This is for the out-of-box experience for novice users. It is presumed
that folks with larger more complicated boards will turn it off.
Fixes https://gitlab.com/kicad/code/kicad/issues/6413
1) Generate SHAPE_POLY_SET triangulation by outline so they can be
shared between connectivity system and other clients.
2) Don't add items to connectivity when reading board; we're going
to do a total rebuild anyway.
3) Use multithreading when caching triangulation.
If we wanted to put it into the parent's undo item, then the *parent*
would need to not start a new undo record. Not starting one in the
zone filler tries to add it to the *previous* change, not to the parent
change.
Fixes https://gitlab.com/kicad/code/kicad/issues/10091
Push the mutex down into the ZONE::Fill() routine and set the
connectivity update to run after zone fills. The connectivity update
cannot run while the mutex is locked for zone fills.
Fixes https://gitlab.com/kicad/code/kicad/issues/9993
Two issues found with the locking system used to prevent access to
stale connectivity data during the zone fill process:
1) a std::mutex has undefined behavior if you try to use it to guard
against access from the same thread. Because of the use of wx event
loops (and coroutines) it is entirely possible, and in some situations
inevitable, that the same thread will try to redraw the ratsnest in the
middle of zone refilling.
2) The mutex was only guarding the ZONE_FILLER::Fill method, but the callers
of that method also do connectivity updates as part of the COMMIT::Push.
Redrawing the ratsnest after the Fill but before the Push will result in
stale connectivity pointers to zone filled areas.
Fixed (1) by switching to a trivial spinlock implementation. Spinlocks would
generally not be desirable if the contention for the connectivity data crossed
thread boundaries, but at the moment I believe it's guaranteed that the reads
and writes to connectivity that are guarded by this lock happen from the main
UI thread. The writes are also quite rare compared to reads, and reads are
generally fast, so I'm not really worried about the UI thread spinning for any
real amount of time.
Fixed (2) by moving the locking location up to the call sites of
ZONE_FILLER::Fill.
This issue was quite difficult to reproduce, but I found a fairly reliable way:
It only happens (for me) on Windows, MSYS2 build, with wxWidgets 3.0
It also only happens if I restrict PcbNew to use 2 CPU cores.
With those conditions, I can reproduce the issue described in #6471 by
repeatedly editing a zone properties and changing its net. The crash is
especially easy to trigger if you press some keys (such as 'e' for edit)
while the progress dialog is displayed. It's easiest to do this in a debug
build as the slower KiCad is running, the bigger the window is to trigger this
bug.
Fixes https://gitlab.com/kicad/code/kicad/-/issues/6471
Fixes https://gitlab.com/kicad/code/kicad/-/issues/7048
Many, many KIDIALOGs use OK/Cancel and then rename both buttons to
confirm or deny some action. In those cases we *do* want to store
the deny actions if they check "Do Not Show Again".
Fixes https://gitlab.com/kicad/code/kicad/issues/6979
1) better load-balancing for deferred zones
2) sort zones by priority before filling
3) retire BOARD::GetZoneList() which had a horrible performance profile
4) implement a zone bounding box cache
5) better checks for IsCancelled() so long fills can be exited
Fixes https://gitlab.com/kicad/code/kicad/issues/5738
This unifies the zone refill across architecture into the tool-based
architecture. Also provides ZONE_FILLER-based progress managment for
tools.
(cherry picked from commit be9cd98cb1)