kicad/common/geometry/shape_poly_set.cpp

830 lines
19 KiB
C++
Raw Normal View History

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2015 CERN
* @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
*
* Point in polygon algorithm adapted from Clipper Library (C) Angus Johnson,
* subject to Clipper library license.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <vector>
#include <cstdio>
#include <set>
#include <list>
#include <algorithm>
#include <geometry/shape.h>
#include <geometry/shape_line_chain.h>
#include <geometry/shape_poly_set.h>
using namespace ClipperLib;
SHAPE_POLY_SET::SHAPE_POLY_SET() :
SHAPE( SH_POLY_SET )
{
}
SHAPE_POLY_SET::~SHAPE_POLY_SET()
{
}
int SHAPE_POLY_SET::NewOutline()
{
SHAPE_LINE_CHAIN empty_path;
POLYGON poly;
poly.push_back( empty_path );
m_polys.push_back( poly );
return m_polys.size() - 1;
}
int SHAPE_POLY_SET::NewHole( int aOutline )
{
m_polys.back().push_back( SHAPE_LINE_CHAIN() );
return m_polys.back().size() - 2;
}
int SHAPE_POLY_SET::Append( int x, int y, int aOutline, int aHole )
{
if( aOutline < 0 )
aOutline += m_polys.size();
int idx;
if( aHole < 0 )
idx = 0;
else
idx = aHole + 1;
assert( aOutline < (int)m_polys.size() );
assert( idx < (int)m_polys[aOutline].size() );
m_polys[aOutline][idx].Append( x, y );
return m_polys[aOutline][idx].PointCount();
}
int SHAPE_POLY_SET::VertexCount( int aOutline , int aHole ) const
{
if( aOutline < 0 )
aOutline += m_polys.size();
int idx;
if( aHole < 0 )
idx = 0;
else
idx = aHole + 1;
assert ( aOutline < (int)m_polys.size() );
assert ( idx < (int)m_polys[aOutline].size() );
return m_polys[aOutline][idx].PointCount();
}
const VECTOR2I& SHAPE_POLY_SET::CVertex( int index, int aOutline , int aHole ) const
{
if( aOutline < 0 )
aOutline += m_polys.size();
int idx;
if( aHole < 0 )
idx = 0;
else
idx = aHole + 1;
assert( aOutline < (int)m_polys.size() );
assert( idx < (int)m_polys[aOutline].size() );
return m_polys[aOutline][idx].CPoint( index );
}
VECTOR2I& SHAPE_POLY_SET::Vertex( int index, int aOutline , int aHole )
{
if( aOutline < 0 )
aOutline += m_polys.size();
int idx;
if( aHole < 0 )
idx = 0;
else
idx = aHole + 1;
assert( aOutline < (int)m_polys.size() );
assert( idx < (int)m_polys[aOutline].size() );
return m_polys[aOutline][idx].Point( index );
}
int SHAPE_POLY_SET::AddOutline( const SHAPE_LINE_CHAIN& aOutline )
{
assert( aOutline.IsClosed() );
POLYGON poly;
poly.push_back( aOutline );
m_polys.push_back( poly );
return m_polys.size() - 1;
}
int SHAPE_POLY_SET::AddHole( const SHAPE_LINE_CHAIN& aHole, int aOutline )
{
assert ( m_polys.size() );
if( aOutline < 0 )
aOutline += m_polys.size();
POLYGON& poly = m_polys[aOutline];
assert( poly.size() );
poly.push_back( aHole );
return poly.size() - 1;
}
const Path SHAPE_POLY_SET::convertToClipper( const SHAPE_LINE_CHAIN& aPath, bool aRequiredOrientation )
{
Path c_path;
for( int i = 0; i < aPath.PointCount(); i++ )
{
const VECTOR2I& vertex = aPath.CPoint( i );
c_path.push_back( IntPoint( vertex.x, vertex.y ) );
}
if( Orientation( c_path ) != aRequiredOrientation )
ReversePath( c_path );
return c_path;
}
const SHAPE_LINE_CHAIN SHAPE_POLY_SET::convertFromClipper( const Path& aPath )
{
SHAPE_LINE_CHAIN lc;
for( unsigned int i = 0; i < aPath.size(); i++ )
lc.Append( aPath[i].X, aPath[i].Y );
return lc;
}
void SHAPE_POLY_SET::booleanOp( ClipType aType, const SHAPE_POLY_SET& aOtherShape,
POLYGON_MODE aFastMode )
{
Clipper c;
if( aFastMode == PM_STRICTLY_SIMPLE )
c.StrictlySimple( true );
for( const POLYGON& poly : m_polys )
{
for( unsigned int i = 0; i < poly.size(); i++ )
c.AddPath( convertToClipper( poly[i], i > 0 ? false : true ), ptSubject, true );
}
for( const POLYGON& poly : aOtherShape.m_polys )
{
for( unsigned int i = 0; i < poly.size(); i++ )
c.AddPath( convertToClipper( poly[i], i > 0 ? false : true ), ptClip, true );
}
PolyTree solution;
c.Execute( aType, solution, pftNonZero, pftNonZero );
importTree( &solution );
}
void SHAPE_POLY_SET::booleanOp( ClipperLib::ClipType aType,
const SHAPE_POLY_SET& aShape,
const SHAPE_POLY_SET& aOtherShape,
POLYGON_MODE aFastMode )
{
Clipper c;
if( aFastMode == PM_STRICTLY_SIMPLE )
c.StrictlySimple( true );
for( const POLYGON& poly : aShape.m_polys )
{
for( unsigned int i = 0; i < poly.size(); i++ )
c.AddPath( convertToClipper( poly[i], i > 0 ? false : true ), ptSubject, true );
}
for( const POLYGON& poly : aOtherShape.m_polys )
{
for( unsigned int i = 0; i < poly.size(); i++ )
c.AddPath( convertToClipper( poly[i], i > 0 ? false : true ), ptClip, true );
}
PolyTree solution;
c.Execute( aType, solution, pftNonZero, pftNonZero );
importTree( &solution );
}
void SHAPE_POLY_SET::BooleanAdd( const SHAPE_POLY_SET& b, POLYGON_MODE aFastMode )
{
booleanOp( ctUnion, b, aFastMode );
}
void SHAPE_POLY_SET::BooleanSubtract( const SHAPE_POLY_SET& b, POLYGON_MODE aFastMode )
{
booleanOp( ctDifference, b, aFastMode );
}
void SHAPE_POLY_SET::BooleanIntersection( const SHAPE_POLY_SET& b, POLYGON_MODE aFastMode )
{
booleanOp( ctIntersection, b, aFastMode );
}
void SHAPE_POLY_SET::BooleanAdd( const SHAPE_POLY_SET& a, const SHAPE_POLY_SET& b, POLYGON_MODE aFastMode )
{
booleanOp( ctUnion, a, b, aFastMode );
}
void SHAPE_POLY_SET::BooleanSubtract( const SHAPE_POLY_SET& a, const SHAPE_POLY_SET& b, POLYGON_MODE aFastMode )
{
booleanOp( ctDifference, a, b, aFastMode );
}
void SHAPE_POLY_SET::BooleanIntersection( const SHAPE_POLY_SET& a, const SHAPE_POLY_SET& b, POLYGON_MODE aFastMode )
{
booleanOp( ctIntersection, a, b, aFastMode );
}
void SHAPE_POLY_SET::Inflate( int aFactor, int aCircleSegmentsCount )
{
// A static table to avoid repetitive calculations of the coefficient
// 1.0 - cos( M_PI/aCircleSegmentsCount)
// aCircleSegmentsCount is most of time <= 64 and usually 8, 12, 16, 32
#define SEG_CNT_MAX 64
static double arc_tolerance_factor[SEG_CNT_MAX+1];
ClipperOffset c;
for( const POLYGON& poly : m_polys )
{
for( unsigned int i = 0; i < poly.size(); i++ )
c.AddPath( convertToClipper( poly[i], i > 0 ? false : true ), jtRound, etClosedPolygon );
}
PolyTree solution;
// Calculate the arc tolerance (arc error) from the seg count by circle.
// the seg count is nn = M_PI / acos(1.0 - c.ArcTolerance / abs(aFactor))
// see:
// www.angusj.com/delphi/clipper/documentation/Docs/Units/ClipperLib/Classes/ClipperOffset/Properties/ArcTolerance.htm
if( aCircleSegmentsCount < 6 ) // avoid incorrect aCircleSegmentsCount values
aCircleSegmentsCount = 6;
double coeff;
if( aCircleSegmentsCount > SEG_CNT_MAX || arc_tolerance_factor[aCircleSegmentsCount] == 0 )
{
coeff = 1.0 - cos( M_PI/aCircleSegmentsCount);
if( aCircleSegmentsCount <= SEG_CNT_MAX )
arc_tolerance_factor[aCircleSegmentsCount] = coeff;
}
else
coeff = arc_tolerance_factor[aCircleSegmentsCount];
c.ArcTolerance = std::abs( aFactor ) * coeff;
c.Execute( solution, aFactor );
importTree( &solution );
}
void SHAPE_POLY_SET::importTree( PolyTree* tree)
{
m_polys.clear();
for( PolyNode* n = tree->GetFirst(); n; n = n->GetNext() )
{
if( !n->IsHole() )
{
POLYGON paths;
paths.push_back( convertFromClipper( n->Contour ) );
for( unsigned int i = 0; i < n->Childs.size(); i++ )
paths.push_back( convertFromClipper( n->Childs[i]->Contour ) );
m_polys.push_back(paths);
}
}
}
// Polygon fracturing code. Work in progress.
struct FractureEdge
{
FractureEdge( bool connected, SHAPE_LINE_CHAIN* owner, int index ) :
m_connected( connected ),
m_next( NULL )
{
m_p1 = owner->CPoint( index );
m_p2 = owner->CPoint( index + 1 );
}
FractureEdge( int y = 0 ) :
m_connected( false ),
m_next( NULL )
{
m_p1.x = m_p2.y = y;
}
FractureEdge( bool connected, const VECTOR2I& p1, const VECTOR2I& p2 ) :
m_connected( connected ),
m_p1( p1 ),
m_p2( p2 ),
m_next( NULL )
{
}
bool matches( int y ) const
{
int y_min = std::min( m_p1.y, m_p2.y );
int y_max = std::max( m_p1.y, m_p2.y );
return ( y >= y_min ) && ( y <= y_max );
}
bool m_connected;
VECTOR2I m_p1, m_p2;
FractureEdge* m_next;
};
typedef std::vector<FractureEdge*> FractureEdgeSet;
static int processEdge( FractureEdgeSet& edges, FractureEdge* edge )
{
int x = edge->m_p1.x;
int y = edge->m_p1.y;
int min_dist = std::numeric_limits<int>::max();
int x_nearest = 0;
FractureEdge* e_nearest = NULL;
for( FractureEdgeSet::iterator i = edges.begin(); i != edges.end(); ++i )
{
if( !(*i)->matches( y ) )
continue;
int x_intersect;
if( (*i)->m_p1.y == (*i)->m_p2.y ) // horizontal edge
x_intersect = std::max ( (*i)->m_p1.x, (*i)->m_p2.x );
else
x_intersect = (*i)->m_p1.x + rescale((*i)->m_p2.x - (*i)->m_p1.x, y - (*i)->m_p1.y, (*i)->m_p2.y - (*i)->m_p1.y );
int dist = ( x - x_intersect );
2015-07-30 11:49:22 +00:00
if( dist >= 0 && dist < min_dist && (*i)->m_connected )
{
min_dist = dist;
x_nearest = x_intersect;
e_nearest = (*i);
}
}
if( e_nearest && e_nearest->m_connected )
{
int count = 0;
2015-07-30 11:49:22 +00:00
FractureEdge* lead1 = new FractureEdge( true, VECTOR2I( x_nearest, y ), VECTOR2I( x, y ) );
FractureEdge* lead2 = new FractureEdge( true, VECTOR2I( x, y ), VECTOR2I( x_nearest, y ) );
FractureEdge* split_2 = new FractureEdge( true, VECTOR2I( x_nearest, y ), e_nearest->m_p2 );
edges.push_back( split_2 );
edges.push_back( lead1 );
edges.push_back( lead2 );
FractureEdge* link = e_nearest->m_next;
e_nearest->m_p2 = VECTOR2I( x_nearest, y );
e_nearest->m_next = lead1;
lead1->m_next = edge;
FractureEdge*last;
for( last = edge; last->m_next != edge; last = last->m_next )
{
last->m_connected = true;
count++;
}
last->m_connected = true;
last->m_next = lead2;
lead2->m_next = split_2;
split_2->m_next = link;
return count + 1;
}
return 0;
}
void SHAPE_POLY_SET::fractureSingle( POLYGON& paths )
{
FractureEdgeSet edges;
FractureEdgeSet border_edges;
FractureEdge* root = NULL;
bool first = true;
if( paths.size() == 1 )
return;
int num_unconnected = 0;
for( SHAPE_LINE_CHAIN& path : paths )
{
int index = 0;
FractureEdge *prev = NULL, *first_edge = NULL;
int x_min = std::numeric_limits<int>::max();
for( int i = 0; i < path.PointCount(); i++ )
{
const VECTOR2I& p = path.CPoint( i );
if( p.x < x_min )
x_min = p.x;
}
for( int i = 0; i < path.PointCount(); i++ )
{
FractureEdge* fe = new FractureEdge( first, &path, index++ );
if( !root )
root = fe;
if( !first_edge )
first_edge = fe;
if( prev )
prev->m_next = fe;
if( i == path.PointCount() - 1 )
fe->m_next = first_edge;
prev = fe;
edges.push_back( fe );
if( !first )
{
if( fe->m_p1.x == x_min )
border_edges.push_back( fe );
}
if( !fe->m_connected )
num_unconnected++;
}
first = false; // first path is always the outline
}
// keep connecting holes to the main outline, until there's no holes left...
while( num_unconnected > 0 )
{
int x_min = std::numeric_limits<int>::max();
2015-07-07 16:37:03 +00:00
FractureEdge* smallestX = NULL;
// find the left-most hole edge and merge with the outline
for( FractureEdgeSet::iterator i = border_edges.begin(); i != border_edges.end(); ++i )
{
int xt = (*i)->m_p1.x;
2015-07-07 16:37:03 +00:00
if( ( xt < x_min ) && ! (*i)->m_connected )
{
x_min = xt;
smallestX = *i;
}
}
num_unconnected -= processEdge( edges, smallestX );
}
paths.clear();
SHAPE_LINE_CHAIN newPath;
newPath.SetClosed( true );
FractureEdge* e;
for( e = root; e->m_next != root; e = e->m_next )
newPath.Append( e->m_p1 );
2015-06-19 17:39:33 +00:00
newPath.Append( e->m_p1 );
for( FractureEdgeSet::iterator i = edges.begin(); i != edges.end(); ++i )
delete *i;
paths.push_back( newPath );
}
void SHAPE_POLY_SET::Fracture( POLYGON_MODE aFastMode )
{
Simplify( aFastMode ); // remove overlapping holes/degeneracy
for( POLYGON& paths : m_polys )
{
fractureSingle( paths );
}
}
void SHAPE_POLY_SET::Simplify( POLYGON_MODE aFastMode )
{
SHAPE_POLY_SET empty;
booleanOp( ctUnion, empty, aFastMode );
}
const std::string SHAPE_POLY_SET::Format() const
{
std::stringstream ss;
ss << "polyset " << m_polys.size() << "\n";
for( unsigned i = 0; i < m_polys.size(); i++ )
{
ss << "poly " << m_polys[i].size() << "\n";
for( unsigned j = 0; j < m_polys[i].size(); j++)
{
ss << m_polys[i][j].PointCount() << "\n";
for( int v = 0; v < m_polys[i][j].PointCount(); v++)
ss << m_polys[i][j].CPoint( v ).x << " " << m_polys[i][j].CPoint( v ).y << "\n";
}
ss << "\n";
}
return ss.str();
}
bool SHAPE_POLY_SET::Parse( std::stringstream& aStream )
{
std::string tmp;
aStream >> tmp;
if( tmp != "polyset" )
return false;
aStream >> tmp;
2015-06-15 14:01:43 +00:00
int n_polys = atoi( tmp.c_str() );
if( n_polys < 0 )
return false;
2015-06-15 14:01:43 +00:00
for( int i = 0; i < n_polys; i++ )
{
POLYGON paths;
aStream >> tmp;
if( tmp != "poly" )
return false;
aStream >> tmp;
2015-06-15 14:01:43 +00:00
int n_outlines = atoi( tmp.c_str() );
if( n_outlines < 0 )
return false;
2015-06-15 14:01:43 +00:00
for( int j = 0; j < n_outlines; j++ )
{
SHAPE_LINE_CHAIN outline;
outline.SetClosed( true );
aStream >> tmp;
2015-06-15 14:01:43 +00:00
int n_vertices = atoi( tmp.c_str() );
for( int v = 0; v < n_vertices; v++ )
{
VECTOR2I p;
aStream >> tmp; p.x = atoi( tmp.c_str() );
aStream >> tmp; p.y = atoi( tmp.c_str() );
outline.Append( p );
}
paths.push_back( outline );
}
m_polys.push_back( paths );
}
return true;
}
const BOX2I SHAPE_POLY_SET::BBox( int aClearance ) const
{
BOX2I bb;
for( unsigned i = 0; i < m_polys.size(); i++ )
{
if( i == 0 )
bb = m_polys[i][0].BBox();
else
bb.Merge( m_polys[i][0].BBox() );
}
bb.Inflate( aClearance );
return bb;
}
void SHAPE_POLY_SET::RemoveAllContours()
{
m_polys.clear();
}
void SHAPE_POLY_SET::DeletePolygon( int aIdx )
{
m_polys.erase( m_polys.begin() + aIdx );
}
void SHAPE_POLY_SET::Append( const SHAPE_POLY_SET& aSet )
{
m_polys.insert( m_polys.end(), aSet.m_polys.begin(), aSet.m_polys.end() );
}
void SHAPE_POLY_SET::Append( const VECTOR2I& aP, int aOutline, int aHole )
{
Append( aP.x, aP.y, aOutline, aHole );
}
bool SHAPE_POLY_SET::Contains( const VECTOR2I& aP, int aSubpolyIndex ) const
{
// fixme: support holes!
if( m_polys.size() == 0 ) // empty set?
return false;
if( aSubpolyIndex >= 0 )
return pointInPolygon( aP, m_polys[aSubpolyIndex][0] );
for( const POLYGON& polys : m_polys )
{
if( polys.size() == 0 )
continue;
if( pointInPolygon( aP, polys[0] ) )
return true;
}
return false;
}
bool SHAPE_POLY_SET::pointInPolygon( const VECTOR2I& aP, const SHAPE_LINE_CHAIN& aPath ) const
{
int result = 0;
int cnt = aPath.PointCount();
if ( !aPath.BBox().Contains( aP ) ) // test with bounding box first
return false;
if( cnt < 3 )
return false;
VECTOR2I ip = aPath.CPoint( 0 );
for( int i = 1; i <= cnt; ++i )
{
VECTOR2I ipNext = ( i == cnt ? aPath.CPoint( 0 ) : aPath.CPoint( i ) );
if( ipNext.y == aP.y )
{
if( ( ipNext.x == aP.x ) || ( ip.y == aP.y &&
( ( ipNext.x > aP.x ) == ( ip.x < aP.x ) ) ) )
return true;
}
if( ( ip.y < aP.y ) != ( ipNext.y < aP.y ) )
{
if( ip.x >= aP.x )
{
if( ipNext.x > aP.x )
result = 1 - result;
else
{
int64_t d = (int64_t)( ip.x - aP.x ) * (int64_t)( ipNext.y - aP.y ) -
(int64_t)( ipNext.x - aP.x ) * (int64_t)( ip.y - aP.y );
if( !d )
return true;
if( ( d > 0 ) == ( ipNext.y > ip.y ) )
result = 1 - result;
}
}
else
{
if( ipNext.x > aP.x )
{
int64_t d = (int64_t)( ip.x - aP.x ) * (int64_t)( ipNext.y - aP.y ) -
(int64_t)( ipNext.x - aP.x ) * (int64_t)( ip.y - aP.y );
if( !d )
return true;
if( ( d > 0 ) == ( ipNext.y > ip.y ) )
result = 1 - result;
}
}
}
ip = ipNext;
}
return result ? true : false;
}
void SHAPE_POLY_SET::Move( const VECTOR2I& aVector )
{
for( POLYGON &poly : m_polys )
{
for( SHAPE_LINE_CHAIN &path : poly )
{
path.Move( aVector );
}
}
}
int SHAPE_POLY_SET::TotalVertices() const
{
int c = 0;
for( const POLYGON& poly : m_polys )
{
for( const SHAPE_LINE_CHAIN& path : poly )
{
c += path.PointCount();
}
}
return c;
}