zone_filling_algorithm.cpp: a small code cleanup, fix incorrect return type in a few methods, and add better comments.
This commit is contained in:
parent
959450beed
commit
b7955001c1
|
@ -347,9 +347,9 @@ public:
|
|||
* A scan is made line per line, on the whole filled areas, with a step of m_ZoneMinThickness.
|
||||
* all intersecting points with the horizontal infinite line and polygons to fill are calculated
|
||||
* a list of SEGZONE items is built, line per line
|
||||
* @return number of segments created
|
||||
* @return true if success, false on error
|
||||
*/
|
||||
int FillZoneAreasWithSegments();
|
||||
bool FillZoneAreasWithSegments();
|
||||
|
||||
/**
|
||||
* Function UnFill
|
||||
|
|
|
@ -570,7 +570,7 @@ bool PCB_EDIT_FRAME::OpenProjectFiles( const std::vector<wxString>& aFileSet, in
|
|||
// Rebuild the new pad list (for drc and ratsnet control ...)
|
||||
GetBoard()->m_Status_Pcb = 0;
|
||||
|
||||
// Update current netclass:NETCLASS::Default alwaysxists
|
||||
// Select netclass Default as current netclass (it always exists)
|
||||
SetCurrentNetClass( NETCLASS::Default );
|
||||
|
||||
// Rebuild list of nets (full ratsnest rebuild)
|
||||
|
|
|
@ -5,8 +5,8 @@
|
|||
/*
|
||||
* This program source code file is part of KiCad, a free EDA CAD application.
|
||||
*
|
||||
* Copyright (C) 2012 Jean-Pierre Charras, jean-pierre.charras@ujf-grenoble.fr
|
||||
* Copyright (C) 1992-2012 KiCad Developers, see AUTHORS.txt for contributors.
|
||||
* Copyright (C) 2016 Jean-Pierre Charras, jp.charras at wanadoo.fr
|
||||
* Copyright (C) 1992-2016 KiCad Developers, see AUTHORS.txt for contributors.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU General Public License
|
||||
|
@ -32,6 +32,7 @@
|
|||
#include <fctsys.h>
|
||||
#include <trigo.h>
|
||||
#include <wxPcbStruct.h>
|
||||
#include <convert_basic_shapes_to_polygon.h>
|
||||
|
||||
#include <class_zone.h>
|
||||
|
||||
|
@ -62,7 +63,7 @@ bool ZONE_CONTAINER::BuildFilledSolidAreasPolygons( BOARD* aPcb, SHAPE_POLY_SET*
|
|||
*/
|
||||
|
||||
if( GetNumCorners() <= 2 ) // malformed zone. polygon calculations do not like it ...
|
||||
return 0;
|
||||
return false;
|
||||
|
||||
// Make a smoothed polygon out of the user-drawn polygon if required
|
||||
if( m_smoothedPoly )
|
||||
|
@ -96,7 +97,7 @@ bool ZONE_CONTAINER::BuildFilledSolidAreasPolygons( BOARD* aPcb, SHAPE_POLY_SET*
|
|||
|
||||
/* For copper layers, we now must add holes in the Polygon list.
|
||||
* holes are pads and tracks with their clearance area
|
||||
* for non copper layers just recalculate the m_FilledPolysList
|
||||
* For non copper layers, just recalculate the m_FilledPolysList
|
||||
* with m_ZoneMinThickness taken in account
|
||||
*/
|
||||
else
|
||||
|
@ -106,18 +107,26 @@ bool ZONE_CONTAINER::BuildFilledSolidAreasPolygons( BOARD* aPcb, SHAPE_POLY_SET*
|
|||
if( IsOnCopperLayer() )
|
||||
{
|
||||
AddClearanceAreasPolygonsToPolysList_NG( aPcb );
|
||||
|
||||
if( m_FillMode ) // if fill mode uses segments, create them:
|
||||
{
|
||||
if( !FillZoneAreasWithSegments() )
|
||||
return false;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
int margin = m_ZoneMinThickness / 2;
|
||||
m_FillMode = 0; // Fill by segments is no more used in non copper layers
|
||||
// force use solid polygons (usefull only for old boards)
|
||||
m_FilledPolysList = ConvertPolyListToPolySet( m_smoothedPoly->m_CornersList );
|
||||
m_FilledPolysList.Inflate( -margin, 16 );
|
||||
|
||||
// The filled areas are deflated by -m_ZoneMinThickness / 2, because
|
||||
// the outlines are drawn with a line thickness = m_ZoneMinThickness to
|
||||
// give a good shape with the minimal thickness
|
||||
m_FilledPolysList.Inflate( -m_ZoneMinThickness / 2, 16 );
|
||||
m_FilledPolysList.Fracture( SHAPE_POLY_SET::PM_FAST );
|
||||
}
|
||||
|
||||
if( m_FillMode ) // if fill mode uses segments, create them:
|
||||
FillZoneAreasWithSegments();
|
||||
|
||||
m_IsFilled = true;
|
||||
}
|
||||
|
||||
|
@ -125,125 +134,183 @@ bool ZONE_CONTAINER::BuildFilledSolidAreasPolygons( BOARD* aPcb, SHAPE_POLY_SET*
|
|||
}
|
||||
|
||||
|
||||
// Sort function to build filled zones
|
||||
// Helper sort function to fill zones by horizontal segments:
|
||||
// It is used to sort intersection points by x coordinate value.
|
||||
static bool SortByXValues( const int& a, const int &b )
|
||||
{
|
||||
return a < b;
|
||||
}
|
||||
|
||||
/** Helper function fillPolygonWithHorizontalSegments
|
||||
* fills a polygon with horizontal segments.
|
||||
* It can be used for any angle, if the zone outline to fill is rotated by this angle
|
||||
* and the result is rotated by -angle
|
||||
* @param aPolygon = a SHAPE_LINE_CHAIN polygon to fill
|
||||
* @param aFillSegmList = a std::vector <SEGMENT> which will be populated by filling segments
|
||||
* @param aStep = the horizontal grid size
|
||||
*/
|
||||
bool fillPolygonWithHorizontalSegments( const SHAPE_LINE_CHAIN& aPolygon,
|
||||
std::vector <SEGMENT>& aFillSegmList, int aStep );
|
||||
|
||||
int ZONE_CONTAINER::FillZoneAreasWithSegments()
|
||||
bool ZONE_CONTAINER::FillZoneAreasWithSegments()
|
||||
{
|
||||
int count = 0;
|
||||
std::vector <int> x_coordinates;
|
||||
bool error = false;
|
||||
int margin = m_ZoneMinThickness * 2 / 10;
|
||||
int minwidth = Mils2iu( 2 );
|
||||
margin = std::max ( minwidth, margin );
|
||||
int step = m_ZoneMinThickness - margin;
|
||||
step = std::max( step, minwidth );
|
||||
bool success = true;
|
||||
// segments are on something like a grid. Give it a minimal size
|
||||
// to avoid too many segments, and use the m_ZoneMinThickness when (this is usually the case)
|
||||
// the size is > mingrid_size.
|
||||
// This is not perfect, but the actual purpose of this code
|
||||
// is to allow filling zones on a grid, with grid size > m_ZoneMinThickness,
|
||||
// in order to have really a grid.
|
||||
//
|
||||
// Using a user selectable grid size is for future Kicad versions.
|
||||
// For now the area is fully filled.
|
||||
int mingrid_size = Millimeter2iu( 0.05 );
|
||||
int grid_size = std::max ( mingrid_size, m_ZoneMinThickness ;
|
||||
// Make segments slightly overlapping to ensure a good full filling
|
||||
grid_size -= grid_size/20;
|
||||
|
||||
// Read all filled areas in m_FilledPolysList
|
||||
// All filled areas are in m_FilledPolysList
|
||||
// m_FillSegmList will contain the horizontal and vertical segments
|
||||
// the segment width is m_ZoneMinThickness.
|
||||
m_FillSegmList.clear();
|
||||
|
||||
// Creates the horizontal segments
|
||||
for ( int index = 0; index < m_FilledPolysList.OutlineCount(); index++ )
|
||||
{
|
||||
const SHAPE_LINE_CHAIN& outline = m_FilledPolysList.COutline( index );
|
||||
const BOX2I& rect = outline.BBox();
|
||||
const SHAPE_LINE_CHAIN& outline0 = m_FilledPolysList.COutline( index );
|
||||
success = fillPolygonWithHorizontalSegments( outline0, m_FillSegmList, grid_size );
|
||||
|
||||
// Calculate the y limits of the zone
|
||||
for( int refy = rect.GetY(), endy = rect.GetBottom(); refy < endy; refy += step )
|
||||
{
|
||||
// find all intersection points of an infinite line with polyline sides
|
||||
x_coordinates.clear();
|
||||
|
||||
for( int v = 0; v < outline.PointCount(); v++ )
|
||||
{
|
||||
|
||||
int seg_startX = outline.CPoint( v ).x;
|
||||
int seg_startY = outline.CPoint( v ).y;
|
||||
int seg_endX = outline.CPoint( v + 1 ).x;
|
||||
int seg_endY = outline.CPoint( v + 1 ).y;
|
||||
|
||||
/* Trivial cases: skip if ref above or below the segment to test */
|
||||
if( ( seg_startY > refy ) && ( seg_endY > refy ) )
|
||||
continue;
|
||||
|
||||
// segment below ref point, or its Y end pos on Y coordinate ref point: skip
|
||||
if( ( seg_startY <= refy ) && (seg_endY <= refy ) )
|
||||
continue;
|
||||
|
||||
/* at this point refy is between seg_startY and seg_endY
|
||||
* see if an horizontal line at Y = refy is intersecting this segment
|
||||
*/
|
||||
// calculate the x position of the intersection of this segment and the
|
||||
// infinite line this is more easier if we move the X,Y axis origin to
|
||||
// the segment start point:
|
||||
|
||||
seg_endX -= seg_startX;
|
||||
seg_endY -= seg_startY;
|
||||
double newrefy = (double) ( refy - seg_startY );
|
||||
double intersec_x;
|
||||
|
||||
if ( seg_endY == 0 ) // horizontal segment on the same line: skip
|
||||
continue;
|
||||
|
||||
// Now calculate the x intersection coordinate of the horizontal line at
|
||||
// y = newrefy and the segment from (0,0) to (seg_endX,seg_endY) with the
|
||||
// horizontal line at the new refy position the line slope is:
|
||||
// slope = seg_endY/seg_endX; and inv_slope = seg_endX/seg_endY
|
||||
// and the x pos relative to the new origin is:
|
||||
// intersec_x = refy/slope = refy * inv_slope
|
||||
// Note: because horizontal segments are already tested and skipped, slope
|
||||
// exists (seg_end_y not O)
|
||||
double inv_slope = (double) seg_endX / seg_endY;
|
||||
intersec_x = newrefy * inv_slope;
|
||||
x_coordinates.push_back( (int) intersec_x + seg_startX );
|
||||
}
|
||||
|
||||
// A line scan is finished: build list of segments
|
||||
|
||||
// Sort intersection points by increasing x value:
|
||||
// So 2 consecutive points are the ends of a segment
|
||||
sort( x_coordinates.begin(), x_coordinates.end(), SortByXValues );
|
||||
|
||||
// Create segments
|
||||
|
||||
if( !error && ( x_coordinates.size() & 1 ) != 0 )
|
||||
{ // An even number of coordinates is expected, because a segment has 2 ends.
|
||||
// An if this algorithm always works, it must always find an even count.
|
||||
wxString msg = wxT( "Fill Zone: odd number of points at y = " );
|
||||
msg << refy;
|
||||
wxMessageBox( msg );
|
||||
error = true;
|
||||
}
|
||||
|
||||
if( error )
|
||||
break;
|
||||
|
||||
int iimax = x_coordinates.size() - 1;
|
||||
|
||||
for( int ii = 0; ii < iimax; ii += 2 )
|
||||
{
|
||||
wxPoint seg_start, seg_end;
|
||||
count++;
|
||||
seg_start.x = x_coordinates[ii];
|
||||
seg_start.y = refy;
|
||||
seg_end.x = x_coordinates[ii + 1];
|
||||
seg_end.y = refy;
|
||||
SEGMENT segment( seg_start, seg_end );
|
||||
m_FillSegmList.push_back( segment );
|
||||
}
|
||||
} //End examine segments in one area
|
||||
|
||||
if( error )
|
||||
if( !success )
|
||||
break;
|
||||
|
||||
// Creates the vertical segments. Because the filling algo creates horizontal segments,
|
||||
// to reuse the fillPolygonWithHorizontalSegments function, we rotate the polygons to fill
|
||||
// then fill them, then inverse rotate the result
|
||||
SHAPE_LINE_CHAIN outline90;
|
||||
outline90.Append( outline0 );
|
||||
|
||||
// Rotate 90 degrees the outline:
|
||||
for( int ii = 0; ii < outline90.PointCount(); ii++ )
|
||||
{
|
||||
VECTOR2I& point = outline90.Point( ii );
|
||||
std::swap( point.x, point.y );
|
||||
point.y = -point.y;
|
||||
}
|
||||
|
||||
int first_point = m_FillSegmList.size();
|
||||
success = fillPolygonWithHorizontalSegments( outline90, m_FillSegmList, grid_size );
|
||||
|
||||
if( !success )
|
||||
break;
|
||||
|
||||
// Rotate -90 degrees the segments:
|
||||
for( unsigned ii = first_point; ii < m_FillSegmList.size(); ii++ )
|
||||
{
|
||||
SEGMENT& segm = m_FillSegmList[ii];
|
||||
std::swap( segm.m_Start.x, segm.m_Start.y );
|
||||
std::swap( segm.m_End.x, segm.m_End.y );
|
||||
segm.m_Start.x = - segm.m_Start.x;
|
||||
segm.m_End.x = - segm.m_End.x;
|
||||
}
|
||||
}
|
||||
|
||||
if( !error )
|
||||
if( success )
|
||||
m_IsFilled = true;
|
||||
else
|
||||
m_FillSegmList.clear();
|
||||
|
||||
return count;
|
||||
return success;
|
||||
}
|
||||
|
||||
|
||||
bool fillPolygonWithHorizontalSegments( const SHAPE_LINE_CHAIN& aPolygon,
|
||||
std::vector <SEGMENT>& aFillSegmList, int aStep )
|
||||
{
|
||||
std::vector <int> x_coordinates;
|
||||
bool success = true;
|
||||
|
||||
// Creates the horizontal segments
|
||||
const SHAPE_LINE_CHAIN& outline = aPolygon;
|
||||
const BOX2I& rect = outline.BBox();
|
||||
|
||||
// Calculate the y limits of the zone
|
||||
for( int refy = rect.GetY(), endy = rect.GetBottom(); refy < endy; refy += aStep )
|
||||
{
|
||||
// find all intersection points of an infinite line with polyline sides
|
||||
x_coordinates.clear();
|
||||
|
||||
for( int v = 0; v < outline.PointCount(); v++ )
|
||||
{
|
||||
|
||||
int seg_startX = outline.CPoint( v ).x;
|
||||
int seg_startY = outline.CPoint( v ).y;
|
||||
int seg_endX = outline.CPoint( v + 1 ).x;
|
||||
int seg_endY = outline.CPoint( v + 1 ).y;
|
||||
|
||||
/* Trivial cases: skip if ref above or below the segment to test */
|
||||
if( ( seg_startY > refy ) && ( seg_endY > refy ) )
|
||||
continue;
|
||||
|
||||
// segment below ref point, or its Y end pos on Y coordinate ref point: skip
|
||||
if( ( seg_startY <= refy ) && (seg_endY <= refy ) )
|
||||
continue;
|
||||
|
||||
/* at this point refy is between seg_startY and seg_endY
|
||||
* see if an horizontal line at Y = refy is intersecting this segment
|
||||
*/
|
||||
// calculate the x position of the intersection of this segment and the
|
||||
// infinite line this is more easier if we move the X,Y axis origin to
|
||||
// the segment start point:
|
||||
|
||||
seg_endX -= seg_startX;
|
||||
seg_endY -= seg_startY;
|
||||
double newrefy = (double) ( refy - seg_startY );
|
||||
double intersec_x;
|
||||
|
||||
if ( seg_endY == 0 ) // horizontal segment on the same line: skip
|
||||
continue;
|
||||
|
||||
// Now calculate the x intersection coordinate of the horizontal line at
|
||||
// y = newrefy and the segment from (0,0) to (seg_endX,seg_endY) with the
|
||||
// horizontal line at the new refy position the line slope is:
|
||||
// slope = seg_endY/seg_endX; and inv_slope = seg_endX/seg_endY
|
||||
// and the x pos relative to the new origin is:
|
||||
// intersec_x = refy/slope = refy * inv_slope
|
||||
// Note: because horizontal segments are already tested and skipped, slope
|
||||
// exists (seg_end_y not O)
|
||||
double inv_slope = (double) seg_endX / seg_endY;
|
||||
intersec_x = newrefy * inv_slope;
|
||||
x_coordinates.push_back( (int) intersec_x + seg_startX );
|
||||
}
|
||||
|
||||
// A line scan is finished: build list of segments
|
||||
|
||||
// Sort intersection points by increasing x value:
|
||||
// So 2 consecutive points are the ends of a segment
|
||||
sort( x_coordinates.begin(), x_coordinates.end(), SortByXValues );
|
||||
|
||||
// An even number of coordinates is expected, because a segment has 2 ends.
|
||||
// An if this algorithm always works, it must always find an even count.
|
||||
if( ( x_coordinates.size() & 1 ) != 0 )
|
||||
{
|
||||
success = false;
|
||||
break;
|
||||
}
|
||||
|
||||
// Create segments having the same Y coordinate
|
||||
int iimax = x_coordinates.size() - 1;
|
||||
|
||||
for( int ii = 0; ii < iimax; ii += 2 )
|
||||
{
|
||||
wxPoint seg_start, seg_end;
|
||||
seg_start.x = x_coordinates[ii];
|
||||
seg_start.y = refy;
|
||||
seg_end.x = x_coordinates[ii + 1];
|
||||
seg_end.y = refy;
|
||||
SEGMENT segment( seg_start, seg_end );
|
||||
aFillSegmList.push_back( segment );
|
||||
}
|
||||
} // End examine segments in one area
|
||||
|
||||
return success;
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue