Refactorization of VBO_CONTAINER.

This commit is contained in:
Maciej Suminski 2013-07-17 18:49:38 +02:00
parent 99e8814028
commit bbc0e8eb74
4 changed files with 288 additions and 293 deletions

View File

@ -28,9 +28,8 @@
*/ */
#include <gal/opengl/vbo_container.h> #include <gal/opengl/vbo_container.h>
#include <cstring> #include <algorithm>
#include <cstdlib> #include <list>
#include <boost/foreach.hpp>
#include <wx/log.h> #include <wx/log.h>
#ifdef __WXDEBUG__ #ifdef __WXDEBUG__
#include <profile.h> #include <profile.h>
@ -39,7 +38,7 @@
using namespace KiGfx; using namespace KiGfx;
VBO_CONTAINER::VBO_CONTAINER( unsigned int aSize ) : VBO_CONTAINER::VBO_CONTAINER( unsigned int aSize ) :
m_freeSpace( aSize ), m_currentSize( aSize ), itemStarted( false ), m_transform( NULL ), m_freeSpace( aSize ), m_currentSize( aSize ), m_initialSize( aSize ), m_transform( NULL ),
m_failed( false ) m_failed( false )
{ {
// By default no shader is used // By default no shader is used
@ -58,114 +57,42 @@ VBO_CONTAINER::~VBO_CONTAINER()
} }
void VBO_CONTAINER::StartItem( VBO_ITEM* aVboItem ) void VBO_CONTAINER::StartItem( VBO_ITEM* aItem )
{ {
itemStarted = true; m_item = aItem;
item = aVboItem; m_itemSize = aItem->GetSize();
itemSize = 0; m_chunkSize = m_itemSize;
// Reserve minimal sensible chunk size (at least to store a single triangle) if( m_itemSize == 0 )
itemChunkSize = 3; m_items.insert( m_item ); // The item was not stored before
allocate( aVboItem, itemChunkSize ); else
m_chunkOffset = m_item->GetOffset();
} }
void VBO_CONTAINER::EndItem() void VBO_CONTAINER::EndItem()
{ {
if( itemSize < itemChunkSize ) if( m_itemSize < m_chunkSize )
{ {
// There is some memory left, so we should return it to the pool // Add the not used memory back to the pool
int itemChunkOffset = item->GetOffset(); m_freeChunks.insert( Chunk( m_chunkSize - m_itemSize, m_chunkOffset + m_itemSize ) );
m_freeSpace += ( m_chunkSize - m_itemSize );
m_reservedChunks.erase( item );
m_reservedChunks.insert( ReservedChunk( item, Chunk( itemSize, itemChunkOffset ) ) );
m_freeChunks.insert( Chunk( itemChunkSize - itemSize, itemChunkOffset + itemSize ) );
m_freeSpace += ( itemChunkSize - itemSize );
} }
item = NULL; m_item = NULL;
itemStarted = false;
} }
void VBO_CONTAINER::Add( VBO_ITEM* aVboItem, const VBO_VERTEX* aVertex, unsigned int aSize ) void VBO_CONTAINER::Add( const VBO_VERTEX* aVertex, unsigned int aSize )
{ {
unsigned int offset; // Pointer to the vertex that we are currently adding
VBO_VERTEX* vertexPtr; VBO_VERTEX* vertexPtr = allocate( aSize );
if( m_failed ) if( vertexPtr == NULL )
return; return;
if( itemStarted ) // There is an item being created with an unknown size..
{
unsigned int itemChunkOffset;
// ..and unfortunately does not fit into currently reserved chunk
if( itemSize + aSize > itemChunkSize )
{
// Find the previous chunk for the item and change mark it as NULL
// so it will not be removed during a possible defragmentation
ReservedChunkMap::iterator it = m_reservedChunks.find( item );
m_reservedChunks.insert( ReservedChunk( static_cast<VBO_ITEM*>( NULL ), it->second ) );
m_reservedChunks.erase( it );
// Reserve bigger memory fo r the current item
int newSize = ( 2 * itemSize ) + aSize;
itemChunkOffset = allocate( aVboItem, newSize );
aVboItem->SetOffset( itemChunkOffset );
// Check if there was no error
if( itemChunkOffset > m_currentSize )
{
m_failed = true;
return;
}
it = m_reservedChunks.find( static_cast<VBO_ITEM*>( NULL ) );
// Check if the chunk was not reallocated after defragmentation
int oldItemChunkOffset = getChunkOffset( *it );
// Free the space previously used by the chunk
freeChunk( it );
// Copy all the old data
memcpy( &m_vertices[itemChunkOffset], &m_vertices[oldItemChunkOffset],
itemSize * VBO_ITEM::VertByteSize );
itemChunkSize = newSize;
}
else
{
itemChunkOffset = item->GetOffset();
}
// Store new vertices in the chunk reserved for the unknown-sized item
offset = itemChunkOffset + itemSize;
itemSize += aSize;
}
else
{
// Add vertices to previously already finished item
wxASSERT_MSG( false, wxT( "Warning: not tested yet" ) );
ReservedChunkMap::iterator it = m_reservedChunks.find( aVboItem );
unsigned int chunkSize = getChunkSize( *it );
unsigned int itemSize = aVboItem->GetSize();
if( chunkSize < itemSize + aSize )
{
resizeChunk( aVboItem, itemSize + aSize );
it = m_reservedChunks.find( aVboItem );
}
offset = getChunkOffset( *it ) + itemSize;
}
for( unsigned int i = 0; i < aSize; ++i ) for( unsigned int i = 0; i < aSize; ++i )
{ {
// Pointer to the vertex that we are currently adding
vertexPtr = &m_vertices[offset + i];
// Modify the vertex according to the currently used transformations // Modify the vertex according to the currently used transformations
if( m_transform != NULL ) if( m_transform != NULL )
{ {
@ -197,6 +124,8 @@ void VBO_CONTAINER::Add( VBO_ITEM* aVboItem, const VBO_VERTEX* aVertex, unsigned
{ {
vertexPtr->shader[j] = m_shader[j]; vertexPtr->shader[j] = m_shader[j];
} }
vertexPtr++;
} }
} }
@ -206,41 +135,90 @@ void VBO_CONTAINER::Clear()
{ {
// Change size to the default one // Change size to the default one
m_vertices = static_cast<VBO_VERTEX*>( realloc( m_vertices, m_vertices = static_cast<VBO_VERTEX*>( realloc( m_vertices,
defaultInitSize * sizeof( VBO_VERTEX ) ) ); m_initialSize * sizeof( VBO_VERTEX ) ) );
// Set the size of all the stored VERTEX_ITEMs to 0, so it is clear that they are not held
// in the container anymore
Items::iterator it;
for( it = m_items.begin(); it != m_items.end(); ++it )
{
( *it )->setSize( 0 );
}
m_items.clear();
// Reset state variables // Reset state variables
m_freeSpace = defaultInitSize;
m_currentSize = defaultInitSize;
itemStarted = false;
m_transform = NULL; m_transform = NULL;
m_failed = false; m_failed = false;
// By default no shader is used // By default no shader is used
m_shader[0] = 0; m_shader[0] = 0;
m_freeChunks.clear();
m_reservedChunks.clear();
// In the beginning there is only free space // In the beginning there is only free space
m_freeSpace = m_initialSize;
m_currentSize = m_initialSize;
m_freeChunks.clear();
m_freeChunks.insert( Chunk( m_freeSpace, 0 ) ); m_freeChunks.insert( Chunk( m_freeSpace, 0 ) );
} }
void VBO_CONTAINER::Free( VBO_ITEM* aItem )
{
freeItem( aItem );
// Dynamic memory freeing, there is no point in holding
// a large amount of memory when there is no use for it
if( m_freeSpace > ( m_currentSize / 2 ) && m_currentSize > defaultInitSize )
{
resizeContainer( m_currentSize / 2 );
}
}
VBO_VERTEX* VBO_CONTAINER::GetAllVertices() const VBO_VERTEX* VBO_CONTAINER::GetAllVertices() const
{ {
return m_vertices; return m_vertices;
} }
VBO_VERTEX* VBO_CONTAINER::GetVertices( const VBO_ITEM* aVboItem ) const VBO_VERTEX* VBO_CONTAINER::GetVertices( const VBO_ITEM* aItem ) const
{ {
int offset = aVboItem->GetOffset(); int offset = aItem->GetOffset();
return &m_vertices[offset]; return &m_vertices[offset];
} }
VBO_VERTEX* VBO_CONTAINER::allocate( unsigned int aSize )
{
wxASSERT( m_item != NULL );
unsigned int VBO_CONTAINER::allocate( VBO_ITEM* aVboItem, unsigned int aSize ) if( m_failed )
return NULL;
if( m_itemSize + aSize > m_chunkSize )
{
// There is not enough space in the currently reserved chunk, so we have to resize it
// Reserve a bigger memory chunk for the current item
m_chunkSize = std::max( ( 2 * m_itemSize ) + aSize, (unsigned) 3 );
// Save the current size before reallocating
m_chunkOffset = reallocate( m_chunkSize );
if( m_chunkOffset > m_currentSize )
{
m_failed = true;
return NULL;
}
}
VBO_VERTEX* reserved = &m_vertices[m_chunkOffset + m_itemSize];
m_itemSize += aSize;
m_item->setSize( m_itemSize );
return reserved;
}
unsigned int VBO_CONTAINER::reallocate( unsigned int aSize )
{ {
// Is there enough space to store vertices? // Is there enough space to store vertices?
if( m_freeSpace < aSize ) if( m_freeSpace < aSize )
@ -259,74 +237,68 @@ unsigned int VBO_CONTAINER::allocate( VBO_ITEM* aVboItem, unsigned int aSize )
result = resizeContainer( getPowerOf2( m_currentSize * 2 + aSize ) ); result = resizeContainer( getPowerOf2( m_currentSize * 2 + aSize ) );
} }
// An error has occurred
if( !result ) if( !result )
{
return UINT_MAX; return UINT_MAX;
} }
}
// Look for the space with at least given size // Look for the free space of at least given size
FreeChunkMap::iterator it = m_freeChunks.lower_bound( aSize ); FreeChunkMap::iterator newChunk = m_freeChunks.lower_bound( aSize );
if( it == m_freeChunks.end() ) if( newChunk == m_freeChunks.end() )
{ {
// This means that there is enough space for // In the case when there is enough space to store the vertices,
// storing vertices, but the space is not continous // but the free space is not continous we should defragment the container
if( !defragment() ) if( !defragment() )
{
return UINT_MAX; return UINT_MAX;
}
// Update the current offset
m_chunkOffset = m_item->GetOffset();
// We can take the first free chunk, as there is only one after defragmentation // We can take the first free chunk, as there is only one after defragmentation
// and we can be sure that it provides enough space to store the object // and we can be sure that it provides enough space to store the object
it = m_freeChunks.begin(); newChunk = m_freeChunks.begin();
} }
unsigned int chunkSize = it->first; // Parameters of the allocated cuhnk
unsigned int chunkOffset = it->second; unsigned int chunkSize = newChunk->first;
unsigned int chunkOffset = newChunk->second;
m_freeChunks.erase( it );
wxASSERT( chunkSize >= aSize ); wxASSERT( chunkSize >= aSize );
wxASSERT( chunkOffset < m_currentSize );
// Check if the item was previously stored in the container
if( m_itemSize > 0 )
{
// The item was reallocated, so we have to copy all the old data to the new place
memcpy( &m_vertices[chunkOffset], &m_vertices[m_chunkOffset],
m_itemSize * VBO_ITEM::VertByteSize );
// Free the space previously used by the chunk
m_freeChunks.insert( Chunk( m_itemSize, m_chunkOffset ) );
m_freeSpace += m_itemSize;
}
// Remove the allocated chunk from the free space pool
m_freeChunks.erase( newChunk );
m_freeSpace -= chunkSize;
// If there is some space left, return it to the pool - add an entry for it // If there is some space left, return it to the pool - add an entry for it
if( chunkSize > aSize ) if( chunkSize > aSize )
{ {
m_freeChunks.insert( Chunk( chunkSize - aSize, chunkOffset + aSize ) ); m_freeChunks.insert( Chunk( chunkSize - aSize, chunkOffset + aSize ) );
m_freeSpace += chunkSize - aSize;
} }
m_freeSpace -= aSize;
m_reservedChunks.insert( ReservedChunk( aVboItem, Chunk( aSize, chunkOffset ) ) );
aVboItem->SetOffset( chunkOffset ); m_item->setOffset( chunkOffset );
return chunkOffset; return chunkOffset;
} }
void VBO_CONTAINER::freeChunk( const ReservedChunkMap::iterator& aChunk )
{
// Remove the chunk from the reserved chunks map and add to the free chunks map
int size = getChunkSize( *aChunk );
int offset = getChunkOffset( *aChunk );
m_reservedChunks.erase( aChunk );
m_freeChunks.insert( Chunk( size, offset ) );
m_freeSpace += size;
}
bool VBO_CONTAINER::defragment( VBO_VERTEX* aTarget ) bool VBO_CONTAINER::defragment( VBO_VERTEX* aTarget )
{ {
if( m_freeChunks.size() <= 1 )
{
// There is no point in defragmenting, as there is only one or no free chunks
return true;
}
if( aTarget == NULL ) if( aTarget == NULL )
{ {
// No target was specified, so we have to allocate our own space // No target was specified, so we have to reallocate our own space
aTarget = static_cast<VBO_VERTEX*>( malloc( m_currentSize * sizeof( VBO_VERTEX ) ) ); aTarget = static_cast<VBO_VERTEX*>( malloc( m_currentSize * sizeof( VBO_VERTEX ) ) );
if( aTarget == NULL ) if( aTarget == NULL )
{ {
@ -336,20 +308,18 @@ bool VBO_CONTAINER::defragment( VBO_VERTEX* aTarget )
} }
int newOffset = 0; int newOffset = 0;
ReservedChunkMap::iterator it, it_end; Items::iterator it, it_end;
for( it = m_reservedChunks.begin(), it_end = m_reservedChunks.end(); it != it_end; ++it ) for( it = m_items.begin(), it_end = m_items.end(); it != it_end; ++it )
{ {
VBO_ITEM* vboItem = getChunkVboItem( *it ); VBO_ITEM* item = *it;
int itemOffset = getChunkOffset( *it ); int itemOffset = item->GetOffset();
int itemSize = getChunkSize( *it ); int itemSize = item->GetSize();
// Move an item to the new container // Move an item to the new container
memcpy( &aTarget[newOffset], &m_vertices[itemOffset], itemSize * VBO_ITEM::VertByteSize ); memcpy( &aTarget[newOffset], &m_vertices[itemOffset], itemSize * VBO_ITEM::VertByteSize );
// Update new offset // Update its offset
if( vboItem ) item->setOffset( newOffset );
vboItem->SetOffset( newOffset );
setChunkOffset( *it, newOffset );
// Move to the next free space // Move to the next free space
newOffset += itemSize; newOffset += itemSize;
@ -360,28 +330,52 @@ bool VBO_CONTAINER::defragment( VBO_VERTEX* aTarget )
// Now there is only one big chunk of free memory // Now there is only one big chunk of free memory
m_freeChunks.clear(); m_freeChunks.clear();
m_freeChunks.insert( Chunk( m_freeSpace, m_currentSize - m_freeSpace ) ); m_freeChunks.insert( Chunk( m_freeSpace, reservedSpace() ) );
return true; return true;
} }
void VBO_CONTAINER::resizeChunk( VBO_ITEM* aVboItem, int aNewSize ) void VBO_CONTAINER::mergeFreeChunks()
{ {
wxASSERT_MSG( false, wxT( "Warning: not tested yet" ) ); if( m_freeChunks.size() < 2 ) // There are no chunks that can be merged
return;
// TODO ESPECIALLY test the case of shrinking chunk // Reversed free chunks map - this one stores chunk size with its offset as the key
ReservedChunkMap::iterator it = m_reservedChunks.find( aVboItem ); std::list<Chunk> freeChunks;
int size = getChunkSize( *it );
int offset = getChunkOffset( *it );
int newOffset = allocate( aVboItem, aNewSize ); FreeChunkMap::const_iterator it, it_end;
memcpy( &m_vertices[newOffset], &m_vertices[offset], size * VBO_ITEM::VertByteSize ); for( it = m_freeChunks.begin(), it_end = m_freeChunks.end(); it != it_end; ++it )
{
freeChunks.push_back( std::make_pair( it->second, it->first ) );
}
m_freeChunks.clear();
freeChunks.sort();
// Remove the chunk from the reserved chunks map and add to the free chunks map std::list<Chunk>::const_iterator itf, itf_end;
m_reservedChunks.erase( it ); unsigned int offset = freeChunks.front().first;
m_freeChunks.insert( Chunk( size, offset ) ); unsigned int size = freeChunks.front().second;
m_freeSpace += size; freeChunks.pop_front();
for( itf = freeChunks.begin(), itf_end = freeChunks.end(); itf != itf_end; ++itf )
{
if( itf->first == offset + size )
{
// These chunks can be merged, so just increase the current chunk size and go on
size += itf->second;
}
else
{
// These chunks cannot be merged
// So store the previous one
m_freeChunks.insert( std::make_pair( size, offset ) );
// and let's check the next chunk
offset = itf->first;
size = itf->second;
}
}
// Add the last one
m_freeChunks.insert( std::make_pair( size, offset ) );
} }
@ -391,8 +385,9 @@ bool VBO_CONTAINER::resizeContainer( unsigned int aNewSize )
if( aNewSize < m_currentSize ) if( aNewSize < m_currentSize )
{ {
// Shrinking container
// Sanity check, no shrinking if we cannot fit all the data // Sanity check, no shrinking if we cannot fit all the data
if( ( m_currentSize - m_freeSpace ) > aNewSize ) if( reservedSpace() > aNewSize )
return false; return false;
newContainer = static_cast<VBO_VERTEX*>( malloc( aNewSize * sizeof( VBO_VERTEX ) ) ); newContainer = static_cast<VBO_VERTEX*>( malloc( aNewSize * sizeof( VBO_VERTEX ) ) );
@ -404,52 +399,56 @@ bool VBO_CONTAINER::resizeContainer( unsigned int aNewSize )
// Defragment directly to the new, smaller container // Defragment directly to the new, smaller container
defragment( newContainer ); defragment( newContainer );
// We have to correct freeChunks after defragmentation
m_freeChunks.clear();
m_freeChunks.insert( Chunk( aNewSize - reservedSpace(), reservedSpace() ) );
} }
else else
{ {
// Enlarging container
newContainer = static_cast<VBO_VERTEX*>( realloc( m_vertices, aNewSize * sizeof( VBO_VERTEX ) ) ); newContainer = static_cast<VBO_VERTEX*>( realloc( m_vertices, aNewSize * sizeof( VBO_VERTEX ) ) );
if( newContainer == NULL ) if( newContainer == NULL )
{ {
wxLogError( wxT( "Run out of memory" ) ); wxLogError( wxT( "Run out of memory" ) );
return false; return false;
} }
// Add an entry for the new memory chunk at the end of the container
m_freeChunks.insert( Chunk( aNewSize - m_currentSize, m_currentSize ) );
} }
m_vertices = newContainer; m_vertices = newContainer;
// Update variables
unsigned int lastFreeSize = 0;
unsigned int lastFreeOffset = 0;
// Search for the last free chunk *at the end of the container* (not the last chunk in general)
FreeChunkMap::reverse_iterator lastFree, freeEnd;
for( lastFree = m_freeChunks.rbegin(), freeEnd = m_freeChunks.rend();
lastFree != freeEnd && lastFreeSize + lastFreeOffset != m_currentSize; ++lastFree )
{
lastFreeSize = getChunkSize( *lastFree );
lastFreeOffset = getChunkOffset( *lastFree );
}
if( lastFreeSize + lastFreeOffset == m_currentSize )
{
// We found a chunk at the end of the container
m_freeChunks.erase( lastFree.base() );
// so we can merge it with the new freeChunk chunk
m_freeChunks.insert( Chunk( aNewSize - m_currentSize + lastFreeSize, // size
m_currentSize - lastFreeSize ) ); // offset
}
else
{
// As there is no free chunk at the end of container - simply add a new entry
if( aNewSize > m_currentSize ) // only in the case of enlargement
{
m_freeChunks.insert( Chunk( aNewSize - m_currentSize, // size
m_currentSize ) ); // offset
}
}
m_freeSpace += ( aNewSize - m_currentSize ); m_freeSpace += ( aNewSize - m_currentSize );
m_currentSize = aNewSize; m_currentSize = aNewSize;
return true; return true;
} }
void VBO_CONTAINER::freeItem( VBO_ITEM* aItem )
{
int size = aItem->GetSize();
int offset = aItem->GetOffset();
m_freeChunks.insert( Chunk( size, offset ) );
m_freeSpace += size;
m_items.erase( aItem );
// Item size is set to 0, so it means that it is not stored in the container
aItem->setSize( 0 );
}
void VBO_CONTAINER::test() const
{
unsigned int freeSpace = 0;
FreeChunkMap::const_iterator it, it_end;
// Check if the amount of free memory stored as chunks is the same as reported by m_freeSpace
for( it = m_freeChunks.begin(), it_end = m_freeChunks.end(); it != it_end; ++it )
freeSpace += it->first;
wxASSERT( freeSpace == m_freeSpace );
}

View File

@ -52,9 +52,8 @@ VBO_ITEM::~VBO_ITEM()
void VBO_ITEM::PushVertex( const VBO_VERTEX* aVertex ) void VBO_ITEM::PushVertex( const VBO_VERTEX* aVertex )
{ {
m_container->Add( this, aVertex ); m_container->Add( aVertex );
m_size++;
m_isDirty = true; m_isDirty = true;
} }

View File

@ -35,8 +35,7 @@
#include <gal/opengl/vbo_item.h> #include <gal/opengl/vbo_item.h>
#include <gal/color4d.h> #include <gal/color4d.h>
#include <map> #include <map>
#include <boost/unordered_map.hpp> #include <set>
#include <wx/log.h>
namespace KiGfx namespace KiGfx
{ {
@ -47,23 +46,22 @@ class VBO_CONTAINER
{ {
public: public:
VBO_CONTAINER( unsigned int aSize = defaultInitSize ); VBO_CONTAINER( unsigned int aSize = defaultInitSize );
~VBO_CONTAINER(); virtual ~VBO_CONTAINER();
///< Maps size of free memory chunks to their offsets ///< Maps size of free memory chunks to their offsets
typedef std::pair<const unsigned int, unsigned int> Chunk; typedef std::pair<const unsigned int, unsigned int> Chunk;
typedef std::multimap<const unsigned int, unsigned int> FreeChunkMap; typedef std::multimap<const unsigned int, unsigned int> FreeChunkMap;
///< Maps VBO_ITEMs to reserved memory chunks offsets & sizes /// List of all the stored items
typedef std::pair<VBO_ITEM* const, Chunk> ReservedChunk; typedef std::set<VBO_ITEM*> Items;
typedef boost::unordered_map<VBO_ITEM* const, Chunk> ReservedChunkMap;
/** /**
* Function StartItem() * Function StartItem()
* Starts an unknown sized item. After calling the function it is possible to add vertices * Sets an item to start its modifications. After calling the function it is possible to add
* using function Add(). * vertices using function Add().
* @param aVboItem is the item that is going to store vertices in the container. * @param aItem is the item that is going to store vertices in the container.
*/ */
void StartItem( VBO_ITEM* aVboItem ); void StartItem( VBO_ITEM* aItem );
/** /**
* Function EndItem() * Function EndItem()
@ -74,30 +72,20 @@ public:
/** /**
* Function Add() * Function Add()
* Stores given number of vertices in the container for the specific VBO_ITEM. * Stores given number of vertices in the container for the specific VBO_ITEM (started by
* @param aVboItem is the owner of the vertices. * StartItem() function).
* @param aItem is the owner of the vertices.
* @param aVertex are vertices data to be stored. * @param aVertex are vertices data to be stored.
* @param aSize is the number of vertices to be added. * @param aSize is the number of vertices to be added.
*/ */
void Add( VBO_ITEM* aVboItem, const VBO_VERTEX* aVertex, unsigned int aSize = 1 ); void Add( const VBO_VERTEX* aVertex, unsigned int aSize = 1 );
/** /**
* Function Free() * Function Free()
* Frees the chunk reserved by the aVboItem. * Frees the chunk reserved by the aItem.
* @param aVboItem is the owner of the chunk to be freed. * @param aItem is the owner of the chunk to be freed.
*/ */
inline void Free( VBO_ITEM* aVboItem ) void Free( VBO_ITEM* aItem );
{
ReservedChunkMap::iterator it = m_reservedChunks.find( aVboItem );
freeChunk( it );
// Dynamic memory freeing, there is no point in holding
// a large amount of memory when there is no use for it
if( m_freeSpace > ( m_currentSize / 2 ) )
{
resizeContainer( m_currentSize / 2 );
}
}
/** /**
* Function Clear() * Function Clear()
@ -115,9 +103,9 @@ public:
/** /**
* Function GetVertices() * Function GetVertices()
* Returns vertices stored by the specific item. * Returns vertices stored by the specific item.
* @aVboItem is the specific item. * @aItem is the specific item.
*/ */
VBO_VERTEX* GetVertices( const VBO_ITEM* aVboItem ) const; VBO_VERTEX* GetVertices( const VBO_ITEM* aItem ) const;
/** /**
* Function GetVertices() * Function GetVertices()
@ -208,51 +196,50 @@ public:
private: private:
///< Stores size & offset of free chunks. ///< Stores size & offset of free chunks.
FreeChunkMap m_freeChunks; FreeChunkMap m_freeChunks;
///< Stores owners (VBO_ITEM*) of reserved chunks and their size & offset. ///< Stored VERTEX_ITEMs
ReservedChunkMap m_reservedChunks; Items m_items;
/** /**
* Function allocate() * Function allocate()
* Finds an offset where the number of vertices can be stored in a continous space. If there is * Allocates the given amount of memory for the current VBO_ITEM (set by StartItem() function).
* no such chunk, appropriate amount of memory is allocated first. * @param aSize is the number of vertices that are requested to be allocated.
* @param aVboItem is the owner of vertices to be stored. * @return Pointer to the allocated space.
* @param aSize is the number of vertices to be stored.
*/ */
unsigned int allocate( VBO_ITEM* aVboItem, unsigned int aSize ); VBO_VERTEX* allocate( unsigned int aSize );
/**
* Function reallocate()
* Resizes the chunk that stores the current item to the given size.
* @param aSize is the number of vertices to be stored.
* @return Offset of the new chunk.
*/
unsigned int reallocate( unsigned int aSize );
/** /**
* Function getChunkSize() * Function getChunkSize()
* Returns size of the given chunk (works both for reserved and free chunks). * Returns size of the given chunk.
* @param aChunk is the chunk. * @param aChunk is the chunk.
* @return Size of the chunk.
*/ */
inline int getChunkSize( const Chunk& aChunk ) const inline unsigned int getChunkSize( const Chunk& aChunk ) const
{ {
return aChunk.first; return aChunk.first;
} }
inline int getChunkSize( const ReservedChunk& aChunk ) const
{
return aChunk.second.first;
}
/** /**
* Function getChunkOffset() * Function getChunkOffset()
* Returns offset of the given chunk (works both for reserved and free chunks). * Returns offset of the given chunk.
* @param aChunk is the chunk. * @param aChunk is the chunk.
* @return Offset of the chunk.
*/ */
inline unsigned int getChunkOffset( const Chunk& aChunk ) const inline unsigned int getChunkOffset( const Chunk& aChunk ) const
{ {
return aChunk.second; return aChunk.second;
} }
inline unsigned int getChunkOffset( const ReservedChunk& aChunk ) const
{
return aChunk.second.second;
}
/** /**
* Function getChunkOffset() * Function setChunkOffset()
* Upadtes offset of the given chunk (works both for reserved and free chunks). * Updates offset of the given chunk.
* !! IMPORTANT: it does not reallocate the chunk, it just changes its properties. * !! IMPORTANT: it does not reallocate the chunk, it just changes its properties.
* @param aChunk is the chunk. * @param aChunk is the chunk.
*/ */
@ -261,51 +248,45 @@ private:
aChunk.second = aOffset; aChunk.second = aOffset;
} }
inline void setChunkOffset( ReservedChunk& aChunk, unsigned int aOffset ) const
{
aChunk.second.second = aOffset;
}
/**
* Function getChunkVboItem()
* Returns owner of the given reserved chunk.
* @param aChunk is the chunk.
*/
inline VBO_ITEM* getChunkVboItem( const ReservedChunk& aChunk ) const
{
return aChunk.first;
}
/** /**
* Function defragment() * Function defragment()
* Removes empty spaces between chunks, so after that there is a long continous space * Removes empty spaces between chunks, so after that there is a long continous space
* for storing vertices at the and of the container. * for storing vertices at the and of the container.
* @return false in case of failure (eg. memory shortage) * @return false in case of failure (eg. memory shortage).
*/ */
bool defragment( VBO_VERTEX* aTarget = NULL ); bool defragment( VBO_VERTEX* aTarget = NULL );
/** /**
* Function resizeChunk() * Function mergeFreeChunks()
* Changes size of the chunk that stores vertices of aVboItem. * Looks for consecutive free memory chunks and merges them, decreasing fragmentation of
* @param aVboItem is the item for which reserved space size should be changed. * memory.
* @param aNewSize is the new size for the aVboItem, expressed in vertices number.
*/ */
void resizeChunk( VBO_ITEM* aVboItem, int aNewSize ); void mergeFreeChunks();
/** /**
* Function resizeContainer() * Function resizeContainer()
* Prepares a bigger container of a given size. * Prepares a bigger container of a given size.
* @param aNewSize is the new size of container, expressed in vertices * @param aNewSize is the new size of container, expressed in vertices
* @return false in case of failure (eg. memory shortage) * @return false in case of failure (eg. memory shortage).
*/ */
bool resizeContainer( unsigned int aNewSize ); bool resizeContainer( unsigned int aNewSize );
/** /**
* Function freeChunk() * Function freeItem()
* Frees the space described in aChunk and returns it to the free space pool. * Frees the space occupied by the item and returns it to the free space pool.
* @param aChunk is a space to be freed. * @param aItem is the item to be freed.
*/ */
void freeChunk( const ReservedChunkMap::iterator& aChunk ); void freeItem( VBO_ITEM* aItem );
/**
* Function reservedSpace()
* Returns size of the reserved memory space.
* @return Size of the reserved memory space (expressed as a number of vertices).
*/
unsigned int reservedSpace()
{
return m_currentSize - m_freeSpace;
}
///< How many vertices we can store in the container ///< How many vertices we can store in the container
unsigned int m_freeSpace; unsigned int m_freeSpace;
@ -316,15 +297,16 @@ private:
///< Actual storage memory ///< Actual storage memory
VBO_VERTEX* m_vertices; VBO_VERTEX* m_vertices;
///< A flag saying if there is the item with an unknown size being added ///< Initial size, used on clearing the container
bool itemStarted; unsigned int m_initialSize;
///< Variables holding the state of the item currently being added ///< Variables holding the state of the item currently being modified
unsigned int itemSize; unsigned int m_itemSize;
unsigned int itemChunkSize; unsigned int m_chunkSize;
VBO_ITEM* item; unsigned int m_chunkOffset;
VBO_ITEM* m_item;
///< Color used for new vertices pushed. ///< Color used for the new vertices pushed.
GLubyte m_color[VBO_ITEM::ColorStride]; GLubyte m_color[VBO_ITEM::ColorStride];
///< Shader and its parameters used for new vertices pushed ///< Shader and its parameters used for new vertices pushed
@ -353,6 +335,9 @@ private:
///< Default initial size of a container (expressed in vertices) ///< Default initial size of a container (expressed in vertices)
static const unsigned int defaultInitSize = 1048576; static const unsigned int defaultInitSize = 1048576;
///< Basic tests for the container, use only for debugging.
void test() const;
}; };
} // namespace KiGfx } // namespace KiGfx

View File

@ -47,6 +47,8 @@ class VBO_CONTAINER;
class VBO_ITEM class VBO_ITEM
{ {
friend class VBO_CONTAINER;
public: public:
VBO_ITEM( VBO_CONTAINER* aContainer ); VBO_ITEM( VBO_CONTAINER* aContainer );
~VBO_ITEM(); ~VBO_ITEM();
@ -89,16 +91,6 @@ public:
return m_size; return m_size;
} }
/**
* Function SetOffset()
* Sets data offset in the VBO.
* @param aOffset is the offset expressed as a number of vertices.
*/
inline void SetOffset( unsigned int aOffset )
{
m_offset = aOffset;
}
/** /**
* Function GetOffset() * Function GetOffset()
* Returns data offset in the VBO. * Returns data offset in the VBO.
@ -149,7 +141,7 @@ public:
static const unsigned int IndByteSize = sizeof(GLuint); static const unsigned int IndByteSize = sizeof(GLuint);
private: protected:
///< Offset and size of data stored in the VBO_CONTAINER. ///< Offset and size of data stored in the VBO_CONTAINER.
unsigned int m_offset; unsigned int m_offset;
unsigned int m_size; unsigned int m_size;
@ -159,6 +151,26 @@ private:
///< Flag telling if the item should be recached in VBO or not. ///< Flag telling if the item should be recached in VBO or not.
bool m_isDirty; bool m_isDirty;
/**
* Function setSize()
* Sets data size in the VBO.
* @param aSize is the size expressed as a number of vertices.
*/
void setSize( unsigned int aSize )
{
m_size = aSize;
}
/**
* Function setOffset()
* Sets data offset in the VBO.
* @param aOffset is the offset expressed as a number of vertices.
*/
inline void setOffset( unsigned int aOffset )
{
m_offset = aOffset;
}
}; };
} // namespace KiGfx } // namespace KiGfx