The spacemouse driver, particularly on Mac, is extremely unstable and
causes crashes even when not being used. This places the interface
behind an advanced config flag to ensure that users can affirmatively
opt-in to the potential for crashes
The pressure relief valve was not useful for common work patterns as it
forced the recalculation on many common actions such as bus expansion.
This caused it to actually feel slower than with the pressure relief
valve off.
For most schematics, realtime is now fast enough to not need the valve
and for those that are extremely complex, removing the valve helps this
run more predictably
The hard coded value was too small for certain calculations. Better to
have a configurable value that is initially set to our error level to
allow for deviations that don't meet the visibility test for spikes.
These have become more apparent with Clipper2
Currently this lives behind the advanced config flag `UseClipper2`.
Enabling this flag will route all Clipper-based calls through the
Clipper2 library instead of the older Clipper. The changes should be
mostly transparent.
Of note, Clipper2 does not utilize the `STRICTLY_SIMPLE` flag because
clipper1 did not actually guarantee a strictly simple polygon.
Currently we ignore this flag but we may decide to run strictly-simple
operations through a second NULL union to simplify the results as much
as possible.
Additionally, the inflation options are slightly different. We cannot
choose the fallback miter. The fallback miter is always square. This
only affects the CHAMFER_ACUTE_CORNERS option in inflate, which does not
appear to be used.
Lastly, we currently utilize the 64-bit integer coordinates for
calculations. This appears to still be faster than 32-bit calculations
in Clipper1 on a modern x86 system. This may not be the case for older
systems, particularly 32-bit systems.
When running headless, e.g. from Python script, the wxApp has not be
instantiated, so we cannot use wxConfig. In this case, we fall back to
the class defaults in ADVANCED_CONFIG()
Use the connecting straight tracks even if not exactly parallel - allow
an error margin configurable in ADVANCED_CFG (default 1 degree). Also
be less strict about end point matching and use the width of the track
as the criteria to determine suitability.
Finally, delete any short lengths of track at the end of the operation
and amend the arc end points to keep connectivity.
Fixes https://gitlab.com/kicad/code/kicad/-/issues/7967
This is hidden behind an advanced configuration setting and is primarily
useful for developers trying to troubleshoot the netlist payload sent
from the board editor to the schematic editor.
Fixes https://gitlab.com/kicad/code/kicad/issues/8051