It's currently only supported in the Footprint Editor. It could be
easily added to the board editor (all the code is there), but the board
editor is a little short on room in the drawing tools toolbar.
BOARD::GetBoundingBox() now directly calls BOARD::ComputeBoundingBox()
and there is a new method BOARD::GetBoardEdgesBoundingBox() used for
call sites that needed to use ComputeBoundingBox( true ) in the past.
This allows COMMON_TOOLS to implement ZoomFitScreen without knowledge
of the BOARD class.
* Split and rewrite the preview window and canvas.
* Create a new class for handling the board information.
* Adds new render targets: openGL, legacy, and ray tracing.
* Render targets take full advantage of the new 3D plugins system and 3D cache
for a fast 3D model loading.
* Faster board loading.
* New OpenGL render is faster than the old one.
* New ray tracing render target with a post processing shader.
* Use of new 3D plugins (WRL, X3D, STEP and IGES) and 3D model caching.
* Preview of 3D model while browsing the file name.
* 3D preview of the footprint while adding / align 3D shapes.
* Render of 3D models according to attributes: Normal, Normal+Insert, Virtual.
* Pivot rotation centered in one point over the PCB board.
* Shortcuts keys improved for XYZ orientation..
* Animated camera.
1. incorrect orientation of components on the bottom side of the board
when the #D model rotation is non-zero
2. failure to export when some components have no model set
PAD_SHAPE_T and PAD_ATTR_T still have a double definition (new names and old names) to be sure python scripts are nor broken by the change.
PAD_DRILL_SHAPE_T does not have a double definition, because it is unlikely oblong holes are used in python scripts.
Double definitions will be removed in the (next) future.
* Adds a "Grid Reference Point" to the VRML export; this allows a user to specify the (X,Y) coordinate which will be the origin point on the output
* Adds a "Grid Reference Point" to the IDF export; this is similar in purpose to the corresponding VRML export feature.
2) Change from legacy Cu stack to counting down from top=(F_Cu or 0).
The old Cu stack required knowing the count of Cu layers to make
sense of the layer number when converting to many exported file types.
The new Cu stack is more commonly used, although ours still gives
B_Cu a fixed number.
3) Introduce class LSET and enum LAYER_ID.
4) Change *.kicad_pcb file format version to 4 from 3.
5) Change fixed names Inner1_Cu-Inner14_Cu to In1_Cu-In30_Cu and their
meanings are typically flipped.
6) Moved the #define LAYER_N_* stuff into legacy_plugin.cpp where they
can die a quiet death, and switch to enum LAYER_ID symbols throughout.
7) Removed the LEGACY_PLUGIN::Save() and FootprintSave() functions.
You will need to convert to the format immediately, *.kicad_pcb and
*.kicad_mod (=pretty) since legacy format was never going to know
about 32 Cu layers and additional technical layers and the reversed Cu
stack.