drc: first R-tree based test (silk to pad clearance)

This commit is contained in:
Tomasz Wlostowski 2020-09-18 16:24:09 +02:00
parent 43404d4577
commit 6578a76b72
8 changed files with 719 additions and 21 deletions

View File

@ -249,6 +249,7 @@ set( PCBNEW_DRC_SRCS
drc/drc_test_provider_misc.cpp
drc/drc_test_provider_track_width.cpp
drc/drc_test_provider_via_diameter.cpp
drc/drc_test_provider_silk_to_pad.cpp
)
set( PCBNEW_NETLIST_SRCS

View File

@ -127,6 +127,10 @@ void DRC_ENGINE::loadImplicitRules()
holeClearanceConstraint.Value().SetMin( 0 );
rule->AddConstraint( courtyardClearanceConstraint );
DRC_CONSTRAINT silkToPadClearanceConstraint( DRC_CONSTRAINT_TYPE_SILK_TO_PAD );
silkToPadClearanceConstraint.Value().SetMin( 0 );
rule->AddConstraint( silkToPadClearanceConstraint );
// 2) micro-via specific defaults (new DRC doesn't treat microvias in any special way)
DRC_RULE* uViaRule = createImplicitRule( _( "board setup micro-via constraints" ));
@ -274,14 +278,14 @@ void DRC_ENGINE::loadRules( const wxFileName& aPath )
{
DRC_RULES_PARSER parser( fp, aPath.GetFullPath() );
parser.Parse( rules, m_reporter );
}
}
// Copy the rules into the member variable afterwards so that if Parse() throws then
// the possibly malformed rules won't contaminate the current ruleset.
for( DRC_RULE* rule : rules )
m_rules.push_back( rule );
}
}
}
@ -402,7 +406,12 @@ void DRC_ENGINE::RunTests( EDA_UNITS aUnits, bool aTestTracksAgainstZones,
int phases = 0;
for( DRC_TEST_PROVIDER* provider : m_testProviders )
{
if( provider->IsEnabled() )
{
phases += provider->GetNumPhases();
}
}
m_progressReporter->AddPhases( phases );
}
@ -417,6 +426,9 @@ void DRC_ENGINE::RunTests( EDA_UNITS aUnits, bool aTestTracksAgainstZones,
for( DRC_TEST_PROVIDER* provider : m_testProviders )
{
if( !provider->IsEnabled() )
continue;
drc_dbg( 0, "Running test provider: '%s'\n", provider->GetName() );
ReportAux( wxString::Format( "Run DRC provider: '%s'", provider->GetName() ) );
@ -479,30 +491,30 @@ DRC_CONSTRAINT DRC_ENGINE::EvalRulesForItems( DRC_CONSTRAINT_TYPE_T aConstraintI
if( m_constraintMap.count( aConstraintId ) )
{
std::vector<CONSTRAINT_WITH_CONDITIONS*>* ruleset = m_constraintMap[ aConstraintId ];
std::vector<CONSTRAINT_WITH_CONDITIONS*>* ruleset = m_constraintMap[ aConstraintId ];
// Last matching rule wins, so process in reverse order
for( int ii = (int) ruleset->size() - 1; ii >= 0; --ii )
{
const CONSTRAINT_WITH_CONDITIONS* rcons = ruleset->at( ii );
implicit = rcons->parentRule && rcons->parentRule->m_Implicit;
// Last matching rule wins, so process in reverse order
for( int ii = (int) ruleset->size() - 1; ii >= 0; --ii )
{
const CONSTRAINT_WITH_CONDITIONS* rcons = ruleset->at( ii );
implicit = rcons->parentRule && rcons->parentRule->m_Implicit;
REPORT( "" )
REPORT( "" )
if( aConstraintId == DRC_CONSTRAINT_TYPE_CLEARANCE )
{
{
int clearance = rcons->constraint.m_Value.Min();
REPORT( wxString::Format( implicit ? _( "Checking %s; clearance: %s." )
: _( "Checking rule %s; clearance: %s."),
rcons->constraint.GetName(),
MessageTextFromValue( UNITS, clearance, true ) ) )
}
else
{
}
else
{
REPORT( wxString::Format( implicit ? _( "Checking %s." )
: _( "Checking rule %s."),
rcons->constraint.GetName() ) )
}
}
if( aLayer != UNDEFINED_LAYER && !rcons->layerTest.test( aLayer ) )
{
@ -694,8 +706,8 @@ std::vector<DRC_CONSTRAINT> DRC_ENGINE::QueryConstraintsById( DRC_CONSTRAINT_TYP
if( m_constraintMap.count( constraintID ) )
{
for ( CONSTRAINT_WITH_CONDITIONS* c : *m_constraintMap[ constraintID ] )
rv.push_back( c->constraint );
for ( CONSTRAINT_WITH_CONDITIONS* c : *m_constraintMap[constraintID] )
rv.push_back( c->constraint );
}
return rv;

View File

@ -81,9 +81,15 @@ std::function<void( const std::shared_ptr<DRC_ITEM>& aItem, wxPoint aPos )> DRC_
class DRC_ENGINE
{
public:
DRC_ENGINE( BOARD* aBoard, BOARD_DESIGN_SETTINGS* aSettings );
DRC_ENGINE( BOARD* aBoard = nullptr, BOARD_DESIGN_SETTINGS* aSettings = nullptr );
~DRC_ENGINE();
void SetBoard( BOARD* aBoard ) { m_board = aBoard; }
BOARD* GetBoard() const { return m_board; }
void SetDesignSettings( BOARD_DESIGN_SETTINGS* aSettings ) { m_designSettings = aSettings; }
BOARD_DESIGN_SETTINGS* GetDesignSettings() const { return m_designSettings; }
void SetSchematicNetlist( NETLIST* aNetlist ) { m_schematicNetlist = aNetlist; }
NETLIST* GetSchematicNetlist() const { return m_schematicNetlist; }
@ -135,9 +141,6 @@ public:
void RunTests( EDA_UNITS aUnits = EDA_UNITS::MILLIMETRES, bool aTestTracksAgainstZones = true,
bool aReportAllTrackErrors = true, bool aTestFootprints = true );
BOARD_DESIGN_SETTINGS* GetDesignSettings() const { return m_designSettings; }
BOARD* GetBoard() const { return m_board; }
bool IsErrorLimitExceeded( int error_code );
@ -165,6 +168,8 @@ public:
bool QueryWorstConstraint( DRC_CONSTRAINT_TYPE_T aRuleId, DRC_CONSTRAINT& aConstraint,
DRC_CONSTRAINT_QUERY_T aQueryType );
std::vector<DRC_TEST_PROVIDER* > GetTestProviders() const { return m_testProviders; };
private:
void addRule( DRC_RULE* rule )
{

View File

@ -166,6 +166,14 @@ DRC_ITEM DRC_ITEM::unresolvedVariable( DRCE_UNRESOLVED_VARIABLE,
_( "Unresolved text variable" ),
wxT( "unresolved_variable" ) );
DRC_ITEM DRC_ITEM::silkOverPad( DRCE_SILK_OVER_PAD,
_( "Silkscreen overlapping component pad(s)" ),
wxT( "silk_over_pad" ) );
DRC_ITEM DRC_ITEM::silkClearance( DRCE_SILK_CLEARANCE,
_( "Silkscreen clearance" ),
wxT( "silk_clearance" ) );
std::vector<std::reference_wrapper<RC_ITEM>> DRC_ITEM::allItemTypes( {
DRC_ITEM::unconnectedItems,
@ -238,6 +246,8 @@ std::shared_ptr<DRC_ITEM> DRC_ITEM::Create( int aErrorCode )
case DRCE_NET_CONFLICT: return std::make_shared<DRC_ITEM>( netConflict );
case DRCE_EXTRA_FOOTPRINT: return std::make_shared<DRC_ITEM>( extraFootprint );
case DRCE_UNRESOLVED_VARIABLE: return std::make_shared<DRC_ITEM>( unresolvedVariable );
case DRCE_SILK_OVER_PAD: return std::make_shared<DRC_ITEM>( silkOverPad );
case DRCE_SILK_CLEARANCE: return std::make_shared<DRC_ITEM>( silkClearance );
default:
wxFAIL_MSG( "Unknown DRC error code" );

View File

@ -68,8 +68,10 @@ enum PCB_DRC_CODE {
DRCE_NET_CONFLICT, // pad net doesn't match netlist
DRCE_UNRESOLVED_VARIABLE,
DRCE_SILK_OVER_PAD, // silkscreen over component pad(s)
DRCE_SILK_CLEARANCE, // silk to silk clearance error
DRCE_LAST = DRCE_UNRESOLVED_VARIABLE
DRCE_LAST = DRCE_SILK_CLEARANCE
};
@ -144,6 +146,8 @@ private:
static DRC_ITEM extraFootprint;
static DRC_ITEM netConflict;
static DRC_ITEM unresolvedVariable;
static DRC_ITEM silkOverPad;
static DRC_ITEM silkClearance;
private:
DRC_RULE* m_violatingRule = nullptr;

412
pcbnew/drc/drc_rtree.h Normal file
View File

@ -0,0 +1,412 @@
/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2019 KiCad Developers, see AUTHORS.txt for contributors.
* Copyright (C) 2020 CERN
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 3
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-3.0.html
* or you may search the http://www.gnu.org website for the version 3 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#ifndef DRC_RTREE_H_
#define DRC_RTREE_H_
#include <eda_rect.h>
#include <class_board_item.h>
#include <class_track.h>
#include <class_zone.h>
#include <unordered_set>
#include <vector>
#include <geometry/rtree.h>
#include <math/vector2d.h>
/**
* DRC_RTREE -
* Implements an R-tree for fast spatial and layer indexing of connectable items.
* Non-owning.
*/
class DRC_RTREE
{
private:
struct ITEM_WITH_SHAPE
{
ITEM_WITH_SHAPE( BOARD_ITEM *aParent, SHAPE* aShape, std::shared_ptr<SHAPE> aParentShape = nullptr ) :
parent ( aParent ),
shape ( aShape ),
parentShape( aParentShape ) {};
BOARD_ITEM* parent;
SHAPE* shape;
std::shared_ptr<SHAPE> parentShape;
};
using drc_rtree = RTree<ITEM_WITH_SHAPE*, int, 2, double>;
public:
DRC_RTREE()
{
for( int layer : LSET::AllLayersMask().Seq() )
m_tree[layer] = new drc_rtree();
m_count = 0;
}
~DRC_RTREE()
{
for( auto tree : m_tree )
delete tree;
}
/**
* Function Insert()
* Inserts an item into the tree. Item's bounding box is taken via its GetBoundingBox() method.
*/
void insert( BOARD_ITEM* aItem )
{
std::vector<SHAPE*> subshapes;
for( int layer : aItem->GetLayerSet().Seq() )
{
std::shared_ptr<SHAPE> itemShape = aItem->GetEffectiveShape( (PCB_LAYER_ID) layer );
if( itemShape->HasIndexableSubshapes() )
{
itemShape->GetIndexableSubshapes( subshapes );
}
else
{
subshapes.push_back( itemShape.get() );
}
for( auto subshape : subshapes )
{
const BOX2I& bbox = subshape->BBox();
const int mmin[2] = { bbox.GetX(), bbox.GetY() };
const int mmax[2] = { bbox.GetRight(), bbox.GetBottom() };
m_tree[layer]->Insert( mmin, mmax, new ITEM_WITH_SHAPE( aItem, subshape, itemShape ) );
m_count++;
}
}
}
#if 0
/**
* Function Remove()
* Removes an item from the tree. Removal is done by comparing pointers, attempting
* to remove a copy of the item will fail.
*/
bool remove( BOARD_ITEM* aItem )
{
// First, attempt to remove the item using its given BBox
const EDA_RECT& bbox = aItem->GetBoundingBox();
const int mmin[2] = { bbox.GetX(), bbox.GetY() };
const int mmax[2] = { bbox.GetRight(), bbox.GetBottom() };
bool removed = false;
for( auto layer : aItem->GetLayerSet().Seq() )
{
if( ZONE_CONTAINER* zone = dyn_cast<ZONE_CONTAINER*>( aItem ) )
{
// Continue removing the zone elements from the tree until they cannot be found
while( !m_tree[int( layer )]->Remove( mmin, mmax, aItem ) )
;
const int mmin2[2] = { INT_MIN, INT_MIN };
const int mmax2[2] = { INT_MAX, INT_MAX };
// If we are not successful ( true == not found ), then we expand
// the search to the full tree
while( !m_tree[int( layer )]->Remove( mmin2, mmax2, aItem ) )
;
// Loop to the next layer
continue;
}
// The non-zone search expects only a single element in the tree with the same
// pointer aItem
if( m_tree[int( layer )]->Remove( mmin, mmax, aItem ) )
{
// N.B. We must search the whole tree for the pointer to remove
// because the item may have been moved before we have the chance to
// delete it from the tree
const int mmin2[2] = { INT_MIN, INT_MIN };
const int mmax2[2] = { INT_MAX, INT_MAX };
if( m_tree[int( layer )]->Remove( mmin2, mmax2, aItem ) )
continue;
}
removed = true;
}
m_count -= int( removed );
return removed;
}
#endif
/**
* Function RemoveAll()
* Removes all items from the RTree
*/
void clear()
{
for( auto tree : m_tree )
tree->RemoveAll();
m_count = 0;
}
#if 0
/**
* Determine if a given item exists in the tree. Note that this does not search the full tree
* so if the item has been moved, this will return false when it should be true.
*
* @param aItem Item that may potentially exist in the tree
* @param aRobust If true, search the whole tree, not just the bounding box
* @return true if the item definitely exists, false if it does not exist within bbox
*/
bool contains( BOARD_ITEM* aItem, bool aRobust = false )
{
const EDA_RECT& bbox = aItem->GetBoundingBox();
const int mmin[2] = { bbox.GetX(), bbox.GetY() };
const int mmax[2] = { bbox.GetRight(), bbox.GetBottom() };
bool found = false;
auto search = [&found, &aItem]( const ITEM_WITH_SHAPE* aSearchItem ) {
if( aSearchItem->parent == aItem )
{
found = true;
return false;
}
return true;
};
for( int layer : aItem->GetLayerSet().Seq() )
{
m_tree[layer]->Search( mmin, mmax, search );
if( found )
break;
}
if( !found && aRobust )
{
for( int layer : LSET::AllCuMask().Seq() )
{
// N.B. We must search the whole tree for the pointer to remove
// because the item may have been moved. We do not expand the item
// layer search as this should not change.
const int mmin2[2] = { INT_MIN, INT_MIN };
const int mmax2[2] = { INT_MAX, INT_MAX };
m_tree[layer]->Search( mmin2, mmax2, search );
if( found )
break;
}
}
return found;
}
#endif
int QueryColliding( BOARD_ITEM* aRefItem,
PCB_LAYER_ID aRefLayer,
PCB_LAYER_ID aTargetLayer,
std::function<bool( BOARD_ITEM*)> aFilter,
std::function<bool( BOARD_ITEM*, int)> aVisitor,
int aClearance
)
{
// keep track of BOARD_ITEMs that have been already found to collide (some items
// might be build of COMPOUND/triangulated shapes and a single subshape collision
// means we have a hit)
std::unordered_set<BOARD_ITEM*> collidingCompounds;
EDA_RECT box = aRefItem->GetBoundingBox();
box.Inflate( aClearance );
int min[2] = { box.GetX(), box.GetY() };
int max[2] = { box.GetRight(), box.GetBottom() };
std::shared_ptr<SHAPE> refShape = aRefItem->GetEffectiveShape( aRefLayer );
auto visit = [&] ( ITEM_WITH_SHAPE* aItem ) -> bool
{
if( collidingCompounds.find( aItem->parent ) != collidingCompounds.end() )
return true;
if( !aFilter( aItem->parent ) )
return true;
int actual;
bool colliding = refShape->Collide( aItem->shape, aClearance, &actual );
if( colliding )
{
collidingCompounds.insert( aItem->parent );
return aVisitor( aItem->parent, actual );
}
return true;
};
this->m_tree[aTargetLayer]->Search( min, max, visit );
return 0;
}
#if 0
std::vector<std::pair<int, BOARD_ITEM*>> GetNearest( const wxPoint &aPoint,
PCB_LAYER_ID aLayer,
int aLimit )
{
const int point[2] = { aPoint.x, aPoint.y };
auto result = m_tree[int( aLayer )]->NearestNeighbors( point,
[aLimit]( std::size_t a_count, int a_maxDist ) -> bool
{
return a_count >= aLimit;
},
[]( BOARD_ITEM* aElement) -> bool
{
// Don't remove any elements from the list
return false;
},
[aLayer]( const int* a_point, BOARD_ITEM* a_data ) -> int
{
switch( a_data->Type() )
{
case PCB_TRACE_T:
{
TRACK* track = static_cast<TRACK*>( a_data );
SEG seg( track->GetStart(), track->GetEnd() );
return seg.Distance( VECTOR2I( a_point[0], a_point[1] ) ) -
( track->GetWidth() + 1 ) / 2;
}
case PCB_VIA_T:
{
VIA* via = static_cast<VIA*>( a_data );
return ( VECTOR2I( via->GetPosition() ) -
VECTOR2I( a_point[0], a_point[1] ) ).EuclideanNorm() -
( via->GetWidth() + 1 ) / 2;
}
default:
{
VECTOR2I point( a_point[0], a_point[1] );
int dist = 0;
auto shape = a_data->GetEffectiveShape( aLayer );
// Here we use a hack to get the distance by colliding with a large area
// However, we can't use just MAX_INT because we will overflow the collision calculations
shape->Collide( point, std::numeric_limits<int>::max() / 2, &dist);
return dist;
}
}
return 0;
});
return result;
}
#endif
/**
* Returns the number of items in the tree
* @return number of elements in the tree;
*/
size_t size()
{
return m_count;
}
bool empty()
{
return m_count == 0;
}
using iterator = typename drc_rtree::Iterator;
/**
* The DRC_LAYER struct provides a layer-specific auto-range iterator to the RTree. Using
* this struct, one can write lines like:
*
* for( auto item : rtree.OnLayer( In1_Cu ) )
*
* and iterate over only the RTree items that are on In1
*/
struct DRC_LAYER
{
DRC_LAYER( drc_rtree* aTree ) : layer_tree( aTree )
{
m_rect = { { INT_MIN, INT_MIN }, { INT_MAX, INT_MAX } };
};
DRC_LAYER( drc_rtree* aTree, const EDA_RECT aRect ) : layer_tree( aTree )
{
m_rect = { { aRect.GetX(), aRect.GetY() },
{ aRect.GetRight(), aRect.GetBottom() } };
};
drc_rtree::Rect m_rect;
drc_rtree* layer_tree;
iterator begin()
{
return layer_tree->begin( m_rect );
}
iterator end()
{
return layer_tree->end( m_rect );
}
};
DRC_LAYER OnLayer( PCB_LAYER_ID aLayer )
{
return DRC_LAYER( m_tree[int( aLayer )] );
}
DRC_LAYER Overlapping( PCB_LAYER_ID aLayer, const wxPoint& aPoint, int aAccuracy = 0 )
{
EDA_RECT rect( aPoint, wxSize( 0, 0 ) );
rect.Inflate( aAccuracy );
return DRC_LAYER( m_tree[int( aLayer )], rect );
}
DRC_LAYER Overlapping( PCB_LAYER_ID aLayer, const EDA_RECT& aRect )
{
return DRC_LAYER( m_tree[int( aLayer )], aRect );
}
private:
drc_rtree* m_tree[PCB_LAYER_ID_COUNT];
size_t m_count;
};
#endif /* DRC_RTREE_H_ */

View File

@ -97,6 +97,16 @@ public:
return m_isRuleDriven;
}
bool IsEnabled() const
{
return m_enabled;
}
void Enable( bool aEnable )
{
m_enabled = aEnable;
}
protected:
int forEachGeometryItem( const std::vector<KICAD_T>& aTypes, LSET aLayers,
const std::function<bool(BOARD_ITEM*)>& aFunc );
@ -114,6 +124,7 @@ protected:
DRC_ENGINE* m_drcEngine;
std::unordered_map<const DRC_RULE*, int> m_stats;
bool m_isRuleDriven = true;
bool m_enabled = true;
wxString m_msg; // Allocating strings gets expensive enough to want to avoid it
};

View File

@ -0,0 +1,243 @@
/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2004-2020 KiCad Developers.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <common.h>
#include <class_board.h>
#include <class_drawsegment.h>
#include <class_pad.h>
#include <convert_basic_shapes_to_polygon.h>
#include <geometry/polygon_test_point_inside.h>
#include <geometry/seg.h>
#include <geometry/shape_poly_set.h>
#include <geometry/shape_rect.h>
#include <geometry/shape_segment.h>
#include <drc/drc_engine.h>
#include <drc/drc_item.h>
#include <drc/drc_rule.h>
#include <drc/drc_test_provider_clearance_base.h>
#include <drc/drc_rtree.h>
/*
Silk to pads clearance test. Check all pads against silkscreen (mask opening in the pad vs silkscreen)
Errors generated:
- DRCE_SILK_ON_PADS
TODO:
- tester only looks for edge crossings. it doesn't check if items are inside/outside the board area.
*/
namespace test {
class DRC_TEST_PROVIDER_SILK_TO_PAD : public ::DRC_TEST_PROVIDER
{
public:
DRC_TEST_PROVIDER_SILK_TO_PAD ()
{
}
virtual ~DRC_TEST_PROVIDER_SILK_TO_PAD()
{
}
virtual bool Run() override;
virtual const wxString GetName() const override
{
return "silk_to_pad";
};
virtual const wxString GetDescription() const override
{
return "Tests for silkscreen covering components pads";
}
virtual int GetNumPhases() const override
{
return 1;
}
virtual std::set<DRC_CONSTRAINT_TYPE_T> GetConstraintTypes() const override;
private:
BOARD* m_board;
int m_largestClearance;
};
};
bool test::DRC_TEST_PROVIDER_SILK_TO_PAD::Run()
{
m_board = m_drcEngine->GetBoard();
DRC_CONSTRAINT worstClearanceConstraint;
m_largestClearance = 0;
if( m_drcEngine->QueryWorstConstraint( DRC_CONSTRAINT_TYPE_SILK_TO_PAD,
worstClearanceConstraint, DRCCQ_LARGEST_MINIMUM ) )
{
m_largestClearance = worstClearanceConstraint.m_Value.Min();
}
reportAux( "Worst clearance : %d nm", m_largestClearance );
reportPhase(( "Pad to silkscreen clearances..." ));
struct SHAPE_ON_LAYER
{
SHAPE_ON_LAYER( std::shared_ptr<SHAPE> aShape, PCB_LAYER_ID aLayer )
: shape ( aShape ),
layer ( aLayer )
{
}
std::shared_ptr<SHAPE> shape;
PCB_LAYER_ID layer;
};
DRC_RTREE padTree;
auto addPadToTree =
[&padTree]( BOARD_ITEM *item ) -> bool
{
padTree.insert( item );
return true;
};
auto checkClearance =
[&] ( BOARD_ITEM* refItem ) -> bool
{
const PCB_LAYER_ID padOuterLayers[] = { F_Cu, B_Cu };
const PCB_LAYER_ID padSilkLayers[] = { F_SilkS, B_SilkS };
for( int i = 0; i < 2; i++ )
{
padTree.QueryColliding(
refItem,
padSilkLayers[i],
padOuterLayers[i],
[&] ( BOARD_ITEM *chkItem ) -> bool
{
return true;
},
[&] ( BOARD_ITEM *collItem, int distance ) -> bool
{
auto constraint = m_drcEngine->EvalRulesForItems( DRC_CONSTRAINT_TYPE_SILK_TO_PAD,
refItem, collItem );
int minClearance = constraint.GetValue().Min();
if( !distance || distance < minClearance )
{
std::shared_ptr<DRC_ITEM> drcItem = DRC_ITEM::Create( DRCE_SILK_OVER_PAD );
wxString msg;
msg.Printf( drcItem->GetErrorText() + _( " (%s clearance %s; actual %s)" ),
constraint.GetParentRule()->m_Name,
MessageTextFromValue( userUnits(), minClearance, true ),
MessageTextFromValue( userUnits(), distance, true ) );
drcItem->SetErrorMessage( msg );
drcItem->SetItems( refItem, collItem );
drcItem->SetViolatingRule( constraint.GetParentRule() );
reportViolation( drcItem, refItem->GetPosition() );
}
return true;
},
m_largestClearance
);
}
return true;
};
int numPads = forEachGeometryItem( { PCB_PAD_T }, LSET::AllTechMask() | LSET::AllCuMask(), addPadToTree );
int numSilk = forEachGeometryItem( { PCB_LINE_T, PCB_MODULE_EDGE_T, PCB_TEXT_T, PCB_MODULE_TEXT_T },
LSET( 2, F_SilkS, B_SilkS ),
checkClearance
);
reportAux( "Tested %d pads against %d silkscreen features.", numPads, numSilk );
#if 0
for( auto& silkShape : boardOutline )
{
for( auto& padShape : boardItems )
{
// printf("BoardT %d\n", boardItem->Type() );
auto shape = boardItem->GetEffectiveShape();
auto constraint = m_drcEngine->EvalRulesForItems( DRC_CONSTRAINT_TYPE_EDGE_CLEARANCE,
outlineItem, boardItem );
int minClearance = constraint.GetValue().Min();
int actual;
if( refShape->Collide( shape.get(), minClearance, &actual ) )
{
std::shared_ptr<DRC_ITEM> drcItem = DRC_ITEM::Create( DRCE_COPPER_EDGE_CLEARANCE );
wxString msg;
msg.Printf( drcItem->GetErrorText() + _( " (%s clearance %s; actual %s)" ),
rule->GetName(),
MessageTextFromValue( userUnits(), minClearance, true ),
MessageTextFromValue( userUnits(), actual, true ) );
drcItem->SetErrorMessage( msg );
drcItem->SetItems( outlineItem, boardItem );
drcItem->SetViolatingRule( rule );
reportViolation( drcItem, refShape->Centre());
}
}
}
return true;
#endif
return true;
}
std::set<DRC_CONSTRAINT_TYPE_T> test::DRC_TEST_PROVIDER_SILK_TO_PAD::GetConstraintTypes() const
{
return { DRC_CONSTRAINT_TYPE_SILK_TO_PAD };
}
namespace detail
{
static DRC_REGISTER_TEST_PROVIDER<test::DRC_TEST_PROVIDER_SILK_TO_PAD> dummy;
}