
}
#else // Use bezier curves, supported by pcbnew, to approximate the spline
std::vector<double> ctrlp;
for( unsigned ii = 0; ii < imax; ++ii )
{
ctrlp.push_back( m_curr_entity.m_SplineControlPointList[ii].m_x );
ctrlp.push_back( m_curr_entity.m_SplineControlPointList[ii].m_y );
}
std::vector<double> coords;
tinyspline::BSpline beziers;
try
{
tinyspline::BSpline dxfspline( m_curr_entity.m_SplineControlPointList.size(),
/* coord dim */ 2, m_curr_entity.m_SplineDegree );
dxfspline.setControlPoints( ctrlp );
dxfspline.setKnots( m_curr_entity.m_SplineKnotsList );
beziers = tinyspline::BSpline( dxfspline.toBeziers() );
coords = beziers.controlPoints();
}
catch( const std::runtime_error& ) //tinyspline throws everything including data validation as runtime errors
{
// invalid spline definition, drop this block
reportMsg( _( "Invalid spline definition encountered" ) );
return;
}
size_t order = beziers.order();
size_t dim = beziers.dimension();
size_t numBeziers = ( coords.size() / dim ) / order;
for( size_t i = 0; i < numBeziers; i++ )
{
size_t ii = i * dim * order;
VECTOR2D start( mapX( coords[ ii ] ), mapY( coords[ ii + 1 ] ) );
VECTOR2D bezierControl1( mapX( coords[ii + 2] ), mapY( coords[ii + 3] ) );
// not sure why this happens, but it seems to sometimes slip degree on the final bezier
VECTOR2D bezierControl2;
if( ii + 4 >= coords.size() )
{
bezierControl2 = bezierControl1;
}
else
{
bezierControl2 = VECTOR2D( mapX( coords[ii + 4] ), mapY( coords[ii + 5] ) );
}
VECTOR2D end;
if( ii + 6 >= coords.size() )
{
end = bezierControl2;
}
else
{
end = VECTOR2D( mapX( coords[ii + 6] ), mapY( coords[ii + 7] ) );
}
GRAPHICS_IMPORTER_BUFFER* bufferToUse =
2020-11-23 16:18:02 +00:00
( m_currentBlock != nullptr ) ? &m_currentBlock->m_buffer : &m_internalImporter;
bufferToUse->AddSpline( start, bezierControl1, bezierControl2, end, aWidth );
}
#endif
}
void DXF_IMPORT_PLUGIN::updateImageLimits( const VECTOR2D& aPoint )
{
m_minX = std::min( aPoint.x, m_minX );
m_maxX = std::max( aPoint.x, m_maxX );
m_minY = std::min( aPoint.y, m_minY );
m_maxY = std::max( aPoint.y, m_maxY );
}
DXF_ARBITRARY_AXIS DXF_IMPORT_PLUGIN::getArbitraryAxis( DL_Extrusion* aData )
{
VECTOR3D arbZ, arbX, arbY;
double direction[3];
aData->getDirection( direction );
arbZ = VECTOR3D( direction[0], direction[1], direction[2] ).Normalize();
if( ( abs( arbZ.x ) < ( 1.0 / 64.0 ) ) && ( abs( arbZ.y ) < ( 1.0 / 64.0 ) ) )
{
arbX = VECTOR3D( 0, 1, 0 ).Cross( arbZ ).Normalize();
}
else
{
arbX = VECTOR3D( 0, 0, 1 ).Cross( arbZ ).Normalize();
}
arbY = arbZ.Cross( arbX ).Normalize();
return DXF_ARBITRARY_AXIS{ arbX, arbY, arbZ };
}
VECTOR3D DXF_IMPORT_PLUGIN::wcsToOcs( const DXF_ARBITRARY_AXIS& arbitraryAxis, VECTOR3D point )
{
double x, y, z;
x = point.x * arbitraryAxis.vecX.x + point.y * arbitraryAxis.vecX.y
+ point.z * arbitraryAxis.vecX.z;
y = point.x * arbitraryAxis.vecY.x + point.y * arbitraryAxis.vecY.y
+ point.z * arbitraryAxis.vecY.z;
z = point.x * arbitraryAxis.vecZ.x + point.y * arbitraryAxis.vecZ.y
+ point.z * arbitraryAxis.vecZ.z;
return VECTOR3D( x, y, z );
}
VECTOR3D DXF_IMPORT_PLUGIN::ocsToWcs( const DXF_ARBITRARY_AXIS& arbitraryAxis, VECTOR3D point )
{
VECTOR3D worldX = wcsToOcs( arbitraryAxis, VECTOR3D( 1, 0, 0 ) );
VECTOR3D worldY = wcsToOcs( arbitraryAxis, VECTOR3D( 0, 1, 0 ) );
VECTOR3D worldZ = wcsToOcs( arbitraryAxis, VECTOR3D( 0, 0, 1 ) );
double x, y, z;
x = point.x * worldX.x + point.y * worldX.y + point.z * worldX.z;
y = point.x * worldY.x + point.y * worldY.y + point.z * worldY.z;
z = point.x * worldZ.x + point.y * worldZ.y + point.z * worldZ.z;
return VECTOR3D( x, y, z );
}