1676 lines
52 KiB
C++
1676 lines
52 KiB
C++
/*
|
|
* This program source code file is part of KICAD, a free EDA CAD application.
|
|
*
|
|
* Copyright (C) 2012 Torsten Hueter, torstenhtr <at> gmx.de
|
|
* Copyright (C) 2012 Kicad Developers, see change_log.txt for contributors.
|
|
* Copyright (C) 2013 CERN
|
|
* @author Maciej Suminski <maciej.suminski@cern.ch>
|
|
*
|
|
* Graphics Abstraction Layer (GAL) for OpenGL
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, you may find one here:
|
|
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
|
|
* or you may search the http://www.gnu.org website for the version 2 license,
|
|
* or you may write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
|
|
*/
|
|
|
|
#include <gal/opengl/opengl_gal.h>
|
|
#include <gal/definitions.h>
|
|
|
|
#include <wx/log.h>
|
|
#include <macros.h>
|
|
#ifdef __WXDEBUG__
|
|
#include <profile.h>
|
|
#endif /* __WXDEBUG__ */
|
|
|
|
#include <limits>
|
|
#include <boost/foreach.hpp>
|
|
|
|
#ifndef CALLBACK
|
|
#define CALLBACK
|
|
#endif
|
|
|
|
using namespace KiGfx;
|
|
|
|
// Prototypes
|
|
void InitTesselatorCallbacks( GLUtesselator* aTesselator );
|
|
|
|
const int glAttributes[] = { WX_GL_RGBA, WX_GL_DOUBLEBUFFER, WX_GL_DEPTH_SIZE, 16, 0 };
|
|
|
|
OPENGL_GAL::OPENGL_GAL( wxWindow* aParent, wxEvtHandler* aMouseListener,
|
|
wxEvtHandler* aPaintListener, bool isUseShaders, const wxString& aName ) :
|
|
wxGLCanvas( aParent, wxID_ANY, (int*) glAttributes, wxDefaultPosition, wxDefaultSize,
|
|
wxEXPAND, aName ),
|
|
verticesCircle( &precomputedContainer )
|
|
{
|
|
// Create the OpenGL-Context
|
|
glContext = new wxGLContext( this );
|
|
parentWindow = aParent;
|
|
mouseListener = aMouseListener;
|
|
paintListener = aPaintListener;
|
|
|
|
// Set the cursor size
|
|
initCursor( 20 );
|
|
SetCursorColor( COLOR4D( 1.0, 1.0, 1.0, 1.0 ) );
|
|
|
|
// Initialize the flags
|
|
isDeleteSavedPixels = true;
|
|
isGlewInitialized = false;
|
|
isFrameBufferInitialized = false;
|
|
isUseShader = isUseShaders;
|
|
isShaderInitialized = false;
|
|
isGrouping = false;
|
|
wxSize parentSize = aParent->GetSize();
|
|
|
|
isVboInitialized = false;
|
|
vboNeedsUpdate = false;
|
|
currentItem = NULL;
|
|
groupCounter = 0;
|
|
transform = glm::mat4( 1.0f ); // Identity matrix
|
|
nonCachedItem = NULL;
|
|
|
|
SetSize( parentSize );
|
|
|
|
screenSize.x = parentSize.x;
|
|
screenSize.y = parentSize.y;
|
|
|
|
// Set grid defaults
|
|
SetGridColor( COLOR4D( 0.3, 0.3, 0.3, 0.3 ) );
|
|
SetCoarseGrid( 10 );
|
|
SetGridLineWidth( 1.0 );
|
|
|
|
// Connecting the event handlers.
|
|
Connect( wxEVT_PAINT, wxPaintEventHandler( OPENGL_GAL::onPaint ) );
|
|
|
|
// Mouse events are skipped to the parent
|
|
Connect( wxEVT_MOTION, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) );
|
|
Connect( wxEVT_MOUSEWHEEL, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) );
|
|
Connect( wxEVT_RIGHT_DOWN, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) );
|
|
Connect( wxEVT_RIGHT_UP, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) );
|
|
Connect( wxEVT_LEFT_DOWN, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) );
|
|
Connect( wxEVT_LEFT_UP, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) );
|
|
Connect( wxEVT_MIDDLE_DOWN, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) );
|
|
Connect( wxEVT_MIDDLE_UP, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) );
|
|
#if defined _WIN32 || defined _WIN64
|
|
Connect( wxEVT_ENTER_WINDOW, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) );
|
|
#endif
|
|
|
|
// Tesselator initialization
|
|
tesselator = gluNewTess();
|
|
InitTesselatorCallbacks( tesselator );
|
|
gluTessProperty( tesselator, GLU_TESS_WINDING_RULE, GLU_TESS_WINDING_POSITIVE );
|
|
|
|
// Compute unit semicircle & circle vertices and store them in a buffer for faster drawing
|
|
computeCircleVbo();
|
|
|
|
// By default we draw non-cached objects, it changes on BeginGroup()/EndGroup()
|
|
currentContainer = &nonCachedVbo;
|
|
}
|
|
|
|
|
|
OPENGL_GAL::~OPENGL_GAL()
|
|
{
|
|
glFlush();
|
|
|
|
delete nonCachedItem;
|
|
|
|
// Delete the buffers
|
|
if( isFrameBufferInitialized )
|
|
{
|
|
deleteFrameBuffer( &frameBuffer, &depthBuffer, &texture );
|
|
deleteFrameBuffer( &frameBufferBackup, &depthBufferBackup, &textureBackup );
|
|
}
|
|
|
|
gluDeleteTess( tesselator );
|
|
|
|
if( isVboInitialized )
|
|
{
|
|
ClearCache();
|
|
deleteVertexBufferObjects();
|
|
}
|
|
|
|
delete glContext;
|
|
}
|
|
|
|
|
|
void OPENGL_GAL::onPaint( wxPaintEvent& aEvent )
|
|
{
|
|
PostPaint();
|
|
}
|
|
|
|
|
|
void OPENGL_GAL::ResizeScreen( int aWidth, int aHeight )
|
|
{
|
|
screenSize = VECTOR2D( aWidth, aHeight );
|
|
|
|
// Delete old buffers for resizing
|
|
if( isFrameBufferInitialized )
|
|
{
|
|
deleteFrameBuffer( &frameBuffer, &depthBuffer, &texture );
|
|
deleteFrameBuffer( &frameBufferBackup, &depthBufferBackup, &textureBackup );
|
|
|
|
// This flag is used for recreating the buffers
|
|
isFrameBufferInitialized = false;
|
|
}
|
|
|
|
wxGLCanvas::SetSize( aWidth, aHeight );
|
|
}
|
|
|
|
|
|
void OPENGL_GAL::skipMouseEvent( wxMouseEvent& aEvent )
|
|
{
|
|
// Post the mouse event to the event listener registered in constructor, if any
|
|
if( mouseListener )
|
|
wxPostEvent( mouseListener, aEvent );
|
|
}
|
|
|
|
|
|
void OPENGL_GAL::generateFrameBuffer( GLuint* aFrameBuffer, GLuint* aDepthBuffer,
|
|
GLuint* aTexture )
|
|
{
|
|
// We need frame buffer objects for drawing the screen contents
|
|
|
|
// Generate frame buffer and a depth buffer
|
|
glGenFramebuffersEXT( 1, aFrameBuffer );
|
|
glBindFramebufferEXT( GL_FRAMEBUFFER_EXT, *aFrameBuffer );
|
|
|
|
// Allocate memory for the depth buffer
|
|
// Attach the depth buffer to the frame buffer
|
|
glGenRenderbuffersEXT( 1, aDepthBuffer );
|
|
glBindRenderbufferEXT( GL_RENDERBUFFER_EXT, *aDepthBuffer );
|
|
|
|
// Use here a size of 24 bits for the depth buffer, 8 bits for the stencil buffer
|
|
// this is required later for anti-aliasing
|
|
glRenderbufferStorageEXT( GL_RENDERBUFFER_EXT, GL_DEPTH_STENCIL_EXT, screenSize.x,
|
|
screenSize.y );
|
|
glFramebufferRenderbufferEXT( GL_FRAMEBUFFER_EXT, GL_DEPTH_ATTACHMENT_EXT, GL_RENDERBUFFER_EXT,
|
|
*aDepthBuffer );
|
|
glFramebufferRenderbufferEXT( GL_FRAMEBUFFER_EXT, GL_STENCIL_ATTACHMENT_EXT,
|
|
GL_RENDERBUFFER_EXT, *aDepthBuffer );
|
|
|
|
// Generate the texture for the pixel storage
|
|
// Attach the texture to the frame buffer
|
|
glGenTextures( 1, aTexture );
|
|
glBindTexture( GL_TEXTURE_2D, *aTexture );
|
|
glTexImage2D( GL_TEXTURE_2D, 0, GL_RGBA, screenSize.x, screenSize.y, 0, GL_RGBA,
|
|
GL_UNSIGNED_BYTE, NULL );
|
|
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST );
|
|
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST );
|
|
glFramebufferTexture2DEXT( GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT, GL_TEXTURE_2D,
|
|
*aTexture, 0 );
|
|
|
|
// Check the status, exit if the frame buffer can't be created
|
|
GLenum status = glCheckFramebufferStatusEXT( GL_FRAMEBUFFER_EXT );
|
|
|
|
if( status != GL_FRAMEBUFFER_COMPLETE_EXT )
|
|
{
|
|
wxLogError( wxT( "Can't create the frame buffer." ) );
|
|
exit( 1 );
|
|
}
|
|
|
|
isFrameBufferInitialized = true;
|
|
}
|
|
|
|
|
|
void OPENGL_GAL::deleteFrameBuffer( GLuint* aFrameBuffer, GLuint* aDepthBuffer, GLuint* aTexture )
|
|
{
|
|
glDeleteFramebuffers( 1, aFrameBuffer );
|
|
glDeleteRenderbuffers( 1, aDepthBuffer );
|
|
glDeleteTextures( 1, aTexture );
|
|
}
|
|
|
|
|
|
void OPENGL_GAL::initFrameBuffers()
|
|
{
|
|
generateFrameBuffer( &frameBuffer, &depthBuffer, &texture );
|
|
generateFrameBuffer( &frameBufferBackup, &depthBufferBackup, &textureBackup );
|
|
}
|
|
|
|
|
|
void OPENGL_GAL::initVertexBufferObjects()
|
|
{
|
|
// Generate buffers for vertices and indices
|
|
glGenBuffers( 1, &cachedVerts );
|
|
glGenBuffers( 1, &cachedInds );
|
|
|
|
isVboInitialized = true;
|
|
}
|
|
|
|
|
|
void OPENGL_GAL::deleteVertexBufferObjects()
|
|
{
|
|
glBindBuffer( GL_ARRAY_BUFFER, 0 );
|
|
glBindBuffer( GL_ELEMENT_ARRAY_BUFFER, 0 );
|
|
|
|
glDeleteBuffers( 1, &cachedVerts );
|
|
glDeleteBuffers( 1, &cachedInds );
|
|
|
|
isVboInitialized = false;
|
|
}
|
|
|
|
|
|
void OPENGL_GAL::SaveScreen()
|
|
{
|
|
glBindFramebuffer( GL_DRAW_FRAMEBUFFER, frameBufferBackup );
|
|
glBindFramebuffer( GL_READ_FRAMEBUFFER, frameBuffer );
|
|
glBlitFramebuffer( 0, 0, screenSize.x, screenSize.y, 0, 0, screenSize.x, screenSize.y,
|
|
GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT,
|
|
GL_NEAREST );
|
|
glBindFramebuffer( GL_DRAW_FRAMEBUFFER, frameBuffer );
|
|
}
|
|
|
|
|
|
void OPENGL_GAL::RestoreScreen()
|
|
{
|
|
glBindFramebuffer( GL_DRAW_FRAMEBUFFER, frameBuffer );
|
|
glBindFramebuffer( GL_READ_FRAMEBUFFER, frameBufferBackup );
|
|
glBlitFramebuffer( 0, 0, screenSize.x, screenSize.y, 0, 0, screenSize.x, screenSize.y,
|
|
GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT,
|
|
GL_NEAREST );
|
|
}
|
|
|
|
|
|
void OPENGL_GAL::initGlew()
|
|
{
|
|
// Initialize GLEW library
|
|
GLenum err = glewInit();
|
|
|
|
if( GLEW_OK != err )
|
|
{
|
|
wxLogError( wxString::FromUTF8( (char*) glewGetErrorString( err ) ) );
|
|
exit( 1 );
|
|
}
|
|
else
|
|
{
|
|
wxLogDebug( wxString( wxT( "Status: Using GLEW " ) ) +
|
|
FROM_UTF8( (char*) glewGetString( GLEW_VERSION ) ) );
|
|
}
|
|
|
|
// Check the OpenGL version (minimum 2.1 is required)
|
|
if( GLEW_VERSION_2_1 )
|
|
{
|
|
wxLogInfo( wxT( "OpenGL Version 2.1 supported." ) );
|
|
}
|
|
else
|
|
{
|
|
wxLogError( wxT( "OpenGL Version 2.1 is not supported!" ) );
|
|
exit( 1 );
|
|
}
|
|
|
|
// Frame buffers have to be supported
|
|
if( !GLEW_ARB_framebuffer_object )
|
|
{
|
|
wxLogError( wxT( "Framebuffer objects are not supported!" ) );
|
|
exit( 1 );
|
|
}
|
|
|
|
// Vertex buffer have to be supported
|
|
if( !GLEW_ARB_vertex_buffer_object )
|
|
{
|
|
wxLogError( wxT( "Vertex buffer objects are not supported!" ) );
|
|
exit( 1 );
|
|
}
|
|
|
|
initVertexBufferObjects();
|
|
|
|
isGlewInitialized = true;
|
|
}
|
|
|
|
|
|
void OPENGL_GAL::BeginDrawing()
|
|
{
|
|
SetCurrent( *glContext );
|
|
|
|
clientDC = new wxClientDC( this );
|
|
|
|
// Initialize GLEW, FBOs & VBOs
|
|
if( !isGlewInitialized )
|
|
{
|
|
initGlew();
|
|
}
|
|
|
|
if( !isFrameBufferInitialized )
|
|
{
|
|
initFrameBuffers();
|
|
}
|
|
|
|
// Compile the shaders
|
|
if( !isShaderInitialized && isUseShader )
|
|
{
|
|
if( !shader.LoadBuiltinShader( 0, SHADER_TYPE_VERTEX ) )
|
|
{
|
|
wxLogFatalError( wxT( "Cannot compile vertex shader!" ) );
|
|
}
|
|
|
|
if( !shader.LoadBuiltinShader( 1, SHADER_TYPE_FRAGMENT ) )
|
|
{
|
|
wxLogFatalError( wxT( "Cannot compile fragment shader!" ) );
|
|
}
|
|
|
|
if( !shader.Link() )
|
|
{
|
|
wxLogFatalError( wxT( "Cannot link the shaders!" ) );
|
|
}
|
|
|
|
shaderAttrib = shader.GetAttribute( "attrShaderParams" );
|
|
if( shaderAttrib == -1 )
|
|
{
|
|
wxLogFatalError( wxT( "Could not get the shader attribute location" ) );
|
|
}
|
|
|
|
isShaderInitialized = true;
|
|
}
|
|
|
|
// Bind the main frame buffer object - all contents are drawn there
|
|
glBindFramebufferEXT( GL_FRAMEBUFFER_EXT, frameBuffer );
|
|
|
|
// Disable 2D Textures
|
|
glDisable( GL_TEXTURE_2D );
|
|
|
|
// Enable the depth buffer
|
|
glEnable( GL_DEPTH_TEST );
|
|
glDepthFunc( GL_LESS );
|
|
// Setup blending, required for transparent objects
|
|
glEnable( GL_BLEND );
|
|
glBlendFunc( GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA );
|
|
|
|
// Enable smooth lines
|
|
glEnable( GL_LINE_SMOOTH );
|
|
|
|
// Set up the view port
|
|
glMatrixMode( GL_PROJECTION );
|
|
glLoadIdentity();
|
|
glViewport( 0, 0, (GLsizei) screenSize.x, (GLsizei) screenSize.y );
|
|
|
|
// Create the screen transformation
|
|
glOrtho( 0, (GLint) screenSize.x, 0, (GLsizei) screenSize.y, -depthRange.x, -depthRange.y );
|
|
|
|
glMatrixMode( GL_MODELVIEW );
|
|
|
|
// Set up the world <-> screen transformation
|
|
ComputeWorldScreenMatrix();
|
|
GLdouble matrixData[16] = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 };
|
|
matrixData[0] = worldScreenMatrix.m_data[0][0];
|
|
matrixData[1] = worldScreenMatrix.m_data[1][0];
|
|
matrixData[2] = worldScreenMatrix.m_data[2][0];
|
|
matrixData[4] = worldScreenMatrix.m_data[0][1];
|
|
matrixData[5] = worldScreenMatrix.m_data[1][1];
|
|
matrixData[6] = worldScreenMatrix.m_data[2][1];
|
|
matrixData[12] = worldScreenMatrix.m_data[0][2];
|
|
matrixData[13] = worldScreenMatrix.m_data[1][2];
|
|
matrixData[14] = worldScreenMatrix.m_data[2][2];
|
|
glLoadMatrixd( matrixData );
|
|
|
|
// Set defaults
|
|
SetFillColor( fillColor );
|
|
SetStrokeColor( strokeColor );
|
|
isDeleteSavedPixels = true;
|
|
|
|
// If any of VBO items is dirty - recache everything
|
|
if( vboNeedsUpdate )
|
|
rebuildVbo();
|
|
|
|
// Number of vertices to be drawn
|
|
indicesSize = 0;
|
|
|
|
glBindBuffer( GL_ELEMENT_ARRAY_BUFFER, cachedInds );
|
|
// Discard old buffer, so we can use it again
|
|
glBufferData( GL_ELEMENT_ARRAY_BUFFER, cachedVbo.GetSize() * VBO_ITEM::IndByteSize,
|
|
NULL, GL_STREAM_DRAW );
|
|
|
|
// Map the GPU memory, so we can store indices that are going to be drawn
|
|
indicesPtr = static_cast<GLuint*>( glMapBuffer( GL_ELEMENT_ARRAY_BUFFER, GL_WRITE_ONLY ) );
|
|
if( indicesPtr == NULL )
|
|
{
|
|
wxLogError( wxT( "Could not map GPU memory" ) );
|
|
}
|
|
|
|
// Prepare buffer for non-cached items
|
|
delete nonCachedItem;
|
|
nonCachedItem = new VBO_ITEM( &nonCachedVbo );
|
|
currentItem = nonCachedItem;
|
|
}
|
|
|
|
|
|
void OPENGL_GAL::blitMainTexture( bool aIsClearFrameBuffer )
|
|
{
|
|
// Don't use blending for the final blitting
|
|
glDisable( GL_BLEND );
|
|
|
|
glColor4d( 1.0, 1.0, 1.0, 1.0 );
|
|
|
|
// Switch to the main frame buffer and blit the scene
|
|
glBindFramebufferEXT( GL_FRAMEBUFFER_EXT, 0 );
|
|
|
|
if( aIsClearFrameBuffer )
|
|
glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT );
|
|
|
|
// Enable texturing and bind the main texture
|
|
glEnable( GL_TEXTURE_2D );
|
|
glBindTexture( GL_TEXTURE_2D, texture );
|
|
|
|
// Draw a full screen quad with the texture
|
|
glMatrixMode( GL_MODELVIEW );
|
|
glPushMatrix();
|
|
glLoadIdentity();
|
|
glMatrixMode( GL_PROJECTION );
|
|
glPushMatrix();
|
|
glLoadIdentity();
|
|
|
|
glBegin( GL_TRIANGLES );
|
|
glTexCoord2i( 0, 1 );
|
|
glVertex3i( -1, -1, 0 );
|
|
glTexCoord2i( 1, 1 );
|
|
glVertex3i( 1, -1, 0 );
|
|
glTexCoord2i( 1, 0 );
|
|
glVertex3i( 1, 1, 0 );
|
|
|
|
glTexCoord2i( 0, 1 );
|
|
glVertex3i( -1, -1, 0 );
|
|
glTexCoord2i( 1, 0 );
|
|
glVertex3i( 1, 1, 0 );
|
|
glTexCoord2i( 0, 0 );
|
|
glVertex3i( -1, 1, 0 );
|
|
glEnd();
|
|
glPopMatrix();
|
|
glMatrixMode( GL_MODELVIEW );
|
|
glPopMatrix();
|
|
}
|
|
|
|
|
|
void OPENGL_GAL::EndDrawing()
|
|
{
|
|
if( !glUnmapBuffer( GL_ELEMENT_ARRAY_BUFFER ) )
|
|
{
|
|
wxLogError( wxT( "Unmapping indices buffer failed" ) );
|
|
}
|
|
|
|
// Prepare buffers
|
|
glEnableClientState( GL_VERTEX_ARRAY );
|
|
glEnableClientState( GL_COLOR_ARRAY );
|
|
|
|
// Bind vertices data buffers
|
|
glBindBuffer( GL_ARRAY_BUFFER, cachedVerts );
|
|
glVertexPointer( VBO_ITEM::CoordStride, GL_FLOAT, VBO_ITEM::VertByteSize, 0 );
|
|
glColorPointer( VBO_ITEM::ColorStride, GL_UNSIGNED_BYTE, VBO_ITEM::VertByteSize,
|
|
(GLvoid*) VBO_ITEM::ColorByteOffset );
|
|
|
|
// Shader parameters
|
|
if( isUseShader )
|
|
{
|
|
shader.Use();
|
|
glEnableVertexAttribArray( shaderAttrib );
|
|
glVertexAttribPointer( shaderAttrib, VBO_ITEM::ShaderStride, GL_FLOAT, GL_FALSE,
|
|
VBO_ITEM::VertByteSize, (GLvoid*) VBO_ITEM::ShaderByteOffset );
|
|
}
|
|
|
|
glDrawElements( GL_TRIANGLES, indicesSize, GL_UNSIGNED_INT, (GLvoid*) 0 );
|
|
glBindBuffer( GL_ELEMENT_ARRAY_BUFFER, 0 );
|
|
glBindBuffer( GL_ARRAY_BUFFER, 0 );
|
|
|
|
// Draw non-cached items
|
|
GLfloat* vertices = (GLfloat*)( nonCachedVbo.GetAllVertices() );
|
|
GLubyte* colors = (GLubyte*)( nonCachedVbo.GetAllVertices() ) + VBO_ITEM::ColorOffset;
|
|
GLfloat* shaders = (GLfloat*)( nonCachedVbo.GetAllVertices() ) + VBO_ITEM::ShaderOffset;
|
|
|
|
glVertexPointer( VBO_ITEM::CoordStride, GL_FLOAT, VBO_ITEM::VertByteSize, vertices );
|
|
glColorPointer( VBO_ITEM::ColorStride, GL_UNSIGNED_BYTE, VBO_ITEM::VertByteSize, colors );
|
|
if( isUseShader )
|
|
{
|
|
glVertexAttribPointer( shaderAttrib, VBO_ITEM::ShaderStride, GL_FLOAT, GL_FALSE,
|
|
VBO_ITEM::VertByteSize, shaders );
|
|
}
|
|
glDrawArrays( GL_TRIANGLES, nonCachedItem->GetOffset(), nonCachedItem->GetSize() );
|
|
|
|
// Deactivate vertex array
|
|
glDisableClientState( GL_COLOR_ARRAY );
|
|
glDisableClientState( GL_VERTEX_ARRAY );
|
|
if( isUseShader )
|
|
{
|
|
glDisableVertexAttribArray( shaderAttrib );
|
|
shader.Deactivate();
|
|
}
|
|
|
|
// Draw the remaining contents, blit the main texture to the screen, swap the buffers
|
|
glFlush();
|
|
blitMainTexture( true );
|
|
SwapBuffers();
|
|
|
|
delete clientDC;
|
|
}
|
|
|
|
|
|
void OPENGL_GAL::rebuildVbo()
|
|
{
|
|
#ifdef __WXDEBUG__
|
|
prof_counter totalTime;
|
|
prof_start( &totalTime, false );
|
|
#endif /* __WXDEBUG__ */
|
|
|
|
GLfloat* data = (GLfloat*) cachedVbo.GetAllVertices();
|
|
|
|
// Upload vertices coordinates and shader types to GPU memory
|
|
glBindBuffer( GL_ARRAY_BUFFER, cachedVerts );
|
|
glBufferData( GL_ARRAY_BUFFER, cachedVbo.GetSize() * VBO_ITEM::VertByteSize,
|
|
data, GL_DYNAMIC_DRAW );
|
|
glBindBuffer( GL_ARRAY_BUFFER, 0 );
|
|
|
|
// Allocate the biggest possible buffer for indices
|
|
glBindBuffer( GL_ELEMENT_ARRAY_BUFFER, cachedInds );
|
|
glBufferData( GL_ELEMENT_ARRAY_BUFFER, cachedVbo.GetSize() * VBO_ITEM::IndByteSize,
|
|
NULL, GL_STREAM_DRAW );
|
|
glBindBuffer( GL_ELEMENT_ARRAY_BUFFER, 0 );
|
|
|
|
vboNeedsUpdate = false;
|
|
|
|
#ifdef __WXDEBUG__
|
|
prof_end( &totalTime );
|
|
|
|
wxLogDebug( wxT( "Rebuilding VBO::%d vertices / %.1f ms" ),
|
|
cachedVbo.GetSize(), (double) totalTime.value / 1000.0 );
|
|
#endif /* __WXDEBUG__ */
|
|
}
|
|
|
|
|
|
inline void OPENGL_GAL::drawLineQuad( const VECTOR2D& aStartPoint, const VECTOR2D& aEndPoint )
|
|
{
|
|
VECTOR2D startEndVector = aEndPoint - aStartPoint;
|
|
double lineLength = startEndVector.EuclideanNorm();
|
|
double scale = 0.5 * lineWidth / lineLength;
|
|
|
|
if( lineLength <= 0.0 )
|
|
return;
|
|
|
|
VECTOR2D perpendicularVector( -startEndVector.y * scale, startEndVector.x * scale );
|
|
|
|
if( isUseShader )
|
|
{
|
|
glm::vec4 vector( perpendicularVector.x, perpendicularVector.y, 0.0, 0.0 );
|
|
|
|
// If transform stack is not empty, then it means that
|
|
// there is a transformation matrix that has to be applied
|
|
if( !transformStack.empty() )
|
|
vector = transform * vector;
|
|
|
|
// Line width is maintained by the vertex shader
|
|
setShader( SHADER_LINE, vector.x, vector.y, lineWidth );
|
|
vertex3( aStartPoint.x, aStartPoint.y, layerDepth ); // v0
|
|
|
|
setShader( SHADER_LINE, -vector.x, -vector.y, lineWidth );
|
|
vertex3( aStartPoint.x, aStartPoint.y, layerDepth ); // v1
|
|
|
|
setShader( SHADER_LINE, -vector.x, -vector.y, lineWidth );
|
|
vertex3( aEndPoint.x, aEndPoint.y, layerDepth ); // v3
|
|
|
|
setShader( SHADER_LINE, vector.x, vector.y, lineWidth );
|
|
vertex3( aStartPoint.x, aStartPoint.y, layerDepth ); // v0
|
|
|
|
setShader( SHADER_LINE, -vector.x, -vector.y, lineWidth );
|
|
vertex3( aEndPoint.x, aEndPoint.y, layerDepth ); // v3
|
|
|
|
setShader( SHADER_LINE, vector.x, vector.y, lineWidth );
|
|
vertex3( aEndPoint.x, aEndPoint.y, layerDepth ); // v2
|
|
}
|
|
else
|
|
{
|
|
// Compute the edge points of the line
|
|
VECTOR2D v0 = aStartPoint + perpendicularVector;
|
|
VECTOR2D v1 = aStartPoint - perpendicularVector;
|
|
VECTOR2D v2 = aEndPoint + perpendicularVector;
|
|
VECTOR2D v3 = aEndPoint - perpendicularVector;
|
|
|
|
vertex3( v0.x, v0.y, layerDepth );
|
|
vertex3( v1.x, v1.y, layerDepth );
|
|
vertex3( v3.x, v3.y, layerDepth );
|
|
|
|
vertex3( v0.x, v0.y, layerDepth );
|
|
vertex3( v3.x, v3.y, layerDepth );
|
|
vertex3( v2.x, v2.y, layerDepth );
|
|
}
|
|
}
|
|
|
|
|
|
void OPENGL_GAL::DrawSegment( const VECTOR2D& aStartPoint, const VECTOR2D& aEndPoint,
|
|
double aWidth )
|
|
{
|
|
VECTOR2D startEndVector = aEndPoint - aStartPoint;
|
|
double lineAngle = startEndVector.Angle();
|
|
|
|
if( isFillEnabled )
|
|
{
|
|
// Filled tracks
|
|
color4( fillColor.r, fillColor.g, fillColor.b, fillColor.a );
|
|
|
|
SetLineWidth( aWidth );
|
|
drawLineQuad( aStartPoint, aEndPoint );
|
|
|
|
// Draw line caps
|
|
drawFilledSemiCircle( aStartPoint, aWidth / 2, lineAngle + M_PI / 2 );
|
|
drawFilledSemiCircle( aEndPoint, aWidth / 2, lineAngle - M_PI / 2 );
|
|
}
|
|
else
|
|
{
|
|
// Outlined tracks
|
|
double lineLength = startEndVector.EuclideanNorm();
|
|
|
|
color4( strokeColor.r, strokeColor.g, strokeColor.b, strokeColor.a );
|
|
|
|
Save();
|
|
|
|
translate3( aStartPoint.x, aStartPoint.y, 0.0 );
|
|
Rotate( lineAngle );
|
|
|
|
drawLineQuad( VECTOR2D( 0.0, aWidth / 2.0 ),
|
|
VECTOR2D( lineLength, aWidth / 2.0 ) );
|
|
|
|
drawLineQuad( VECTOR2D( 0.0, -aWidth / 2.0 ),
|
|
VECTOR2D( lineLength, -aWidth / 2.0 ) );
|
|
|
|
// Draw line caps
|
|
drawStrokedSemiCircle( VECTOR2D( 0.0, 0.0 ), ( aWidth + lineWidth ) / 2, M_PI / 2 );
|
|
drawStrokedSemiCircle( VECTOR2D( lineLength, 0.0 ), ( aWidth + lineWidth ) / 2, -M_PI / 2 );
|
|
|
|
Restore();
|
|
}
|
|
}
|
|
|
|
|
|
unsigned int OPENGL_GAL::getGroupNumber()
|
|
{
|
|
wxASSERT_MSG( groups.size() < std::numeric_limits<unsigned int>::max(),
|
|
wxT( "There are no free slots to store a group" ) );
|
|
|
|
while( groups.find( groupCounter ) != groups.end() )
|
|
{
|
|
groupCounter++;
|
|
}
|
|
|
|
return groupCounter++;
|
|
}
|
|
|
|
|
|
void OPENGL_GAL::DrawLine( const VECTOR2D& aStartPoint, const VECTOR2D& aEndPoint )
|
|
{
|
|
const VECTOR2D startEndVector = aEndPoint - aStartPoint;
|
|
double lineAngle = startEndVector.Angle();
|
|
|
|
drawLineQuad( aStartPoint, aEndPoint );
|
|
|
|
// Line caps
|
|
drawFilledSemiCircle( aStartPoint, lineWidth / 2, lineAngle + M_PI / 2 );
|
|
drawFilledSemiCircle( aEndPoint, lineWidth / 2, lineAngle - M_PI / 2 );
|
|
}
|
|
|
|
|
|
void OPENGL_GAL::DrawPolyline( std::deque<VECTOR2D>& aPointList )
|
|
{
|
|
std::deque<VECTOR2D>::const_iterator it = aPointList.begin();
|
|
|
|
// Start from the second point
|
|
for( it++; it != aPointList.end(); it++ )
|
|
{
|
|
const VECTOR2D startEndVector = ( *it - *( it - 1 ) );
|
|
double lineAngle = startEndVector.Angle();
|
|
|
|
drawLineQuad( *( it - 1 ), *it );
|
|
|
|
// There is no need to draw line caps on both ends of polyline's segments
|
|
drawFilledSemiCircle( *( it - 1 ), lineWidth / 2, lineAngle + M_PI / 2 );
|
|
}
|
|
|
|
// ..and now - draw the ending cap
|
|
const VECTOR2D startEndVector = ( *( it - 1 ) - *( it - 2 ) );
|
|
double lineAngle = startEndVector.Angle();
|
|
drawFilledSemiCircle( *( it - 1 ), lineWidth / 2, lineAngle - M_PI / 2 );
|
|
}
|
|
|
|
|
|
void OPENGL_GAL::DrawRectangle( const VECTOR2D& aStartPoint, const VECTOR2D& aEndPoint )
|
|
{
|
|
// Compute the diagonal points of the rectangle
|
|
VECTOR2D diagonalPointA( aEndPoint.x, aStartPoint.y );
|
|
VECTOR2D diagonalPointB( aStartPoint.x, aEndPoint.y );
|
|
|
|
// Stroke the outline
|
|
if( isStrokeEnabled )
|
|
{
|
|
color4( strokeColor.r, strokeColor.g, strokeColor.b, strokeColor.a );
|
|
|
|
std::deque<VECTOR2D> pointList;
|
|
pointList.push_back( aStartPoint );
|
|
pointList.push_back( diagonalPointA );
|
|
pointList.push_back( aEndPoint );
|
|
pointList.push_back( diagonalPointB );
|
|
pointList.push_back( aStartPoint );
|
|
DrawPolyline( pointList );
|
|
}
|
|
|
|
// Fill the rectangle
|
|
if( isFillEnabled )
|
|
{
|
|
setShader( SHADER_NONE );
|
|
color4( fillColor.r, fillColor.g, fillColor.b, fillColor.a );
|
|
|
|
vertex3( aStartPoint.x, aStartPoint.y, layerDepth );
|
|
vertex3( diagonalPointA.x, diagonalPointA.y, layerDepth );
|
|
vertex3( aEndPoint.x, aEndPoint.y, layerDepth );
|
|
|
|
vertex3( aStartPoint.x, aStartPoint.y, layerDepth );
|
|
vertex3( aEndPoint.x, aEndPoint.y, layerDepth );
|
|
vertex3( diagonalPointB.x, diagonalPointB.y, layerDepth );
|
|
}
|
|
}
|
|
|
|
|
|
void OPENGL_GAL::DrawCircle( const VECTOR2D& aCenterPoint, double aRadius )
|
|
{
|
|
if( isUseShader )
|
|
{
|
|
if( isFillEnabled )
|
|
{
|
|
color4( fillColor.r, fillColor.g, fillColor.b, fillColor.a );
|
|
|
|
/* Draw a triangle that contains the circle, then shade it leaving only the circle.
|
|
Parameters given to setShader are indices of the triangle's vertices
|
|
(if you want to understand more, check the vertex shader source [shader.vert]).
|
|
Shader uses this coordinates to determine if fragments are inside the circle or not.
|
|
v2
|
|
/\
|
|
//\\
|
|
v0 /_\/_\ v1
|
|
*/
|
|
setShader( SHADER_FILLED_CIRCLE, 1.0 );
|
|
vertex3( aCenterPoint.x - aRadius * sqrt( 3.0f ),
|
|
aCenterPoint.y - aRadius, layerDepth ); // v0
|
|
|
|
setShader( SHADER_FILLED_CIRCLE, 2.0 );
|
|
vertex3( aCenterPoint.x + aRadius * sqrt( 3.0f ),
|
|
aCenterPoint.y - aRadius, layerDepth ); // v1
|
|
|
|
setShader( SHADER_FILLED_CIRCLE, 3.0 );
|
|
vertex3( aCenterPoint.x, aCenterPoint.y + aRadius * 2.0f, layerDepth ); // v2
|
|
}
|
|
|
|
if( isStrokeEnabled )
|
|
{
|
|
color4( strokeColor.r, strokeColor.g, strokeColor.b, strokeColor.a );
|
|
|
|
/* Draw a triangle that contains the circle, then shade it leaving only the circle.
|
|
Parameters given to setShader are indices of the triangle's vertices
|
|
(if you want to understand more, check the vertex shader source [shader.vert]).
|
|
and the line width. Shader uses this coordinates to determine if fragments are inside
|
|
the circle or not.
|
|
v2
|
|
/\
|
|
//\\
|
|
v0 /_\/_\ v1
|
|
*/
|
|
setShader( SHADER_STROKED_CIRCLE, 1.0, aRadius, lineWidth );
|
|
vertex3( aCenterPoint.x - aRadius * sqrt( 3.0f ),
|
|
aCenterPoint.y - aRadius, layerDepth ); // v0
|
|
|
|
setShader( SHADER_STROKED_CIRCLE, 2.0, aRadius, lineWidth );
|
|
vertex3( aCenterPoint.x + aRadius * sqrt( 3.0f ),
|
|
aCenterPoint.y - aRadius, layerDepth ); // v1
|
|
|
|
setShader( SHADER_STROKED_CIRCLE, 3.0, aRadius, lineWidth );
|
|
vertex3( aCenterPoint.x, aCenterPoint.y + aRadius * 2.0f, layerDepth ); // v2
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
if( isStrokeEnabled )
|
|
{
|
|
// Compute the factors for the unit circle
|
|
double outerScale = lineWidth / aRadius / 2;
|
|
double innerScale = -outerScale;
|
|
outerScale += 1.0;
|
|
innerScale += 1.0;
|
|
|
|
if( innerScale < outerScale )
|
|
{
|
|
// Draw the outline
|
|
VBO_VERTEX* circle = verticesCircle.GetVertices();
|
|
int next;
|
|
|
|
color4( strokeColor.r, strokeColor.g, strokeColor.b, strokeColor.a );
|
|
|
|
Save();
|
|
|
|
translate3( aCenterPoint.x, aCenterPoint.y, 0.0 );
|
|
Scale( VECTOR2D( aRadius, aRadius ) );
|
|
|
|
for( int i = 0; i < 3 * CIRCLE_POINTS; ++i )
|
|
{
|
|
// verticesCircle contains precomputed circle points interleaved with vertex
|
|
// (0,0,0), so filled circles can be drawn as consecutive triangles, ie:
|
|
// { 0,a,b, 0,c,d, 0,e,f, 0,g,h, ... }
|
|
// where letters stand for consecutive circle points and 0 for (0,0,0) vertex.
|
|
|
|
// We have to skip all (0,0,0) vertices (every third vertex)
|
|
if( i % 3 == 0)
|
|
{
|
|
i++;
|
|
// Depending on the vertex, next circle point may be stored in the next vertex..
|
|
next = i + 1;
|
|
}
|
|
else
|
|
{
|
|
// ..or 2 vertices away (in case it is preceded by (0,0,0) vertex)
|
|
next = i + 2;
|
|
}
|
|
|
|
vertex3( circle[i].x * innerScale, circle[i].y * innerScale, layerDepth );
|
|
vertex3( circle[i].x * outerScale, circle[i].y * outerScale, layerDepth );
|
|
vertex3( circle[next].x * innerScale, circle[next].y * innerScale, layerDepth );
|
|
|
|
vertex3( circle[i].x * outerScale, circle[i].y * outerScale, layerDepth );
|
|
vertex3( circle[next].x * outerScale, circle[next].y * outerScale, layerDepth );
|
|
vertex3( circle[next].x * innerScale, circle[next].y * innerScale, layerDepth );
|
|
}
|
|
|
|
Restore();
|
|
}
|
|
}
|
|
|
|
// Filled circles are easy to draw by using the stored display list, scaling and translating
|
|
if( isFillEnabled )
|
|
{
|
|
color4( fillColor.r, fillColor.g, fillColor.b, fillColor.a );
|
|
|
|
Save();
|
|
translate3( aCenterPoint.x, aCenterPoint.y, layerDepth );
|
|
Scale( VECTOR2D( aRadius, aRadius ) );
|
|
|
|
currentItem->PushVertices( verticesCircle.GetVertices(), CIRCLE_POINTS * 3 );
|
|
|
|
Restore();
|
|
}
|
|
}
|
|
|
|
|
|
void OPENGL_GAL::drawSemiCircle( const VECTOR2D& aCenterPoint, double aRadius, double aAngle )
|
|
{
|
|
if( isFillEnabled )
|
|
{
|
|
color4( fillColor.r, fillColor.g, fillColor.b, fillColor.a );
|
|
drawFilledSemiCircle( aCenterPoint, aRadius, aAngle );
|
|
}
|
|
|
|
if( isStrokeEnabled )
|
|
{
|
|
color4( strokeColor.r, strokeColor.g, strokeColor.b, strokeColor.a );
|
|
drawStrokedSemiCircle( aCenterPoint, aRadius, aAngle );
|
|
}
|
|
}
|
|
|
|
|
|
void OPENGL_GAL::drawFilledSemiCircle( const VECTOR2D& aCenterPoint, double aRadius, double aAngle )
|
|
{
|
|
if( isUseShader )
|
|
{
|
|
Save();
|
|
Translate( aCenterPoint );
|
|
Rotate( aAngle );
|
|
|
|
/* Draw a triangle that contains the semicircle, then shade it to leave only the semicircle.
|
|
Parameters given to setShader are indices of the triangle's vertices
|
|
(if you want to understand more, check the vertex shader source [shader.vert]).
|
|
Shader uses this coordinates to determine if fragments are inside the semicircle or not.
|
|
v2
|
|
/\
|
|
/__\
|
|
v0 //__\\ v1
|
|
*/
|
|
setShader( SHADER_FILLED_CIRCLE, 4.0f );
|
|
vertex3( -aRadius * 3.0f / sqrt( 3.0f ), 0.0f, layerDepth ); // v0
|
|
|
|
setShader( SHADER_FILLED_CIRCLE, 5.0f );
|
|
vertex3( aRadius * 3.0f / sqrt( 3.0f ), 0.0f, layerDepth ); // v1
|
|
|
|
setShader( SHADER_FILLED_CIRCLE, 6.0f );
|
|
vertex3( 0.0f, aRadius * 2.0f, layerDepth ); // v2
|
|
|
|
Restore();
|
|
}
|
|
else
|
|
{
|
|
Save();
|
|
translate3( aCenterPoint.x, aCenterPoint.y, layerDepth );
|
|
Scale( VECTOR2D( aRadius, aRadius ) );
|
|
Rotate( aAngle );
|
|
|
|
// It is enough just to push just a half of the circle vertices to make a semicircle
|
|
currentItem->PushVertices( verticesCircle.GetVertices(), CIRCLE_POINTS / 2 * 3 );
|
|
|
|
Restore();
|
|
}
|
|
}
|
|
|
|
|
|
void OPENGL_GAL::drawStrokedSemiCircle( const VECTOR2D& aCenterPoint, double aRadius, double aAngle )
|
|
{
|
|
if( isUseShader )
|
|
{
|
|
Save();
|
|
Translate( aCenterPoint );
|
|
Rotate( aAngle );
|
|
|
|
/* Draw a triangle that contains the semicircle, then shade it to leave only the semicircle.
|
|
Parameters given to setShader are indices of the triangle's vertices
|
|
(if you want to understand more, check the vertex shader source [shader.vert]), the
|
|
radius and the line width. Shader uses this coordinates to determine if fragments are
|
|
inside the semicircle or not.
|
|
v2
|
|
/\
|
|
/__\
|
|
v0 //__\\ v1
|
|
*/
|
|
setShader( SHADER_STROKED_CIRCLE, 4.0f, aRadius, lineWidth );
|
|
vertex3( -aRadius * 3.0f / sqrt( 3.0f ), 0.0f, layerDepth ); // v0
|
|
|
|
setShader( SHADER_STROKED_CIRCLE, 5.0f, aRadius, lineWidth );
|
|
vertex3( aRadius * 3.0f / sqrt( 3.0f ), 0.0f, layerDepth ); // v1
|
|
|
|
setShader( SHADER_STROKED_CIRCLE, 6.0f, aRadius, lineWidth );
|
|
vertex3( 0.0f, aRadius * 2.0f, layerDepth ); // v2
|
|
|
|
Restore();
|
|
}
|
|
else
|
|
{
|
|
// Compute the factors for the unit circle
|
|
double innerScale = 1.0 - lineWidth / aRadius;
|
|
|
|
Save();
|
|
translate3( aCenterPoint.x, aCenterPoint.y, layerDepth );
|
|
Scale( VECTOR2D( aRadius, aRadius ) );
|
|
Rotate( aAngle );
|
|
|
|
// Draw the outline
|
|
VBO_VERTEX* circle = verticesCircle.GetVertices();
|
|
int next;
|
|
|
|
for( int i = 0; i < ( 3 * CIRCLE_POINTS ) / 2; ++i )
|
|
{
|
|
// verticesCircle contains precomputed circle points interleaved with vertex
|
|
// (0,0,0), so filled circles can be drawn as consecutive triangles, ie:
|
|
// { 0,a,b, 0,c,d, 0,e,f, 0,g,h, ... }
|
|
// where letters stand for consecutive circle points and 0 for (0,0,0) vertex.
|
|
|
|
// We have to skip all (0,0,0) vertices (every third vertex)
|
|
if( i % 3 == 0 )
|
|
{
|
|
i++;
|
|
// Depending on the vertex, next circle point may be stored in the next vertex..
|
|
next = i + 1;
|
|
}
|
|
else
|
|
{
|
|
// ..or 2 vertices away (in case it is preceded by (0,0,0) vertex)
|
|
next = i + 2;
|
|
}
|
|
|
|
vertex3( circle[i].x * innerScale, circle[i].y * innerScale, 0.0 );
|
|
vertex3( circle[i].x, circle[i].y, 0.0 );
|
|
vertex3( circle[next].x * innerScale, circle[next].y * innerScale, 0.0 );
|
|
|
|
vertex3( circle[i].x, circle[i].y, 0.0 );
|
|
vertex3( circle[next].x, circle[next].y, 0.0 );
|
|
vertex3( circle[next].x * innerScale, circle[next].y * innerScale, 0.0 );
|
|
}
|
|
|
|
Restore();
|
|
}
|
|
}
|
|
|
|
|
|
// FIXME Optimize
|
|
void OPENGL_GAL::DrawArc( const VECTOR2D& aCenterPoint, double aRadius, double aStartAngle,
|
|
double aEndAngle )
|
|
{
|
|
if( aRadius <= 0 )
|
|
{
|
|
return;
|
|
}
|
|
|
|
// Swap the angles, if start angle is greater than end angle
|
|
SWAP( aStartAngle, >, aEndAngle );
|
|
|
|
VECTOR2D startPoint( cos( aStartAngle ), sin( aStartAngle ) );
|
|
VECTOR2D endPoint( cos( aEndAngle ), sin( aEndAngle ) );
|
|
VECTOR2D startEndPoint = startPoint + endPoint;
|
|
VECTOR2D middlePoint = 0.5 * startEndPoint;
|
|
|
|
Save();
|
|
translate3( aCenterPoint.x, aCenterPoint.y, layerDepth );
|
|
|
|
if( isStrokeEnabled )
|
|
{
|
|
if( isUseShader )
|
|
{
|
|
double alphaIncrement = 2.0 * M_PI / CIRCLE_POINTS;
|
|
color4( strokeColor.r, strokeColor.g, strokeColor.b, strokeColor.a );
|
|
|
|
VECTOR2D p( cos( aStartAngle ) * aRadius, sin( aStartAngle ) * aRadius );
|
|
double alpha;
|
|
for( alpha = aStartAngle + alphaIncrement; alpha < aEndAngle; alpha += alphaIncrement )
|
|
{
|
|
VECTOR2D p_next( cos( alpha ) * aRadius, sin( alpha ) * aRadius );
|
|
DrawLine( p, p_next );
|
|
|
|
p = p_next;
|
|
}
|
|
|
|
// Draw the last missing part
|
|
if( alpha != aEndAngle )
|
|
{
|
|
VECTOR2D p_last( cos( aEndAngle ) * aRadius, sin( aEndAngle ) * aRadius );
|
|
DrawLine( p, p_last );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
Scale( VECTOR2D( aRadius, aRadius ) );
|
|
|
|
double outerScale = lineWidth / aRadius / 2;
|
|
double innerScale = -outerScale;
|
|
|
|
outerScale += 1.0;
|
|
innerScale += 1.0;
|
|
|
|
double alphaIncrement = 2 * M_PI / CIRCLE_POINTS;
|
|
color4( strokeColor.r, strokeColor.g, strokeColor.b, strokeColor.a );
|
|
|
|
for( double alpha = aStartAngle; alpha < aEndAngle; )
|
|
{
|
|
double v0[] = { cos( alpha ) * innerScale, sin( alpha ) * innerScale };
|
|
double v1[] = { cos( alpha ) * outerScale, sin( alpha ) * outerScale };
|
|
|
|
alpha += alphaIncrement;
|
|
|
|
if( alpha > aEndAngle )
|
|
alpha = aEndAngle;
|
|
|
|
double v2[] = { cos( alpha ) * innerScale, sin( alpha ) * innerScale };
|
|
double v3[] = { cos( alpha ) * outerScale, sin( alpha ) * outerScale };
|
|
|
|
vertex3( v0[0], v0[1], 0.0 );
|
|
vertex3( v1[0], v1[1], 0.0 );
|
|
vertex3( v2[0], v2[1], 0.0 );
|
|
|
|
vertex3( v1[0], v1[1], 0.0 );
|
|
vertex3( v3[0], v3[1], 0.0 );
|
|
vertex3( v2[0], v2[1], 0.0 );
|
|
}
|
|
|
|
// Draw line caps
|
|
drawFilledSemiCircle( startPoint, lineWidth / aRadius / 2.0, aStartAngle + M_PI );
|
|
drawFilledSemiCircle( endPoint, lineWidth / aRadius / 2.0, aEndAngle );
|
|
}
|
|
}
|
|
|
|
if( isFillEnabled )
|
|
{
|
|
double alphaIncrement = 2 * M_PI / CIRCLE_POINTS;
|
|
double alpha;
|
|
color4( fillColor.r, fillColor.g, fillColor.b, fillColor.a );
|
|
|
|
for( alpha = aStartAngle; ( alpha + alphaIncrement ) < aEndAngle; )
|
|
{
|
|
vertex3( middlePoint.x, middlePoint.y, 0.0 );
|
|
vertex3( cos( alpha ), sin( alpha ), 0.0 );
|
|
alpha += alphaIncrement;
|
|
vertex3( cos( alpha ), sin( alpha ), 0.0 );
|
|
}
|
|
|
|
vertex3( middlePoint.x, middlePoint.y, 0.0 );
|
|
vertex3( cos( alpha ), sin( alpha ), 0.0 );
|
|
vertex3( endPoint.x, endPoint.y, 0.0 );
|
|
}
|
|
|
|
Restore();
|
|
}
|
|
|
|
|
|
struct OGLPOINT
|
|
{
|
|
OGLPOINT() :
|
|
x( 0.0 ), y( 0.0 ), z( 0.0 )
|
|
{}
|
|
|
|
OGLPOINT( const char* fastest )
|
|
{
|
|
// do nothing for fastest speed, and keep inline
|
|
}
|
|
|
|
OGLPOINT( const VECTOR2D& aPoint ) :
|
|
x( aPoint.x ), y( aPoint.y ), z( 0.0 )
|
|
{}
|
|
|
|
OGLPOINT& operator=( const VECTOR2D& aPoint )
|
|
{
|
|
x = aPoint.x;
|
|
y = aPoint.y;
|
|
z = 0.0;
|
|
return *this;
|
|
}
|
|
|
|
GLdouble x;
|
|
GLdouble y;
|
|
GLdouble z;
|
|
};
|
|
|
|
|
|
void OPENGL_GAL::DrawPolygon( const std::deque<VECTOR2D>& aPointList )
|
|
{
|
|
// Any non convex polygon needs to be tesselated
|
|
// for this purpose the GLU standard functions are used
|
|
|
|
setShader( SHADER_NONE );
|
|
|
|
typedef std::vector<OGLPOINT> OGLPOINTS;
|
|
|
|
// Do only one heap allocation, can do because we know size in advance.
|
|
// std::vector is then fastest
|
|
OGLPOINTS vertexList( aPointList.size(), OGLPOINT( "fastest" ) );
|
|
|
|
glNormal3d( 0.0, 0.0, 1.0 );
|
|
color4( fillColor.r, fillColor.g, fillColor.b, fillColor.a );
|
|
|
|
glShadeModel( GL_FLAT );
|
|
|
|
TessParams params = { currentItem, tessIntersects };
|
|
gluTessBeginPolygon( tesselator, ¶ms );
|
|
gluTessBeginContour( tesselator );
|
|
|
|
// use operator=( const POINTS& )
|
|
copy( aPointList.begin(), aPointList.end(), vertexList.begin() );
|
|
|
|
for( OGLPOINTS::iterator it = vertexList.begin(); it != vertexList.end(); it++ )
|
|
{
|
|
it->z = layerDepth;
|
|
gluTessVertex( tesselator, &it->x, &it->x );
|
|
}
|
|
|
|
gluTessEndContour( tesselator );
|
|
gluTessEndPolygon( tesselator );
|
|
|
|
// Free allocated intersecting points
|
|
std::vector<GLdouble*>::iterator it, it_end;
|
|
for( it = tessIntersects.begin(), it_end = tessIntersects.end(); it < it_end; ++it )
|
|
{
|
|
delete[] *it;
|
|
}
|
|
tessIntersects.clear();
|
|
|
|
// vertexList destroyed here
|
|
}
|
|
|
|
|
|
void OPENGL_GAL::DrawCurve( const VECTOR2D& aStartPoint, const VECTOR2D& aControlPointA,
|
|
const VECTOR2D& aControlPointB, const VECTOR2D& aEndPoint )
|
|
{
|
|
// FIXME The drawing quality needs to be improved
|
|
// FIXME Perhaps choose a quad/triangle strip instead?
|
|
// FIXME Brute force method, use a better (recursive?) algorithm
|
|
|
|
std::deque<VECTOR2D> pointList;
|
|
|
|
double t = 0.0;
|
|
double dt = 1.0 / (double) CURVE_POINTS;
|
|
|
|
for( int i = 0; i <= CURVE_POINTS; i++ )
|
|
{
|
|
double omt = 1.0 - t;
|
|
double omt2 = omt * omt;
|
|
double omt3 = omt * omt2;
|
|
double t2 = t * t;
|
|
double t3 = t * t2;
|
|
|
|
VECTOR2D vertex = omt3 * aStartPoint + 3.0 * t * omt2 * aControlPointA
|
|
+ 3.0 * t2 * omt * aControlPointB + t3 * aEndPoint;
|
|
|
|
pointList.push_back( vertex );
|
|
|
|
t += dt;
|
|
}
|
|
|
|
DrawPolyline( pointList );
|
|
}
|
|
|
|
|
|
void OPENGL_GAL::SetStrokeColor( const COLOR4D& aColor )
|
|
{
|
|
isSetAttributes = true;
|
|
strokeColor = aColor;
|
|
|
|
// This is the default drawing color
|
|
color4( aColor.r, aColor.g, aColor.b, aColor.a );
|
|
}
|
|
|
|
|
|
void OPENGL_GAL::SetFillColor( const COLOR4D& aColor )
|
|
{
|
|
isSetAttributes = true;
|
|
fillColor = aColor;
|
|
}
|
|
|
|
|
|
void OPENGL_GAL::SetBackgroundColor( const COLOR4D& aColor )
|
|
{
|
|
isSetAttributes = true;
|
|
backgroundColor = aColor;
|
|
}
|
|
|
|
|
|
void OPENGL_GAL::SetLineWidth( double aLineWidth )
|
|
{
|
|
isSetAttributes = true;
|
|
lineWidth = aLineWidth;
|
|
}
|
|
|
|
|
|
void OPENGL_GAL::ClearScreen()
|
|
{
|
|
// Clear screen
|
|
glClearColor( backgroundColor.r, backgroundColor.g, backgroundColor.b, backgroundColor.a );
|
|
|
|
glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT );
|
|
}
|
|
|
|
|
|
void OPENGL_GAL::Transform( MATRIX3x3D aTransformation )
|
|
{
|
|
GLdouble matrixData[16] = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 };
|
|
|
|
matrixData[0] = aTransformation.m_data[0][0];
|
|
matrixData[1] = aTransformation.m_data[1][0];
|
|
matrixData[2] = aTransformation.m_data[2][0];
|
|
matrixData[4] = aTransformation.m_data[0][1];
|
|
matrixData[5] = aTransformation.m_data[1][1];
|
|
matrixData[6] = aTransformation.m_data[2][1];
|
|
matrixData[12] = aTransformation.m_data[0][2];
|
|
matrixData[13] = aTransformation.m_data[1][2];
|
|
matrixData[14] = aTransformation.m_data[2][2];
|
|
|
|
glMultMatrixd( matrixData );
|
|
}
|
|
|
|
|
|
void OPENGL_GAL::Rotate( double aAngle )
|
|
{
|
|
transform = glm::rotate( transform, (float) aAngle, glm::vec3( 0, 0, 1 ) );
|
|
}
|
|
|
|
|
|
void OPENGL_GAL::Translate( const VECTOR2D& aVector )
|
|
{
|
|
transform = glm::translate( transform, glm::vec3( aVector.x, aVector.y, 0 ) );
|
|
}
|
|
|
|
|
|
void OPENGL_GAL::Scale( const VECTOR2D& aScale )
|
|
{
|
|
transform = glm::scale( transform, glm::vec3( aScale.x, aScale.y, 0 ) );
|
|
}
|
|
|
|
|
|
void OPENGL_GAL::Flush()
|
|
{
|
|
glFlush();
|
|
}
|
|
|
|
|
|
void OPENGL_GAL::Save()
|
|
{
|
|
transformStack.push( transform );
|
|
currentContainer->SetTransformMatrix( &transform );
|
|
}
|
|
|
|
|
|
void OPENGL_GAL::Restore()
|
|
{
|
|
transform = transformStack.top();
|
|
transformStack.pop();
|
|
|
|
if( transformStack.empty() )
|
|
{
|
|
// Disable transforming, as the selected matrix is identity
|
|
currentContainer->SetTransformMatrix( NULL );
|
|
}
|
|
}
|
|
|
|
|
|
int OPENGL_GAL::BeginGroup()
|
|
{
|
|
isGrouping = true;
|
|
|
|
// There is a new group that is not in VBO yet
|
|
vboNeedsUpdate = true;
|
|
|
|
// Save the pointer for caching the current item
|
|
currentItem = new VBO_ITEM( &cachedVbo );
|
|
currentContainer = &cachedVbo;
|
|
int groupNumber = getGroupNumber();
|
|
groups.insert( std::make_pair( groupNumber, currentItem ) );
|
|
|
|
return groupNumber;
|
|
}
|
|
|
|
|
|
void OPENGL_GAL::EndGroup()
|
|
{
|
|
currentItem->Finish();
|
|
currentItem = nonCachedItem;
|
|
currentContainer = &nonCachedVbo;
|
|
|
|
isGrouping = false;
|
|
}
|
|
|
|
|
|
void OPENGL_GAL::ClearCache()
|
|
{
|
|
BOOST_FOREACH( GroupsMap::value_type it, groups )
|
|
{
|
|
delete it.second;
|
|
}
|
|
|
|
groups.clear();
|
|
}
|
|
|
|
|
|
void OPENGL_GAL::DeleteGroup( int aGroupNumber )
|
|
{
|
|
delete groups[aGroupNumber];
|
|
groups.erase( aGroupNumber );
|
|
|
|
vboNeedsUpdate = true;
|
|
}
|
|
|
|
|
|
void OPENGL_GAL::DrawGroup( int aGroupNumber )
|
|
{
|
|
int size = groups[aGroupNumber]->GetSize();
|
|
int offset = groups[aGroupNumber]->GetOffset();
|
|
|
|
// Copy indices of items that should be drawn to GPU memory
|
|
for( int i = offset; i < offset + size; *indicesPtr++ = i++ );
|
|
|
|
indicesSize += size;
|
|
}
|
|
|
|
|
|
void OPENGL_GAL::ChangeGroupColor( int aGroupNumber, const COLOR4D& aNewColor )
|
|
{
|
|
groups[aGroupNumber]->ChangeColor( aNewColor );
|
|
vboNeedsUpdate = true;
|
|
}
|
|
|
|
|
|
void OPENGL_GAL::ChangeGroupDepth( int aGroupNumber, int aDepth )
|
|
{
|
|
groups[aGroupNumber]->ChangeDepth( aDepth );
|
|
vboNeedsUpdate = true;
|
|
}
|
|
|
|
|
|
void OPENGL_GAL::computeCircleVbo()
|
|
{
|
|
// Compute the circle points for a given number of segments
|
|
// Insert in a display list and a vector
|
|
const VBO_VERTEX v0 = { 0.0f, 0.0f, 0.0f };
|
|
|
|
for( int i = 0; i < CIRCLE_POINTS; i++ )
|
|
{
|
|
const VBO_VERTEX v1 = {
|
|
cos( 2.0 * M_PI / CIRCLE_POINTS * i ), // x
|
|
sin( 2.0 * M_PI / CIRCLE_POINTS * i ), // y
|
|
0.0f // z
|
|
};
|
|
const VBO_VERTEX v2 = {
|
|
cos( 2.0 * M_PI / CIRCLE_POINTS * ( i + 1 ) ), // x
|
|
sin( 2.0 * M_PI / CIRCLE_POINTS * ( i + 1 ) ), // y
|
|
0.0f // z
|
|
};
|
|
|
|
verticesCircle.PushVertex( &v0 );
|
|
verticesCircle.PushVertex( &v1 );
|
|
verticesCircle.PushVertex( &v2 );
|
|
}
|
|
|
|
verticesCircle.Finish();
|
|
}
|
|
|
|
|
|
void OPENGL_GAL::ComputeWorldScreenMatrix()
|
|
{
|
|
ComputeWorldScale();
|
|
|
|
worldScreenMatrix.SetIdentity();
|
|
|
|
MATRIX3x3D translation;
|
|
translation.SetIdentity();
|
|
translation.SetTranslation( 0.5 * screenSize );
|
|
|
|
MATRIX3x3D scale;
|
|
scale.SetIdentity();
|
|
scale.SetScale( VECTOR2D( worldScale, worldScale ) );
|
|
|
|
MATRIX3x3D flip;
|
|
flip.SetIdentity();
|
|
flip.SetScale( VECTOR2D( 1.0, 1.0 ) );
|
|
|
|
MATRIX3x3D lookat;
|
|
lookat.SetIdentity();
|
|
lookat.SetTranslation( -lookAtPoint );
|
|
|
|
worldScreenMatrix = translation * flip * scale * lookat * worldScreenMatrix;
|
|
}
|
|
|
|
|
|
// -------------------------------------
|
|
// Callback functions for the tesselator
|
|
// -------------------------------------
|
|
|
|
// Compare Redbook Chapter 11
|
|
|
|
|
|
void CALLBACK VertexCallback( GLvoid* aVertexPtr, void* aData )
|
|
{
|
|
GLdouble* vertex = static_cast<GLdouble*>( aVertexPtr );
|
|
OPENGL_GAL::TessParams* param = static_cast<OPENGL_GAL::TessParams*>( aData );
|
|
VBO_ITEM* vboItem = param->vboItem;
|
|
|
|
if( vboItem )
|
|
{
|
|
VBO_VERTEX newVertex = { vertex[0], vertex[1], vertex[2] };
|
|
vboItem->PushVertex( &newVertex );
|
|
}
|
|
}
|
|
|
|
|
|
void CALLBACK CombineCallback( GLdouble coords[3],
|
|
GLdouble* vertex_data[4],
|
|
GLfloat weight[4], GLdouble** dataOut, void* aData )
|
|
{
|
|
GLdouble* vertex = new GLdouble[3];
|
|
OPENGL_GAL::TessParams* param = static_cast<OPENGL_GAL::TessParams*>( aData );
|
|
|
|
// Save the pointer so we can delete it later
|
|
param->intersectPoints.push_back( vertex );
|
|
|
|
memcpy( vertex, coords, 3 * sizeof(GLdouble) );
|
|
|
|
*dataOut = vertex;
|
|
}
|
|
|
|
|
|
void CALLBACK EdgeCallback(void)
|
|
{
|
|
// This callback is needed to force GLU tesselator to use triangles only
|
|
return;
|
|
}
|
|
|
|
|
|
void CALLBACK ErrorCallback( GLenum aErrorCode )
|
|
{
|
|
const GLubyte* estring;
|
|
|
|
estring = gluErrorString( aErrorCode );
|
|
wxLogError( wxT( "Tessellation Error: %s" ), (char*) estring );
|
|
}
|
|
|
|
|
|
void InitTesselatorCallbacks( GLUtesselator* aTesselator )
|
|
{
|
|
gluTessCallback( aTesselator, GLU_TESS_VERTEX_DATA, ( void (CALLBACK*)() )VertexCallback );
|
|
gluTessCallback( aTesselator, GLU_TESS_COMBINE_DATA, ( void (CALLBACK*)() )CombineCallback );
|
|
gluTessCallback( aTesselator, GLU_TESS_EDGE_FLAG, ( void (CALLBACK*)() )EdgeCallback );
|
|
gluTessCallback( aTesselator, GLU_TESS_ERROR_DATA, ( void (CALLBACK*)() )ErrorCallback );
|
|
}
|
|
|
|
|
|
// ---------------
|
|
// Cursor handling
|
|
// ---------------
|
|
|
|
|
|
void OPENGL_GAL::initCursor( int aCursorSize )
|
|
{
|
|
cursorSize = aCursorSize;
|
|
}
|
|
|
|
|
|
VECTOR2D OPENGL_GAL::ComputeCursorToWorld( const VECTOR2D& aCursorPosition )
|
|
{
|
|
VECTOR2D cursorPosition = aCursorPosition;
|
|
cursorPosition.y = screenSize.y - aCursorPosition.y;
|
|
MATRIX3x3D inverseMatrix = worldScreenMatrix.Inverse();
|
|
VECTOR2D cursorPositionWorld = inverseMatrix * cursorPosition;
|
|
|
|
return cursorPositionWorld;
|
|
}
|
|
|
|
|
|
void OPENGL_GAL::DrawCursor( VECTOR2D aCursorPosition )
|
|
{
|
|
SetCurrent( *glContext );
|
|
|
|
// Draw the cursor on the surface
|
|
VECTOR2D cursorPositionWorld = ComputeCursorToWorld( aCursorPosition );
|
|
|
|
cursorPositionWorld.x = round( cursorPositionWorld.x / gridSize.x ) * gridSize.x;
|
|
cursorPositionWorld.y = round( cursorPositionWorld.y / gridSize.y ) * gridSize.y;
|
|
|
|
aCursorPosition = worldScreenMatrix * cursorPositionWorld;
|
|
|
|
// Switch to the main frame buffer and blit the scene
|
|
glBindFramebufferEXT( GL_FRAMEBUFFER_EXT, 0 );
|
|
glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT );
|
|
|
|
glLoadIdentity();
|
|
|
|
blitMainTexture( false );
|
|
|
|
glDisable( GL_TEXTURE_2D );
|
|
glColor4d( cursorColor.r, cursorColor.g, cursorColor.b, cursorColor.a );
|
|
|
|
glBegin( GL_TRIANGLES );
|
|
|
|
glVertex3f( (int) ( aCursorPosition.x - cursorSize / 2 ) + 1,
|
|
(int) ( aCursorPosition.y ), depthRange.x );
|
|
glVertex3f( (int) ( aCursorPosition.x + cursorSize / 2 ) + 1,
|
|
(int) ( aCursorPosition.y ), depthRange.x );
|
|
glVertex3f( (int) ( aCursorPosition.x + cursorSize / 2 ) + 1,
|
|
(int) ( aCursorPosition.y + 1 ), depthRange.x );
|
|
|
|
glVertex3f( (int) ( aCursorPosition.x - cursorSize / 2 ) + 1,
|
|
(int) ( aCursorPosition.y ), depthRange.x );
|
|
glVertex3f( (int) ( aCursorPosition.x - cursorSize / 2 ) + 1,
|
|
(int) ( aCursorPosition.y + 1), depthRange.x );
|
|
glVertex3f( (int) ( aCursorPosition.x + cursorSize / 2 ) + 1,
|
|
(int) ( aCursorPosition.y + 1 ), depthRange.x );
|
|
|
|
glVertex3f( (int) ( aCursorPosition.x ),
|
|
(int) ( aCursorPosition.y - cursorSize / 2 ) + 1, depthRange.x );
|
|
glVertex3f( (int) ( aCursorPosition.x ),
|
|
(int) ( aCursorPosition.y + cursorSize / 2 ) + 1, depthRange.x );
|
|
glVertex3f( (int) ( aCursorPosition.x ) + 1,
|
|
(int) ( aCursorPosition.y + cursorSize / 2 ) + 1, depthRange.x );
|
|
|
|
glVertex3f( (int) ( aCursorPosition.x ),
|
|
(int) ( aCursorPosition.y - cursorSize / 2 ) + 1, depthRange.x );
|
|
glVertex3f( (int) ( aCursorPosition.x ) + 1,
|
|
(int) ( aCursorPosition.y - cursorSize / 2 ) + 1, depthRange.x );
|
|
glVertex3f( (int) ( aCursorPosition.x ) + 1,
|
|
(int) ( aCursorPosition.y + cursorSize / 2 ) + 1, depthRange.x );
|
|
glEnd();
|
|
|
|
// Blit the current screen contents
|
|
SwapBuffers();
|
|
}
|
|
|
|
|
|
void OPENGL_GAL::DrawGridLine( const VECTOR2D& aStartPoint, const VECTOR2D& aEndPoint )
|
|
{
|
|
// We check, if we got a horizontal or a vertical grid line and compute the offset
|
|
VECTOR2D perpendicularVector;
|
|
|
|
if( aStartPoint.x == aEndPoint.x )
|
|
{
|
|
// Vertical grid line
|
|
perpendicularVector = VECTOR2D( 0.5 * lineWidth, 0 );
|
|
}
|
|
else
|
|
{
|
|
// Horizontal grid line
|
|
perpendicularVector = VECTOR2D( 0, 0.5 * lineWidth );
|
|
}
|
|
|
|
// Now we compute the edge points of the quad
|
|
VECTOR2D point1 = aStartPoint + perpendicularVector;
|
|
VECTOR2D point2 = aStartPoint - perpendicularVector;
|
|
VECTOR2D point3 = aEndPoint + perpendicularVector;
|
|
VECTOR2D point4 = aEndPoint - perpendicularVector;
|
|
|
|
// Set color
|
|
color4( gridColor.r, gridColor.g, gridColor.b, gridColor.a );
|
|
|
|
setShader( SHADER_NONE );
|
|
|
|
// Draw the quad for the grid line
|
|
double gridDepth = depthRange.y * 0.75;
|
|
vertex3( point1.x, point1.y, gridDepth );
|
|
vertex3( point2.x, point2.y, gridDepth );
|
|
vertex3( point4.x, point4.y, gridDepth );
|
|
|
|
vertex3( point1.x, point1.y, gridDepth );
|
|
vertex3( point4.x, point4.y, gridDepth );
|
|
vertex3( point3.x, point3.y, gridDepth );
|
|
}
|
|
|
|
|
|
bool OPENGL_GAL::Show( bool aShow )
|
|
{
|
|
bool s = wxGLCanvas::Show( aShow );
|
|
|
|
if( aShow )
|
|
wxGLCanvas::Raise();
|
|
|
|
return s;
|
|
}
|