kicad/3d-viewer/3d_rendering/raytracing/shapes2D/triangle_2d.cpp

146 lines
4.2 KiB
C++
Raw Normal View History

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2015-2016 Mario Luzeiro <mrluzeiro@ua.pt>
2020-12-11 13:51:42 +00:00
* Copyright (C) 1992-2020 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/**
* @file triangle_2d.cpp
*/
#include "triangle_2d.h"
#include "../ray.h"
#include <wx/debug.h>
#include <geometry/polygon_triangulation.h>
#include "../../../3d_fastmath.h"
TRIANGLE_2D::TRIANGLE_2D( const SFVEC2F& aV1, const SFVEC2F& aV2, const SFVEC2F& aV3,
2020-12-11 13:51:42 +00:00
const BOARD_ITEM& aBoardItem ) :
OBJECT_2D( OBJECT_2D_TYPE::TRIANGLE, aBoardItem )
{
p1 = aV1;
p2 = aV2;
p3 = aV3;
// Pre-Calc values
2020-12-11 13:51:42 +00:00
m_inv_denominator = 1.0f / ( ( p2.y - p3.y ) * ( p1.x - p3.x ) +
( p3.x - p2.x ) * ( p1.y - p3.y ) );
m_p2y_minus_p3y = ( p2.y - p3.y );
m_p3x_minus_p2x = ( p3.x - p2.x );
m_p3y_minus_p1y = ( p3.y - p1.y );
m_p1x_minus_p3x = ( p1.x - p3.x );
m_bbox.Reset();
m_bbox.Union( aV1 );
m_bbox.Union( aV2 );
m_bbox.Union( aV3 );
m_bbox.ScaleNextUp();
m_centroid = m_bbox.GetCenter();
wxASSERT( m_bbox.IsInitialized() );
}
bool TRIANGLE_2D::Intersects( const BBOX_2D& aBBox ) const
{
if( !m_bbox.Intersects( aBBox ) )
return false;
2020-12-11 13:51:42 +00:00
//!TODO: Optimize
return true;
}
bool TRIANGLE_2D::Overlaps( const BBOX_2D& aBBox ) const
{
// NOT IMPLEMENTED
return false;
}
bool TRIANGLE_2D::Intersect( const RAYSEG2D& aSegRay, float* aOutT, SFVEC2F* aNormalOut ) const
{
return false;
}
INTERSECTION_RESULT TRIANGLE_2D::IsBBoxInside( const BBOX_2D& aBBox ) const
{
if( !m_bbox.Intersects( aBBox ) )
return INTERSECTION_RESULT::MISSES;
2020-12-11 13:51:42 +00:00
// !TODO:
return INTERSECTION_RESULT::MISSES;
}
bool TRIANGLE_2D::IsPointInside( const SFVEC2F& aPoint ) const
{
// http://totologic.blogspot.co.uk/2014/01/accurate-point-in-triangle-test.html
SFVEC2F point_minus_p3 = aPoint - p3;
// barycentric coordinate system
const float a = ( m_p2y_minus_p3y * point_minus_p3.x +
m_p3x_minus_p2x * point_minus_p3.y ) * m_inv_denominator;
if( 0.0f > a || a > 1.0f )
return false;
const float b = ( m_p3y_minus_p1y * point_minus_p3.x +
m_p1x_minus_p3x * point_minus_p3.y ) * m_inv_denominator;
if( 0.0f > b || b > 1.0f )
return false;
const float c = 1.0f - a - b;
return 0.0f <= c && c <= 1.0f;
}
void ConvertPolygonToTriangles( SHAPE_POLY_SET& aPolyList, CONTAINER_2D_BASE& aDstContainer,
float aBiuTo3dUnitsScale, const BOARD_ITEM& aBoardItem )
{
2020-12-11 13:51:42 +00:00
VECTOR2I a;
VECTOR2I b;
VECTOR2I c;
aPolyList.CacheTriangulation( false );
const double conver_d = (double)aBiuTo3dUnitsScale;
2018-09-10 08:06:17 +00:00
for( unsigned int j = 0; j < aPolyList.TriangulatedPolyCount(); j++ )
{
2018-09-10 08:06:17 +00:00
auto triPoly = aPolyList.TriangulatedPolygon( j );
for( size_t i = 0; i < triPoly->GetTriangleCount(); i++ )
{
triPoly->GetTriangle( i, a, b, c );
aDstContainer.Add( new TRIANGLE_2D( SFVEC2F( a.x * conver_d, -a.y * conver_d ),
SFVEC2F( b.x * conver_d, -b.y * conver_d ),
SFVEC2F( c.x * conver_d, -c.y * conver_d ),
aBoardItem ) );
}
}
}