kicad/common/gal/opengl/cached_container.cpp

410 lines
11 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright 2013-2017 CERN
* Copyright (C) 2020-2021 KiCad Developers, see AUTHORS.txt for contributors.
*
* @author Maciej Suminski <maciej.suminski@cern.ch>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/**
* @file cached_container.cpp
* @brief Class to store instances of VERTEX with caching. It allows storing VERTEX objects and
* associates them with VERTEX_ITEMs. This leads to a possibility of caching vertices data in the
* GPU memory and a fast reuse of that data.
*/
#include <gal/opengl/cached_container.h>
#include <gal/opengl/vertex_manager.h>
#include <gal/opengl/vertex_item.h>
#include <gal/opengl/utils.h>
#include <list>
#include <algorithm>
#include <cassert>
#ifdef KICAD_GAL_PROFILE
#include <wx/log.h>
#include <profile.h>
#endif /* KICAD_GAL_PROFILE */
using namespace KIGFX;
CACHED_CONTAINER::CACHED_CONTAINER( unsigned int aSize ) :
VERTEX_CONTAINER( aSize ),
m_item( nullptr ),
m_chunkSize( 0 ),
m_chunkOffset( 0 ),
m_maxIndex( 0 )
{
// In the beginning there is only free space
m_freeChunks.insert( std::make_pair( aSize, 0 ) );
}
void CACHED_CONTAINER::SetItem( VERTEX_ITEM* aItem )
{
assert( aItem != nullptr );
unsigned int itemSize = aItem->GetSize();
m_item = aItem;
m_chunkSize = itemSize;
// Get the previously set offset if the item was stored previously
m_chunkOffset = itemSize > 0 ? aItem->GetOffset() : -1;
}
void CACHED_CONTAINER::FinishItem()
{
assert( m_item != nullptr );
unsigned int itemSize = m_item->GetSize();
// Finishing the previously edited item
if( itemSize < m_chunkSize )
{
// There is some not used but reserved memory left, so we should return it to the pool
int itemOffset = m_item->GetOffset();
// Add the not used memory back to the pool
addFreeChunk( itemOffset + itemSize, m_chunkSize - itemSize );
// mergeFreeChunks(); // veery slow and buggy
m_maxIndex = std::max( itemOffset + itemSize, m_maxIndex );
}
if( itemSize > 0 )
m_items.insert( m_item );
m_item = nullptr;
m_chunkSize = 0;
m_chunkOffset = 0;
#if CACHED_CONTAINER_TEST > 1
test();
#endif
}
VERTEX* CACHED_CONTAINER::Allocate( unsigned int aSize )
{
assert( m_item != nullptr );
assert( IsMapped() );
if( m_failed )
return nullptr;
unsigned int itemSize = m_item->GetSize();
unsigned int newSize = itemSize + aSize;
if( newSize > m_chunkSize )
{
// There is not enough space in the currently reserved chunk, so we have to resize it
if( !reallocate( newSize ) )
{
m_failed = true;
return nullptr;
}
}
VERTEX* reserved = &m_vertices[m_chunkOffset + itemSize];
// Now the item officially possesses the memory chunk
m_item->setSize( newSize );
// The content has to be updated
m_dirty = true;
#if CACHED_CONTAINER_TEST > 0
test();
#endif
#if CACHED_CONTAINER_TEST > 2
showFreeChunks();
showUsedChunks();
#endif
return reserved;
}
void CACHED_CONTAINER::Delete( VERTEX_ITEM* aItem )
{
assert( aItem != nullptr );
assert( m_items.find( aItem ) != m_items.end() || aItem->GetSize() == 0 );
int size = aItem->GetSize();
if( size == 0 )
return; // Item is not stored here
int offset = aItem->GetOffset();
// Insert a free memory chunk entry in the place where item was stored
addFreeChunk( offset, size );
// Indicate that the item is not stored in the container anymore
aItem->setSize( 0 );
m_items.erase( aItem );
#if CACHED_CONTAINER_TEST > 0
test();
#endif
// This dynamic memory freeing optimize memory usage, but in fact can create
// out of memory issues because freeing and reallocation large chunks of memory
// can create memory fragmentation and no room to reallocate large chunks
// after many free/reallocate cycles during a session using the same complex board
// So it can be disable.
// Currently: it is disable to avoid "out of memory" issues
#if 0
// Dynamic memory freeing, there is no point in holding
// a large amount of memory when there is no use for it
if( m_freeSpace > ( 0.75 * m_currentSize ) && m_currentSize > m_initialSize )
{
defragmentResize( 0.5 * m_currentSize );
}
#endif
}
void CACHED_CONTAINER::Clear()
{
m_freeSpace = m_currentSize;
m_maxIndex = 0;
m_failed = false;
// Set the size of all the stored VERTEX_ITEMs to 0, so it is clear that they are not held
// in the container anymore
for( ITEMS::iterator it = m_items.begin(); it != m_items.end(); ++it )
( *it )->setSize( 0 );
m_items.clear();
// Now there is only free space left
m_freeChunks.clear();
m_freeChunks.insert( std::make_pair( m_freeSpace, 0 ) );
}
bool CACHED_CONTAINER::reallocate( unsigned int aSize )
{
assert( aSize > 0 );
assert( IsMapped() );
unsigned int itemSize = m_item->GetSize();
// Find a free space chunk >= aSize
FREE_CHUNK_MAP::iterator newChunk = m_freeChunks.lower_bound( aSize );
// Is there enough space to store vertices?
if( newChunk == m_freeChunks.end() )
{
bool result;
// Would it be enough to double the current space?
if( aSize < m_freeSpace + m_currentSize )
{
// Yes: exponential growing
result = defragmentResize( m_currentSize * 2 );
}
else
{
// No: grow to the nearest greater power of 2
result = defragmentResize( pow( 2, ceil( log2( m_currentSize * 2 + aSize ) ) ) );
}
if( !result )
return false;
newChunk = m_freeChunks.lower_bound( aSize );
assert( newChunk != m_freeChunks.end() );
}
// Parameters of the allocated chunk
unsigned int newChunkSize = getChunkSize( *newChunk );
unsigned int newChunkOffset = getChunkOffset( *newChunk );
assert( newChunkSize >= aSize );
assert( newChunkOffset < m_currentSize );
// Check if the item was previously stored in the container
if( itemSize > 0 )
{
// The item was reallocated, so we have to copy all the old data to the new place
memcpy( &m_vertices[newChunkOffset], &m_vertices[m_chunkOffset], itemSize * VERTEX_SIZE );
// Free the space used by the previous chunk
addFreeChunk( m_chunkOffset, m_chunkSize );
}
// Remove the new allocated chunk from the free space pool
m_freeChunks.erase( newChunk );
m_freeSpace -= newChunkSize;
m_chunkSize = newChunkSize;
m_chunkOffset = newChunkOffset;
m_item->setOffset( m_chunkOffset );
return true;
}
void CACHED_CONTAINER::defragment( VERTEX* aTarget )
{
// Defragmentation
ITEMS::iterator it, it_end;
int newOffset = 0;
for( VERTEX_ITEM* item : m_items )
{
int itemOffset = item->GetOffset();
int itemSize = item->GetSize();
// Move an item to the new container
memcpy( &aTarget[newOffset], &m_vertices[itemOffset], itemSize * VERTEX_SIZE );
// Update new offset
item->setOffset( newOffset );
// Move to the next free space
newOffset += itemSize;
}
// Move the current item and place it at the end
if( m_item->GetSize() > 0 )
{
memcpy( &aTarget[newOffset], &m_vertices[m_item->GetOffset()],
m_item->GetSize() * VERTEX_SIZE );
m_item->setOffset( newOffset );
m_chunkOffset = newOffset;
}
m_maxIndex = usedSpace();
}
void CACHED_CONTAINER::mergeFreeChunks()
{
if( m_freeChunks.size() <= 1 ) // There are no chunks that can be merged
return;
#ifdef KICAD_GAL_PROFILE
PROF_TIMER totalTime;
#endif /* KICAD_GAL_PROFILE */
// Reversed free chunks map - this one stores chunk size with its offset as the key
std::list<CHUNK> freeChunks;
FREE_CHUNK_MAP::const_iterator it, it_end;
for( it = m_freeChunks.begin(), it_end = m_freeChunks.end(); it != it_end; ++it )
{
freeChunks.emplace_back( it->second, it->first );
}
m_freeChunks.clear();
freeChunks.sort();
std::list<CHUNK>::const_iterator itf, itf_end;
unsigned int offset = freeChunks.front().first;
unsigned int size = freeChunks.front().second;
freeChunks.pop_front();
for( itf = freeChunks.begin(), itf_end = freeChunks.end(); itf != itf_end; ++itf )
{
if( itf->first == offset + size )
{
// These chunks can be merged, so just increase the current chunk size and go on
size += itf->second;
}
else
{
// These chunks cannot be merged
// So store the previous one
m_freeChunks.insert( std::make_pair( size, offset ) );
// and let's check the next chunk
offset = itf->first;
size = itf->second;
}
}
// Add the last one
m_freeChunks.insert( std::make_pair( size, offset ) );
#if CACHED_CONTAINER_TEST > 0
test();
#endif
}
void CACHED_CONTAINER::addFreeChunk( unsigned int aOffset, unsigned int aSize )
{
assert( aOffset + aSize <= m_currentSize );
assert( aSize > 0 );
m_freeChunks.insert( std::make_pair( aSize, aOffset ) );
m_freeSpace += aSize;
}
void CACHED_CONTAINER::showFreeChunks()
{
}
void CACHED_CONTAINER::showUsedChunks()
{
}
void CACHED_CONTAINER::test()
{
#ifdef KICAD_GAL_PROFILE
// Free space check
unsigned int freeSpace = 0;
FREE_CHUNK_MAP::iterator itf;
for( itf = m_freeChunks.begin(); itf != m_freeChunks.end(); ++itf )
freeSpace += getChunkSize( *itf );
assert( freeSpace == m_freeSpace );
// Used space check
unsigned int used_space = 0;
ITEMS::iterator itr;
for( itr = m_items.begin(); itr != m_items.end(); ++itr )
used_space += ( *itr )->GetSize();
// If we have a chunk assigned, then there must be an item edited
assert( m_chunkSize == 0 || m_item );
// Currently reserved chunk is also counted as used
used_space += m_chunkSize;
assert( ( m_freeSpace + used_space ) == m_currentSize );
// Overlapping check TODO
#endif /* KICAD_GAL_PROFILE */
}