The plan goes like this:
- eeschema still uses int in decidegrees
- all the other things internally use double in decidegrees (or radians
in temporaries)
- in pcbnew UI the unit is *still* int in decidegrees
The idea is to have better precision everywhere while keeping the user with int i
angles. Hopefully, if a fractional angle doesn't come in from the outside, everything
should *look* like an integer angle (unless I forgot something and it broke)
When the time comes, simply updating the UI for allowing doubles from the user should
be enough to get arbitrary angles in pcbnew.
Should allow Pcbnew code easier to change and Gerbview code more understandable and easier to maintain.
Code cleaning (remove dead code, add comments).
Minor other enhancements.
Other scaling factors (MILS_TO_IU_SCALING_FACTOR and DECIMILS_TO_IU_SCALING_FACTOR)
also defined only in convert_to_biu.h.
Allows different scaling value for Gerbview.
Needs more tests.
// This provides better project control over rounding to int from double
// than wxRound() did. This scheme provides better logging in Debug builds
// and it provides for compile time calculation of constants.
#include <stdio.h>
#include <assert.h>
#include <limits.h>
//-----<KiROUND KIT>------------------------------------------------------------
/**
* KiROUND
* rounds a floating point number to an int using
* "round halfway cases away from zero".
* In Debug build an assert fires if will not fit into an int.
*/
#if defined( DEBUG )
// DEBUG: a macro to capture line and file, then calls this inline
static inline int KiRound( double v, int line, const char* filename )
{
v = v < 0 ? v - 0.5 : v + 0.5;
if( v > INT_MAX + 0.5 )
{
printf( "%s: in file %s on line %d, val: %.16g too ' > 0 ' for int\n", __FUNCTION__, filename, line, v );
}
else if( v < INT_MIN - 0.5 )
{
printf( "%s: in file %s on line %d, val: %.16g too ' < 0 ' for int\n", __FUNCTION__, filename, line, v );
}
return int( v );
}
#define KiROUND( v ) KiRound( v, __LINE__, __FILE__ )
#else
// RELEASE: a macro so compile can pre-compute constants.
#define KiROUND( v ) int( (v) < 0 ? (v) - 0.5 : (v) + 0.5 )
#endif
//-----</KiROUND KIT>-----------------------------------------------------------
// Only a macro is compile time calculated, an inline function causes a static constructor
// in a situation like this.
// Therefore the Release build is best done with a MACRO not an inline function.
int Computed = KiROUND( 14.3 * 8 );
int main( int argc, char** argv )
{
for( double d = double(INT_MAX)-1; d < double(INT_MAX)+8; d += 2.0 )
{
int i = KiROUND( d );
printf( "t: %d %.16g\n", i, d );
}
return 0;
}
* Grammar and spelling fixes in Eeschema, CvPcb, and Pcbnew path and
library dialog tool tips.
* Translate the French file name subrill.cpp to highlight.cpp.
* Lots of coding style policy fixes.
* All header files used to create the PCB common library now compile as
stand alone code. This prevents the need to define them in a specific
order to make source code compile properly. It should also now be
possible to relocate the source code to build the common PCB library
to a separate folder.