kicad/include/geometry/seg.h

357 lines
8.7 KiB
C
Raw Normal View History

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2013 CERN
* @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#ifndef __SEG_H
#define __SEG_H
#include <cstdio>
#include <climits>
#include <math/vector2d.h>
#include <boost/optional/optional.hpp>
typedef boost::optional<VECTOR2I> OPT_VECTOR2I;
class SEG {
private:
typedef VECTOR2I::extended_type ecoord;
public:
friend inline std::ostream& operator<<( std::ostream& aStream, const SEG& aSeg );
/* Start and the of the segment. Public, to make access simpler. These are references
* to an object the segment belongs to (e.g. a line chain) or references to locally stored points
* (m_a, m_b).
*/
VECTOR2I& a, b;
/** Default constructor
* Creates an empty (0, 0) segment, locally-referenced
*/
SEG(): a(m_a), b(m_b)
{
a = m_a;
b = m_b;
m_is_local = true;
m_index = -1;
}
/**
* Constructor
* Creates a segment between (x1, y1) and (x2, y2), locally referenced
*/
SEG ( int x1, int y1, int x2, int y2 ) : a(m_a), b(m_b)
{
m_a = VECTOR2I(x1, y1);
m_b = VECTOR2I(x2, y2);
a = m_a;
b = m_b;
m_is_local = true;
m_index = -1;
}
/**
* Constructor
* Creates a segment between (aA) and (aB), locally referenced
*/
SEG ( const VECTOR2I& aA, const VECTOR2I& aB ): a(m_a), b(m_b), m_a(aA), m_b(aB)
{
a = m_a;
b = m_b;
m_is_local = true;
m_index = -1;
}
/**
* Constructor
* Creates a segment between (aA) and (aB), referenced to a multi-segment shape
* @param aA reference to the start point in the parent shape
* @param aB reference to the end point in the parent shape
* @param aIndex index of the segment within the parent shape
*/
SEG ( VECTOR2I& aA, VECTOR2I& aB, int aIndex ): a(aA), b(aB)
{
m_is_local = false;
m_index = aIndex;
}
/**
* Copy constructor
*/
SEG ( const SEG& seg ): a(m_a), b(m_b)
{
if (seg.m_is_local)
{
m_a = seg.m_a;
m_b = seg.m_b;
a = m_a;
b = m_b;
m_is_local = true;
m_index = -1;
} else {
a = seg.a;
b = seg.b;
m_index = seg.m_index;
m_is_local = false;
}
}
SEG& operator=(const SEG& seg)
{
a = seg.a;
b = seg.b;
m_a = seg.m_a;
m_b = seg.m_b;
m_index = seg.m_index;
m_is_local = seg.m_is_local;
return *this;
}
/**
* Function LineProject()
*
* Computes the perpendicular projection point of aP on a line passing through
* ends of the segment.
* @param aP point to project
* @return projected point
*/
VECTOR2I LineProject( const VECTOR2I& aP ) const;
/**
* Function Side()
*
* Determines on which side of directed line passing via segment ends point aP lies.
* @param aP point to determine the orientation wrs to self
* @return: < 0: left, 0 : on the line, > 0 : right
*/
int Side( const VECTOR2I& aP ) const
{
const ecoord det = (b - a).Cross(aP - a);
return det < 0 ? -1 : (det > 0 ? 1 : 0);
}
/**
* Function LineDistance()
*
* Returns the closest Euclidean distance between point aP and the line defined by
* the ends of segment (this).
* @param aDetermineSide: when true, the sign of the returned value indicates
* the side of the line at which we are (negative = left)
* @return the distance
*/
int LineDistance( const VECTOR2I& aP, bool aDetermineSide = false ) const;
/**
* Function NearestPoint()
*
* Computes a point on the segment (this) that is closest to point aP.
* @return: nearest point
*/
const VECTOR2I NearestPoint( const VECTOR2I &aP ) const;
/**
* Function Intersect()
*
* Computes intersection point of segment (this) with segment aSeg.
* @param aSeg: segment to intersect with
* @param aIgnoreEndpoints: don't treat corner cases (i.e. end of one segment touching the other)
* as intersections.
* @param aLines: treat segments as infinite lines
* @return intersection point, if exists
*/
OPT_VECTOR2I Intersect( const SEG& aSeg, bool aIgnoreEndpoints = false, bool aLines = false ) const;
/**
* Function IntersectLines()
*
* Computes the intersection point of lines passing through ends of (this) and aSeg
* @param aSeg segment defining the line to intersect with
* @return intersection point, if exists
*/
OPT_VECTOR2I IntersectLines( const SEG& aSeg ) const
{
return Intersect ( aSeg, false, true );
}
bool Collide( const SEG& aSeg, int aClearance ) const;
/**
* Function Distance()
*
* Computes minimum Euclidean distance to segment aSeg.
* @param aSeg other segment
* @return minimum distance
*/
ecoord SquaredDistance( const SEG& aSeg ) const ;
int Distance( const SEG& aSeg ) const
{
return sqrt ( SquaredDistance(aSeg) );
}
/**
* Function Distance()
*
* Computes minimum Euclidean distance to point aP.
* @param aP the point
* @return minimum distance
*/
ecoord SquaredDistance( const VECTOR2I& aP ) const
{
return (NearestPoint(aP) - aP).SquaredEuclideanNorm();
}
int Distance( const VECTOR2I& aP ) const
{
return sqrt ( SquaredDistance( aP) );
}
/**
* Function Collinear()
*
* Checks if segment aSeg lies on the same line as (this).
* @param aSeg the segment to chech colinearity with
* @return true, when segments are collinear.
*/
bool Collinear( const SEG& aSeg ) const
{
ecoord qa1 = a.y - b.y;
ecoord qb1 = b.x - a.x;
ecoord qc1 = -qa1 * a.x - qb1 * a.y;
ecoord qa2 = aSeg.a.y - aSeg.b.y;
ecoord qb2 = aSeg.b.x - aSeg.a.x;
ecoord qc2 = -qa2 * aSeg.a.x - qb2 * aSeg.a.y;
return (qa1 == qa2) && (qb1 == qb2) && (qc1 == qc2);
}
/**
* Function Length()
*
* Returns the length (this)
* @return length
*/
int Length() const
{
return (a - b).EuclideanNorm();
}
2013-09-13 13:25:03 +00:00
ecoord SquaredLength() const
{
return (a - b).SquaredEuclideanNorm();
}
/**
* Function Index()
*
* Return the index of this segment in its parent shape (applicable only to non-local segments)
* @return index value
*/
int Index() const
{
return m_index;
}
bool Contains(const VECTOR2I& aP) const;
bool PointCloserThan ( const VECTOR2I& aP, int dist) const;
// friend std::ostream& operator<<( std::ostream& stream, const SEG& aSeg );
private:
bool ccw ( const VECTOR2I& a, const VECTOR2I& b, const VECTOR2I &c ) const;
///> locally stored start/end coordinates (used when m_is_local == true)
VECTOR2I m_a, m_b;
///> index withing the parent shape (used when m_is_local == false)
int m_index;
///> locality flag
bool m_is_local;
};
inline VECTOR2I SEG::LineProject( const VECTOR2I& aP ) const
{
// fixme: numerical errors for large integers
assert(false);
2013-09-18 11:14:13 +00:00
return VECTOR2I(0, 0);
}
inline int SEG::LineDistance( const VECTOR2I& aP, bool aDetermineSide ) const
{
ecoord p = a.y - b.y;
ecoord q = b.x - a.x;
ecoord r = -p * a.x - q * a.y;
ecoord dist = ( p * aP.x + q * aP.y + r ) / sqrt( p * p + q * q );
return aDetermineSide ? dist : abs(dist);
}
inline const VECTOR2I SEG::NearestPoint(const VECTOR2I& aP) const
{
VECTOR2I d = b - a;
ecoord l_squared = d.Dot(d);
if( l_squared == 0 )
return a;
ecoord t = d.Dot(aP - a);
if( t < 0 )
return a;
else if( t > l_squared )
return b;
int xp = rescale(t, (ecoord)d.x, l_squared);
int yp = rescale(t, (ecoord)d.y, l_squared);
return a + VECTOR2I(xp, yp);
}
inline std::ostream& operator<<( std::ostream& aStream, const SEG& aSeg )
{
if(aSeg.m_is_local)
aStream << "[ local " << aSeg.a << " - " << aSeg.b << " ]";
return aStream;
}
#endif // __SEG_H