kicad/common/gal/opengl/opengl_gal.cpp

1813 lines
56 KiB
C++

/*
* This program source code file is part of KICAD, a free EDA CAD application.
*
* Copyright (C) 2012 Torsten Hueter, torstenhtr <at> gmx.de
* Copyright (C) 2012-2016 Kicad Developers, see AUTHORS.txt for contributors.
* Copyright (C) 2013-2017 CERN
* @author Maciej Suminski <maciej.suminski@cern.ch>
*
* Graphics Abstraction Layer (GAL) for OpenGL
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <gal/opengl/opengl_gal.h>
#include <gal/opengl/utils.h>
#include <gal/definitions.h>
#include <gl_context_mgr.h>
#include <geometry/shape_poly_set.h>
#include <macros.h>
#ifdef __WXDEBUG__
#include <profile.h>
#include <wx/log.h>
#endif /* __WXDEBUG__ */
#include <limits>
#include <functional>
using namespace std::placeholders;
using namespace KIGFX;
// The current font is "Ubuntu Mono" available under Ubuntu Font Licence 1.0
// (see ubuntu-font-licence-1.0.txt for details)
#include "gl_resources.h"
#include "gl_builtin_shaders.h"
using namespace KIGFX::BUILTIN_FONT;
static void InitTesselatorCallbacks( GLUtesselator* aTesselator );
static const int glAttributes[] = { WX_GL_RGBA, WX_GL_DOUBLEBUFFER, WX_GL_DEPTH_SIZE, 8, 0 };
wxGLContext* OPENGL_GAL::glMainContext = NULL;
int OPENGL_GAL::instanceCounter = 0;
GLuint OPENGL_GAL::fontTexture = 0;
bool OPENGL_GAL::isBitmapFontLoaded = false;
SHADER* OPENGL_GAL::shader = NULL;
OPENGL_GAL::OPENGL_GAL( GAL_DISPLAY_OPTIONS& aDisplayOptions, wxWindow* aParent,
wxEvtHandler* aMouseListener, wxEvtHandler* aPaintListener,
const wxString& aName ) :
GAL( aDisplayOptions ),
wxGLCanvas( aParent, wxID_ANY, (int*) glAttributes, wxDefaultPosition, wxDefaultSize,
wxEXPAND, aName ),
mouseListener( aMouseListener ), paintListener( aPaintListener )
{
if( glMainContext == NULL )
{
glMainContext = GL_CONTEXT_MANAGER::Get().CreateCtx( this );
glPrivContext = glMainContext;
shader = new SHADER();
}
else
{
glPrivContext = GL_CONTEXT_MANAGER::Get().CreateCtx( this, glMainContext );
}
++instanceCounter;
compositor = new OPENGL_COMPOSITOR;
compositor->SetAntialiasingMode( options.gl_antialiasing_mode );
cachedManager = new VERTEX_MANAGER( true );
nonCachedManager = new VERTEX_MANAGER( false );
overlayManager = new VERTEX_MANAGER( false );
// Initialize the flags
isFramebufferInitialized = false;
isBitmapFontInitialized = false;
isInitialized = false;
isGrouping = false;
groupCounter = 0;
#ifdef RETINA_OPENGL_PATCH
SetViewWantsBestResolution( true );
#endif
// Connecting the event handlers
Connect( wxEVT_PAINT, wxPaintEventHandler( OPENGL_GAL::onPaint ) );
// Mouse events are skipped to the parent
Connect( wxEVT_MOTION, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) );
Connect( wxEVT_LEFT_DOWN, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) );
Connect( wxEVT_LEFT_UP, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) );
Connect( wxEVT_LEFT_DCLICK, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) );
Connect( wxEVT_MIDDLE_DOWN, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) );
Connect( wxEVT_MIDDLE_UP, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) );
Connect( wxEVT_MIDDLE_DCLICK, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) );
Connect( wxEVT_RIGHT_DOWN, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) );
Connect( wxEVT_RIGHT_UP, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) );
Connect( wxEVT_RIGHT_DCLICK, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) );
Connect( wxEVT_MOUSEWHEEL, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) );
#if wxCHECK_VERSION( 3, 1, 0 ) || defined( USE_OSX_MAGNIFY_EVENT )
Connect( wxEVT_MAGNIFY, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) );
#endif
#if defined _WIN32 || defined _WIN64
Connect( wxEVT_ENTER_WINDOW, wxMouseEventHandler( OPENGL_GAL::skipMouseEvent ) );
#endif
SetSize( aParent->GetSize() );
screenSize = VECTOR2I( aParent->GetSize() );
// Grid color settings are different in Cairo and OpenGL
SetGridColor( COLOR4D( 0.8, 0.8, 0.8, 0.1 ) );
SetAxesColor( COLOR4D( BLUE ) );
// Tesselator initialization
tesselator = gluNewTess();
InitTesselatorCallbacks( tesselator );
if( tesselator == NULL )
throw std::runtime_error( "Could not create the tesselator" );
gluTessProperty( tesselator, GLU_TESS_WINDING_RULE, GLU_TESS_WINDING_POSITIVE );
SetTarget( TARGET_NONCACHED );
}
OPENGL_GAL::~OPENGL_GAL()
{
GL_CONTEXT_MANAGER::Get().LockCtx( glPrivContext, this );
--instanceCounter;
glFlush();
gluDeleteTess( tesselator );
ClearCache();
delete compositor;
delete cachedManager;
delete nonCachedManager;
delete overlayManager;
GL_CONTEXT_MANAGER::Get().UnlockCtx( glPrivContext );
// If it was the main context, then it will be deleted
// when the last OpenGL GAL instance is destroyed (a few lines below)
if( glPrivContext != glMainContext )
GL_CONTEXT_MANAGER::Get().DestroyCtx( glPrivContext );
// Are we destroying the last GAL instance?
if( instanceCounter == 0 )
{
GL_CONTEXT_MANAGER::Get().LockCtx( glMainContext, this );
if( isBitmapFontLoaded )
{
glDeleteTextures( 1, &fontTexture );
isBitmapFontLoaded = false;
}
delete shader;
GL_CONTEXT_MANAGER::Get().UnlockCtx( glMainContext );
GL_CONTEXT_MANAGER::Get().DestroyCtx( glMainContext );
glMainContext = NULL;
}
}
bool OPENGL_GAL::updatedGalDisplayOptions( const GAL_DISPLAY_OPTIONS& aOptions )
{
bool refresh = false;
if( options.gl_antialiasing_mode != compositor->GetAntialiasingMode() )
{
compositor->SetAntialiasingMode( options.gl_antialiasing_mode );
isFramebufferInitialized = false;
refresh = true;
}
if( super::updatedGalDisplayOptions( aOptions ) || refresh )
{
Refresh();
refresh = true;
}
return refresh;
}
void OPENGL_GAL::BeginDrawing()
{
if( !IsShownOnScreen() )
return;
#ifdef __WXDEBUG__
PROF_COUNTER totalRealTime( "OPENGL_GAL::BeginDrawing()", true );
#endif /* __WXDEBUG__ */
if( !isInitialized )
init();
GL_CONTEXT_MANAGER::Get().LockCtx( glPrivContext, this );
// Set up the view port
glMatrixMode( GL_PROJECTION );
glLoadIdentity();
// Create the screen transformation (Do the RH-LH conversion here)
glOrtho( 0, (GLint) screenSize.x, (GLsizei) screenSize.y, 0, -depthRange.x, -depthRange.y );
if( !isFramebufferInitialized )
{
try
{
// Prepare rendering target buffers
compositor->Initialize();
mainBuffer = compositor->CreateBuffer();
overlayBuffer = compositor->CreateBuffer();
}
catch( std::runtime_error& )
{
GL_CONTEXT_MANAGER::Get().UnlockCtx( glPrivContext );
throw; // DRAW_PANEL_GAL will handle it
}
isFramebufferInitialized = true;
}
compositor->Begin();
// Disable 2D Textures
glDisable( GL_TEXTURE_2D );
glShadeModel( GL_FLAT );
// Enable the depth buffer
glEnable( GL_DEPTH_TEST );
glDepthFunc( GL_LESS );
// Setup blending, required for transparent objects
glEnable( GL_BLEND );
glBlendFunc( GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA );
glMatrixMode( GL_MODELVIEW );
// Set up the world <-> screen transformation
ComputeWorldScreenMatrix();
GLdouble matrixData[16] = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 };
matrixData[0] = worldScreenMatrix.m_data[0][0];
matrixData[1] = worldScreenMatrix.m_data[1][0];
matrixData[2] = worldScreenMatrix.m_data[2][0];
matrixData[4] = worldScreenMatrix.m_data[0][1];
matrixData[5] = worldScreenMatrix.m_data[1][1];
matrixData[6] = worldScreenMatrix.m_data[2][1];
matrixData[12] = worldScreenMatrix.m_data[0][2];
matrixData[13] = worldScreenMatrix.m_data[1][2];
matrixData[14] = worldScreenMatrix.m_data[2][2];
glLoadMatrixd( matrixData );
// Set defaults
SetFillColor( fillColor );
SetStrokeColor( strokeColor );
// Remove all previously stored items
nonCachedManager->Clear();
overlayManager->Clear();
cachedManager->BeginDrawing();
nonCachedManager->BeginDrawing();
overlayManager->BeginDrawing();
if( !isBitmapFontInitialized )
{
// Keep bitmap font texture always bound to the second texturing unit
const GLint FONT_TEXTURE_UNIT = 2;
// Either load the font atlas to video memory, or simply bind it to a texture unit
if( !isBitmapFontLoaded )
{
glActiveTexture( GL_TEXTURE0 + FONT_TEXTURE_UNIT );
glGenTextures( 1, &fontTexture );
glBindTexture( GL_TEXTURE_2D, fontTexture );
glTexImage2D( GL_TEXTURE_2D, 0, GL_RGB8, font_image.width, font_image.height,
0, GL_RGB, GL_UNSIGNED_BYTE, font_image.pixels );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
checkGlError( "loading bitmap font" );
glActiveTexture( GL_TEXTURE0 );
isBitmapFontLoaded = true;
}
else
{
glActiveTexture( GL_TEXTURE0 + FONT_TEXTURE_UNIT );
glBindTexture( GL_TEXTURE_2D, fontTexture );
glActiveTexture( GL_TEXTURE0 );
}
// Set shader parameter
GLint ufm_fontTexture = shader->AddParameter( "fontTexture" );
GLint ufm_fontTextureWidth = shader->AddParameter( "fontTextureWidth" );
shader->Use();
shader->SetParameter( ufm_fontTexture, (int) FONT_TEXTURE_UNIT );
shader->SetParameter( ufm_fontTextureWidth, (int) font_image.width );
shader->Deactivate();
checkGlError( "setting bitmap font sampler as shader parameter" );
isBitmapFontInitialized = true;
}
// Something betreen BeginDrawing and EndDrawing seems to depend on
// this texture unit being active, but it does not assure it itself.
glActiveTexture( GL_TEXTURE0 );
// Unbind buffers - set compositor for direct drawing
compositor->SetBuffer( OPENGL_COMPOSITOR::DIRECT_RENDERING );
#ifdef __WXDEBUG__
totalRealTime.Stop();
wxLogTrace( "GAL_PROFILE",
wxT( "OPENGL_GAL::BeginDrawing(): %.1f ms" ), totalRealTime.msecs() );
#endif /* __WXDEBUG__ */
}
void OPENGL_GAL::EndDrawing()
{
#ifdef __WXDEBUG__
PROF_COUNTER totalRealTime( "OPENGL_GAL::EndDrawing()", true );
#endif /* __WXDEBUG__ */
// Cached & non-cached containers are rendered to the same buffer
compositor->SetBuffer( mainBuffer );
nonCachedManager->EndDrawing();
cachedManager->EndDrawing();
// Overlay container is rendered to a different buffer
compositor->SetBuffer( overlayBuffer );
overlayManager->EndDrawing();
// Be sure that the framebuffer is not colorized (happens on specific GPU&drivers combinations)
glColor4d( 1.0, 1.0, 1.0, 1.0 );
// Draw the remaining contents, blit the rendering targets to the screen, swap the buffers
compositor->DrawBuffer( mainBuffer );
compositor->DrawBuffer( overlayBuffer );
compositor->Present();
blitCursor();
SwapBuffers();
GL_CONTEXT_MANAGER::Get().UnlockCtx( glPrivContext );
#ifdef __WXDEBUG__
totalRealTime.Stop();
wxLogTrace( "GAL_PROFILE", wxT( "OPENGL_GAL::EndDrawing(): %.1f ms" ), totalRealTime.msecs() );
#endif /* __WXDEBUG__ */
}
void OPENGL_GAL::BeginUpdate()
{
if( !IsShownOnScreen() )
return;
if( !isInitialized )
init();
GL_CONTEXT_MANAGER::Get().LockCtx( glPrivContext, this );
cachedManager->Map();
}
void OPENGL_GAL::EndUpdate()
{
if( !isInitialized )
return;
cachedManager->Unmap();
GL_CONTEXT_MANAGER::Get().UnlockCtx( glPrivContext );
}
void OPENGL_GAL::DrawLine( const VECTOR2D& aStartPoint, const VECTOR2D& aEndPoint )
{
const VECTOR2D startEndVector = aEndPoint - aStartPoint;
double lineAngle = startEndVector.Angle();
currentManager->Color( strokeColor.r, strokeColor.g, strokeColor.b, strokeColor.a );
drawLineQuad( aStartPoint, aEndPoint );
// Line caps
if( lineWidth > 1.0 )
{
drawFilledSemiCircle( aStartPoint, lineWidth / 2, lineAngle + M_PI / 2 );
drawFilledSemiCircle( aEndPoint, lineWidth / 2, lineAngle - M_PI / 2 );
}
}
void OPENGL_GAL::DrawSegment( const VECTOR2D& aStartPoint, const VECTOR2D& aEndPoint,
double aWidth )
{
VECTOR2D startEndVector = aEndPoint - aStartPoint;
double lineAngle = startEndVector.Angle();
if( isFillEnabled )
{
// Filled tracks
currentManager->Color( fillColor.r, fillColor.g, fillColor.b, fillColor.a );
SetLineWidth( aWidth );
drawLineQuad( aStartPoint, aEndPoint );
// Draw line caps
drawFilledSemiCircle( aStartPoint, aWidth / 2, lineAngle + M_PI / 2 );
drawFilledSemiCircle( aEndPoint, aWidth / 2, lineAngle - M_PI / 2 );
}
else
{
// Outlined tracks
double lineLength = startEndVector.EuclideanNorm();
currentManager->Color( strokeColor.r, strokeColor.g, strokeColor.b, strokeColor.a );
Save();
currentManager->Translate( aStartPoint.x, aStartPoint.y, 0.0 );
currentManager->Rotate( lineAngle, 0.0f, 0.0f, 1.0f );
drawLineQuad( VECTOR2D( 0.0, aWidth / 2.0 ),
VECTOR2D( lineLength, aWidth / 2.0 ) );
drawLineQuad( VECTOR2D( 0.0, -aWidth / 2.0 ),
VECTOR2D( lineLength, -aWidth / 2.0 ) );
// Draw line caps
drawStrokedSemiCircle( VECTOR2D( 0.0, 0.0 ), aWidth / 2, M_PI / 2 );
drawStrokedSemiCircle( VECTOR2D( lineLength, 0.0 ), aWidth / 2, -M_PI / 2 );
Restore();
}
}
void OPENGL_GAL::DrawCircle( const VECTOR2D& aCenterPoint, double aRadius )
{
if( isFillEnabled )
{
currentManager->Reserve( 3 );
currentManager->Color( fillColor.r, fillColor.g, fillColor.b, fillColor.a );
/* Draw a triangle that contains the circle, then shade it leaving only the circle.
* Parameters given to Shader() are indices of the triangle's vertices
* (if you want to understand more, check the vertex shader source [shader.vert]).
* Shader uses this coordinates to determine if fragments are inside the circle or not.
* v2
* /\
* //\\
* v0 /_\/_\ v1
*/
currentManager->Shader( SHADER_FILLED_CIRCLE, 1.0 );
currentManager->Vertex( aCenterPoint.x - aRadius * sqrt( 3.0f ), // v0
aCenterPoint.y - aRadius, layerDepth );
currentManager->Shader( SHADER_FILLED_CIRCLE, 2.0 );
currentManager->Vertex( aCenterPoint.x + aRadius * sqrt( 3.0f), // v1
aCenterPoint.y - aRadius, layerDepth );
currentManager->Shader( SHADER_FILLED_CIRCLE, 3.0 );
currentManager->Vertex( aCenterPoint.x, aCenterPoint.y + aRadius * 2.0f, // v2
layerDepth );
}
if( isStrokeEnabled )
{
currentManager->Reserve( 3 );
currentManager->Color( strokeColor.r, strokeColor.g, strokeColor.b, strokeColor.a );
/* Draw a triangle that contains the circle, then shade it leaving only the circle.
* Parameters given to Shader() are indices of the triangle's vertices
* (if you want to understand more, check the vertex shader source [shader.vert]).
* and the line width. Shader uses this coordinates to determine if fragments are
* inside the circle or not.
* v2
* /\
* //\\
* v0 /_\/_\ v1
*/
double outerRadius = aRadius + ( lineWidth / 2 );
currentManager->Shader( SHADER_STROKED_CIRCLE, 1.0, aRadius, lineWidth );
currentManager->Vertex( aCenterPoint.x - outerRadius * sqrt( 3.0f ), // v0
aCenterPoint.y - outerRadius, layerDepth );
currentManager->Shader( SHADER_STROKED_CIRCLE, 2.0, aRadius, lineWidth );
currentManager->Vertex( aCenterPoint.x + outerRadius * sqrt( 3.0f ), // v1
aCenterPoint.y - outerRadius, layerDepth );
currentManager->Shader( SHADER_STROKED_CIRCLE, 3.0, aRadius, lineWidth );
currentManager->Vertex( aCenterPoint.x, aCenterPoint.y + outerRadius * 2.0f, // v2
layerDepth );
}
}
void OPENGL_GAL::DrawArc( const VECTOR2D& aCenterPoint, double aRadius, double aStartAngle,
double aEndAngle )
{
if( aRadius <= 0 )
return;
// Swap the angles, if start angle is greater than end angle
SWAP( aStartAngle, >, aEndAngle );
const double alphaIncrement = calcAngleStep( aRadius );
Save();
currentManager->Translate( aCenterPoint.x, aCenterPoint.y, 0.0 );
if( isStrokeEnabled )
{
currentManager->Color( strokeColor.r, strokeColor.g, strokeColor.b, strokeColor.a );
VECTOR2D p( cos( aStartAngle ) * aRadius, sin( aStartAngle ) * aRadius );
double alpha;
for( alpha = aStartAngle + alphaIncrement; alpha <= aEndAngle; alpha += alphaIncrement )
{
VECTOR2D p_next( cos( alpha ) * aRadius, sin( alpha ) * aRadius );
DrawLine( p, p_next );
p = p_next;
}
// Draw the last missing part
if( alpha != aEndAngle )
{
VECTOR2D p_last( cos( aEndAngle ) * aRadius, sin( aEndAngle ) * aRadius );
DrawLine( p, p_last );
}
}
if( isFillEnabled )
{
double alpha;
currentManager->Color( fillColor.r, fillColor.g, fillColor.b, fillColor.a );
currentManager->Shader( SHADER_NONE );
// Triangle fan
for( alpha = aStartAngle; ( alpha + alphaIncrement ) < aEndAngle; )
{
currentManager->Reserve( 3 );
currentManager->Vertex( 0.0, 0.0, 0.0 );
currentManager->Vertex( cos( alpha ) * aRadius, sin( alpha ) * aRadius, 0.0 );
alpha += alphaIncrement;
currentManager->Vertex( cos( alpha ) * aRadius, sin( alpha ) * aRadius, 0.0 );
}
// The last missing triangle
const VECTOR2D endPoint( cos( aEndAngle ) * aRadius, sin( aEndAngle ) * aRadius );
currentManager->Reserve( 3 );
currentManager->Vertex( 0.0, 0.0, 0.0 );
currentManager->Vertex( cos( alpha ) * aRadius, sin( alpha ) * aRadius, 0.0 );
currentManager->Vertex( endPoint.x, endPoint.y, 0.0 );
}
Restore();
}
void OPENGL_GAL::DrawArcSegment( const VECTOR2D& aCenterPoint, double aRadius, double aStartAngle,
double aEndAngle, double aWidth )
{
if( aRadius <= 0 )
return;
// Swap the angles, if start angle is greater than end angle
SWAP( aStartAngle, >, aEndAngle );
const double alphaIncrement = calcAngleStep( aRadius );
Save();
currentManager->Translate( aCenterPoint.x, aCenterPoint.y, 0.0 );
if( isStrokeEnabled )
{
currentManager->Color( strokeColor.r, strokeColor.g, strokeColor.b, strokeColor.a );
double width = aWidth / 2.0;
VECTOR2D startPoint( cos( aStartAngle ) * aRadius,
sin( aStartAngle ) * aRadius );
VECTOR2D endPoint( cos( aEndAngle ) * aRadius,
sin( aEndAngle ) * aRadius );
drawStrokedSemiCircle( startPoint, width, aStartAngle + M_PI );
drawStrokedSemiCircle( endPoint, width, aEndAngle );
VECTOR2D pOuter( cos( aStartAngle ) * ( aRadius + width ),
sin( aStartAngle ) * ( aRadius + width ) );
VECTOR2D pInner( cos( aStartAngle ) * ( aRadius - width ),
sin( aStartAngle ) * ( aRadius - width ) );
double alpha;
for( alpha = aStartAngle + alphaIncrement; alpha <= aEndAngle; alpha += alphaIncrement )
{
VECTOR2D pNextOuter( cos( alpha ) * ( aRadius + width ),
sin( alpha ) * ( aRadius + width ) );
VECTOR2D pNextInner( cos( alpha ) * ( aRadius - width ),
sin( alpha ) * ( aRadius - width ) );
DrawLine( pOuter, pNextOuter );
DrawLine( pInner, pNextInner );
pOuter = pNextOuter;
pInner = pNextInner;
}
// Draw the last missing part
if( alpha != aEndAngle )
{
VECTOR2D pLastOuter( cos( aEndAngle ) * ( aRadius + width ),
sin( aEndAngle ) * ( aRadius + width ) );
VECTOR2D pLastInner( cos( aEndAngle ) * ( aRadius - width ),
sin( aEndAngle ) * ( aRadius - width ) );
DrawLine( pOuter, pLastOuter );
DrawLine( pInner, pLastInner );
}
}
if( isFillEnabled )
{
currentManager->Color( fillColor.r, fillColor.g, fillColor.b, fillColor.a );
SetLineWidth( aWidth );
VECTOR2D p( cos( aStartAngle ) * aRadius, sin( aStartAngle ) * aRadius );
double alpha;
for( alpha = aStartAngle + alphaIncrement; alpha <= aEndAngle; alpha += alphaIncrement )
{
VECTOR2D p_next( cos( alpha ) * aRadius, sin( alpha ) * aRadius );
DrawLine( p, p_next );
p = p_next;
}
// Draw the last missing part
if( alpha != aEndAngle )
{
VECTOR2D p_last( cos( aEndAngle ) * aRadius, sin( aEndAngle ) * aRadius );
DrawLine( p, p_last );
}
}
Restore();
}
void OPENGL_GAL::DrawRectangle( const VECTOR2D& aStartPoint, const VECTOR2D& aEndPoint )
{
// Compute the diagonal points of the rectangle
VECTOR2D diagonalPointA( aEndPoint.x, aStartPoint.y );
VECTOR2D diagonalPointB( aStartPoint.x, aEndPoint.y );
// Stroke the outline
if( isStrokeEnabled )
{
currentManager->Color( strokeColor.r, strokeColor.g, strokeColor.b, strokeColor.a );
std::deque<VECTOR2D> pointList;
pointList.push_back( aStartPoint );
pointList.push_back( diagonalPointA );
pointList.push_back( aEndPoint );
pointList.push_back( diagonalPointB );
pointList.push_back( aStartPoint );
DrawPolyline( pointList );
}
// Fill the rectangle
if( isFillEnabled )
{
currentManager->Reserve( 6 );
currentManager->Shader( SHADER_NONE );
currentManager->Color( fillColor.r, fillColor.g, fillColor.b, fillColor.a );
currentManager->Vertex( aStartPoint.x, aStartPoint.y, layerDepth );
currentManager->Vertex( diagonalPointA.x, diagonalPointA.y, layerDepth );
currentManager->Vertex( aEndPoint.x, aEndPoint.y, layerDepth );
currentManager->Vertex( aStartPoint.x, aStartPoint.y, layerDepth );
currentManager->Vertex( aEndPoint.x, aEndPoint.y, layerDepth );
currentManager->Vertex( diagonalPointB.x, diagonalPointB.y, layerDepth );
}
}
void OPENGL_GAL::DrawPolyline( const std::deque<VECTOR2D>& aPointList )
{
drawPolyline( [&](int idx) { return aPointList[idx]; }, aPointList.size() );
}
void OPENGL_GAL::DrawPolyline( const VECTOR2D aPointList[], int aListSize )
{
drawPolyline( [&](int idx) { return aPointList[idx]; }, aListSize );
}
void OPENGL_GAL::DrawPolyline( const SHAPE_LINE_CHAIN& aLineChain )
{
auto numPoints = aLineChain.PointCount();
if( aLineChain.IsClosed() )
numPoints += 1;
drawPolyline( [&](int idx) { return aLineChain.CPoint(idx); }, numPoints );
}
void OPENGL_GAL::DrawPolygon( const std::deque<VECTOR2D>& aPointList )
{
auto points = std::unique_ptr<GLdouble[]>( new GLdouble[3 * aPointList.size()] );
GLdouble* ptr = points.get();
for( const VECTOR2D& p : aPointList )
{
*ptr++ = p.x;
*ptr++ = p.y;
*ptr++ = layerDepth;
}
drawPolygon( points.get(), aPointList.size() );
}
void OPENGL_GAL::DrawPolygon( const VECTOR2D aPointList[], int aListSize )
{
auto points = std::unique_ptr<GLdouble[]>( new GLdouble[3 * aListSize] );
GLdouble* target = points.get();
const VECTOR2D* src = aPointList;
for( int i = 0; i < aListSize; ++i )
{
*target++ = src->x;
*target++ = src->y;
*target++ = layerDepth;
++src;
}
drawPolygon( points.get(), aListSize );
}
void OPENGL_GAL::DrawPolygon( const SHAPE_POLY_SET& aPolySet )
{
for( int j = 0; j < aPolySet.OutlineCount(); ++j )
{
const SHAPE_LINE_CHAIN& outline = aPolySet.COutline( j );
const int pointCount = outline.PointCount();
std::unique_ptr<GLdouble[]> points( new GLdouble[3 * pointCount] );
GLdouble* ptr = points.get();
for( int i = 0; i < outline.PointCount(); ++i )
{
const VECTOR2I& p = outline.CPoint( i );
*ptr++ = p.x;
*ptr++ = p.y;
*ptr++ = layerDepth;
}
drawPolygon( points.get(), pointCount );
}
}
void OPENGL_GAL::DrawCurve( const VECTOR2D& aStartPoint, const VECTOR2D& aControlPointA,
const VECTOR2D& aControlPointB, const VECTOR2D& aEndPoint )
{
// FIXME The drawing quality needs to be improved
// FIXME Perhaps choose a quad/triangle strip instead?
// FIXME Brute force method, use a better (recursive?) algorithm
std::deque<VECTOR2D> pointList;
double t = 0.0;
double dt = 1.0 / (double) CURVE_POINTS;
for( int i = 0; i <= CURVE_POINTS; i++ )
{
double omt = 1.0 - t;
double omt2 = omt * omt;
double omt3 = omt * omt2;
double t2 = t * t;
double t3 = t * t2;
VECTOR2D vertex = omt3 * aStartPoint + 3.0 * t * omt2 * aControlPointA
+ 3.0 * t2 * omt * aControlPointB + t3 * aEndPoint;
pointList.push_back( vertex );
t += dt;
}
DrawPolyline( pointList );
}
void OPENGL_GAL::BitmapText( const wxString& aText, const VECTOR2D& aPosition,
double aRotationAngle )
{
wxASSERT_MSG( !IsTextMirrored(), "No support for mirrored text using bitmap fonts." );
// Compute text size, so it can be properly justified
VECTOR2D textSize;
float commonOffset;
std::tie( textSize, commonOffset ) = computeBitmapTextSize( aText );
const double SCALE = GetGlyphSize().y / textSize.y;
int tildas = 0;
bool overbar = false;
int overbarLength = 0;
double overbarHeight = textSize.y;
Save();
currentManager->Color( strokeColor.r, strokeColor.g, strokeColor.b, strokeColor.a );
currentManager->Translate( aPosition.x, aPosition.y, layerDepth );
currentManager->Rotate( aRotationAngle, 0.0f, 0.0f, -1.0f );
double sx = SCALE * ( globalFlipX ? -1.0 : 1.0 );
double sy = SCALE * ( globalFlipY ? -1.0 : 1.0 );
currentManager->Scale( sx, sy, 0 );
currentManager->Translate( 0, -commonOffset, 0 );
switch( GetHorizontalJustify() )
{
case GR_TEXT_HJUSTIFY_CENTER:
Translate( VECTOR2D( -textSize.x / 2.0, 0 ) );
break;
case GR_TEXT_HJUSTIFY_RIGHT:
//if( !IsTextMirrored() )
Translate( VECTOR2D( -textSize.x, 0 ) );
break;
case GR_TEXT_HJUSTIFY_LEFT:
//if( IsTextMirrored() )
//Translate( VECTOR2D( -textSize.x, 0 ) );
break;
}
switch( GetVerticalJustify() )
{
case GR_TEXT_VJUSTIFY_TOP:
Translate( VECTOR2D( 0, -textSize.y ) );
overbarHeight = -textSize.y / 2.0;
break;
case GR_TEXT_VJUSTIFY_CENTER:
Translate( VECTOR2D( 0, -textSize.y / 2.0 ) );
overbarHeight = 0;
break;
case GR_TEXT_VJUSTIFY_BOTTOM:
break;
}
for( unsigned int ii = 0; ii < aText.length(); ++ii )
{
const unsigned int c = aText[ii];
wxASSERT_MSG( LookupGlyph(c) != nullptr, wxT( "Missing character in bitmap font atlas." ) );
wxASSERT_MSG( c != '\n' && c != '\r', wxT( "No support for multiline bitmap text yet" ) );
// Handle overbar
if( c == '~' )
{
overbar = !overbar;
++tildas;
continue;
}
else if( tildas > 0 )
{
if( tildas % 2 == 1 )
{
if( overbar ) // Overbar begins
overbarLength = 0;
else if( overbarLength > 0 ) // Overbar finishes
drawBitmapOverbar( overbarLength, overbarHeight );
--tildas;
}
// Draw tilda characters if there are any remaining
for( int jj = 0; jj < tildas / 2; ++jj )
overbarLength += drawBitmapChar( '~' );
tildas = 0;
}
overbarLength += drawBitmapChar( c );
}
// Handle the case when overbar is active till the end of the drawn text
currentManager->Translate( 0, commonOffset, 0 );
if( overbar )
drawBitmapOverbar( overbarLength, overbarHeight );
Restore();
}
void OPENGL_GAL::DrawGrid()
{
SetTarget( TARGET_NONCACHED );
compositor->SetBuffer( mainBuffer );
// sub-pixel lines all render the same
double minorLineWidth = std::max( 1.0, gridLineWidth );
double majorLineWidth = minorLineWidth * 2.0;
// Draw the axis and grid
// For the drawing the start points, end points and increments have
// to be calculated in world coordinates
VECTOR2D worldStartPoint = screenWorldMatrix * VECTOR2D( 0.0, 0.0 );
VECTOR2D worldEndPoint = screenWorldMatrix * VECTOR2D( screenSize );
// Draw axes if desired
if( axesEnabled )
{
glLineWidth( minorLineWidth );
glColor4d( axesColor.r, axesColor.g, axesColor.b, 1.0 );
glBegin( GL_LINES );
glVertex2d( worldStartPoint.x, 0 );
glVertex2d( worldEndPoint.x, 0 );
glEnd();
glBegin( GL_LINES );
glVertex2d( 0, worldStartPoint.y );
glVertex2d( 0, worldEndPoint.y );
glEnd();
}
if( !gridVisibility )
return;
int gridScreenSizeDense = KiROUND( gridSize.x * worldScale );
int gridScreenSizeCoarse = KiROUND( gridSize.x * static_cast<double>( gridTick ) * worldScale );
const double gridThreshold = computeMinGridSpacing();
// Check if the grid would not be too dense
if( std::max( gridScreenSizeDense, gridScreenSizeCoarse ) < gridThreshold )
return;
// Compute grid variables
int gridStartX = KiROUND( worldStartPoint.x / gridSize.x );
int gridEndX = KiROUND( worldEndPoint.x / gridSize.x );
int gridStartY = KiROUND( worldStartPoint.y / gridSize.y );
int gridEndY = KiROUND( worldEndPoint.y / gridSize.y );
// Correct the index, else some lines are not correctly painted
gridStartY -= std::abs( gridOrigin.y / gridSize.y ) + 1;
gridEndY -= std::abs( gridOrigin.y / gridSize.y ) - 1;
gridStartX -= std::abs( gridOrigin.x / gridSize.x ) + 1;
gridEndX -= std::abs( gridOrigin.x / gridSize.x ) - 1;
int dirX = gridStartX >= gridEndX ? -1 : 1;
int dirY = gridStartY >= gridEndY ? -1 : 1;
glDisable( GL_DEPTH_TEST );
glDisable( GL_TEXTURE_2D );
if( gridStyle == GRID_STYLE::DOTS )
{
glEnable( GL_STENCIL_TEST );
glStencilFunc( GL_ALWAYS, 1, 1 );
glStencilOp( GL_KEEP, GL_KEEP, GL_INCR );
glColor4d( 0.0, 0.0, 0.0, 0.0 );
}
else
{
glColor4d( gridColor.r, gridColor.g, gridColor.b, 1.0 );
}
if( gridStyle == GRID_STYLE::SMALL_CROSS )
{
glLineWidth( minorLineWidth );
// calculate a line len = 2 minorLineWidth, in internal unit value
// (in fact the size of cross is lineLen*2)
int lineLen = KiROUND( minorLineWidth / worldScale *2 );
// Vertical positions
for( int j = gridStartY; j != gridEndY; j += dirY )
{
if( ( j % gridTick == 0 && gridScreenSizeCoarse > gridThreshold )
|| gridScreenSizeDense > gridThreshold )
{
int posY = j * gridSize.y + gridOrigin.y;
// Horizontal positions
for( int i = gridStartX; i != gridEndX; i += dirX )
{
if( ( i % gridTick == 0 && gridScreenSizeCoarse > gridThreshold )
|| gridScreenSizeDense > gridThreshold )
{
int posX = i * gridSize.x + gridOrigin.x;
glBegin( GL_LINES );
glVertex2d( posX -lineLen, posY );
glVertex2d( posX + lineLen, posY );
glVertex2d( posX, posY - lineLen );
glVertex2d( posX, posY + lineLen );
glEnd();
}
}
}
}
}
else
{
// Vertical lines
for( int j = gridStartY; j != gridEndY; j += dirY )
{
const double y = j * gridSize.y + gridOrigin.y;
// If axes are drawn, skip the lines that would cover them
if( axesEnabled && y == 0 )
continue;
if( j % gridTick == 0 && gridScreenSizeDense > gridThreshold )
glLineWidth( majorLineWidth );
else
glLineWidth( minorLineWidth );
if( ( j % gridTick == 0 && gridScreenSizeCoarse > gridThreshold )
|| gridScreenSizeDense > gridThreshold )
{
glBegin( GL_LINES );
glVertex2d( gridStartX * gridSize.x + gridOrigin.x, y );
glVertex2d( gridEndX * gridSize.x + gridOrigin.x, y );
glEnd();
}
}
if( gridStyle == GRID_STYLE::DOTS )
{
glStencilFunc( GL_NOTEQUAL, 0, 1 );
glColor4d( gridColor.r, gridColor.g, gridColor.b, 1.0 );
}
// Horizontal lines
for( int i = gridStartX; i != gridEndX; i += dirX )
{
const double x = i * gridSize.x + gridOrigin.x;
// If axes are drawn, skip the lines that would cover them
if( axesEnabled && x == 0 )
continue;
if( i % gridTick == 0 && gridScreenSizeDense > gridThreshold )
glLineWidth( majorLineWidth );
else
glLineWidth( minorLineWidth );
if( ( i % gridTick == 0 && gridScreenSizeCoarse > gridThreshold )
|| gridScreenSizeDense > gridThreshold )
{
glBegin( GL_LINES );
glVertex2d( x, gridStartY * gridSize.y + gridOrigin.y );
glVertex2d( x, gridEndY * gridSize.y + gridOrigin.y );
glEnd();
}
}
if( gridStyle == GRID_STYLE::DOTS )
glDisable( GL_STENCIL_TEST );
}
glEnable( GL_DEPTH_TEST );
glEnable( GL_TEXTURE_2D );
}
void OPENGL_GAL::ResizeScreen( int aWidth, int aHeight )
{
screenSize = VECTOR2I( aWidth, aHeight );
#ifdef RETINA_OPENGL_PATCH
const float scaleFactor = GetBackingScaleFactor();
#else
const float scaleFactor = 1.0f;
#endif
// Resize framebuffers
compositor->Resize( aWidth * scaleFactor, aHeight * scaleFactor );
isFramebufferInitialized = false;
wxGLCanvas::SetSize( aWidth, aHeight );
}
bool OPENGL_GAL::Show( bool aShow )
{
bool s = wxGLCanvas::Show( aShow );
if( aShow )
wxGLCanvas::Raise();
return s;
}
void OPENGL_GAL::Flush()
{
glFlush();
}
void OPENGL_GAL::ClearScreen( const COLOR4D& aColor )
{
// Clear screen
compositor->SetBuffer( OPENGL_COMPOSITOR::DIRECT_RENDERING );
glClearColor( aColor.r, aColor.g, aColor.b, aColor.a );
glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT );
}
void OPENGL_GAL::Transform( const MATRIX3x3D& aTransformation )
{
GLdouble matrixData[16] = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 };
matrixData[0] = aTransformation.m_data[0][0];
matrixData[1] = aTransformation.m_data[1][0];
matrixData[2] = aTransformation.m_data[2][0];
matrixData[4] = aTransformation.m_data[0][1];
matrixData[5] = aTransformation.m_data[1][1];
matrixData[6] = aTransformation.m_data[2][1];
matrixData[12] = aTransformation.m_data[0][2];
matrixData[13] = aTransformation.m_data[1][2];
matrixData[14] = aTransformation.m_data[2][2];
glMultMatrixd( matrixData );
}
void OPENGL_GAL::Rotate( double aAngle )
{
currentManager->Rotate( aAngle, 0.0f, 0.0f, 1.0f );
}
void OPENGL_GAL::Translate( const VECTOR2D& aVector )
{
currentManager->Translate( aVector.x, aVector.y, 0.0f );
}
void OPENGL_GAL::Scale( const VECTOR2D& aScale )
{
currentManager->Scale( aScale.x, aScale.y, 0.0f );
}
void OPENGL_GAL::Save()
{
currentManager->PushMatrix();
}
void OPENGL_GAL::Restore()
{
currentManager->PopMatrix();
}
int OPENGL_GAL::BeginGroup()
{
isGrouping = true;
std::shared_ptr<VERTEX_ITEM> newItem = std::make_shared<VERTEX_ITEM>( *cachedManager );
int groupNumber = getNewGroupNumber();
groups.insert( std::make_pair( groupNumber, newItem ) );
return groupNumber;
}
void OPENGL_GAL::EndGroup()
{
cachedManager->FinishItem();
isGrouping = false;
}
void OPENGL_GAL::DrawGroup( int aGroupNumber )
{
cachedManager->DrawItem( *groups[aGroupNumber] );
}
void OPENGL_GAL::ChangeGroupColor( int aGroupNumber, const COLOR4D& aNewColor )
{
cachedManager->ChangeItemColor( *groups[aGroupNumber], aNewColor );
}
void OPENGL_GAL::ChangeGroupDepth( int aGroupNumber, int aDepth )
{
cachedManager->ChangeItemDepth( *groups[aGroupNumber], aDepth );
}
void OPENGL_GAL::DeleteGroup( int aGroupNumber )
{
// Frees memory in the container as well
groups.erase( aGroupNumber );
}
void OPENGL_GAL::ClearCache()
{
groups.clear();
cachedManager->Clear();
}
void OPENGL_GAL::SaveScreen()
{
wxASSERT_MSG( false, wxT( "Not implemented yet" ) );
}
void OPENGL_GAL::RestoreScreen()
{
wxASSERT_MSG( false, wxT( "Not implemented yet" ) );
}
void OPENGL_GAL::SetTarget( RENDER_TARGET aTarget )
{
switch( aTarget )
{
default:
case TARGET_CACHED:
currentManager = cachedManager;
break;
case TARGET_NONCACHED:
currentManager = nonCachedManager;
break;
case TARGET_OVERLAY:
currentManager = overlayManager;
break;
}
currentTarget = aTarget;
}
RENDER_TARGET OPENGL_GAL::GetTarget() const
{
return currentTarget;
}
void OPENGL_GAL::ClearTarget( RENDER_TARGET aTarget )
{
// Save the current state
unsigned int oldTarget = compositor->GetBuffer();
switch( aTarget )
{
// Cached and noncached items are rendered to the same buffer
default:
case TARGET_CACHED:
case TARGET_NONCACHED:
compositor->SetBuffer( mainBuffer );
break;
case TARGET_OVERLAY:
compositor->SetBuffer( overlayBuffer );
break;
}
compositor->ClearBuffer();
// Restore the previous state
compositor->SetBuffer( oldTarget );
}
void OPENGL_GAL::DrawCursor( const VECTOR2D& aCursorPosition )
{
// Now we should only store the position of the mouse cursor
// The real drawing routines are in blitCursor()
//VECTOR2D screenCursor = worldScreenMatrix * aCursorPosition;
//cursorPosition = screenWorldMatrix * VECTOR2D( screenCursor.x, screenCursor.y );
cursorPosition = aCursorPosition;
}
void OPENGL_GAL::drawLineQuad( const VECTOR2D& aStartPoint, const VECTOR2D& aEndPoint )
{
/* Helper drawing: ____--- v3 ^
* ____---- ... \ \
* ____---- ... \ end \
* v1 ____---- ... ____---- \ width
* ---- ...___---- \ \
* \ ___...-- \ v
* \ ____----... ____---- v2
* ---- ... ____----
* start \ ... ____----
* \... ____----
* ----
* v0
* dots mark triangles' hypotenuses
*/
VECTOR2D startEndVector = aEndPoint - aStartPoint;
double lineLength = startEndVector.EuclideanNorm();
if( lineLength <= 0.0 )
return;
double scale = 0.5 * lineWidth / lineLength;
// The perpendicular vector also needs transformations
glm::vec4 vector = currentManager->GetTransformation() *
glm::vec4( -startEndVector.y * scale, startEndVector.x * scale, 0.0, 0.0 );
currentManager->Reserve( 6 );
// Line width is maintained by the vertex shader
currentManager->Shader( SHADER_LINE, vector.x, vector.y, lineWidth );
currentManager->Vertex( aStartPoint.x, aStartPoint.y, layerDepth ); // v0
currentManager->Shader( SHADER_LINE, -vector.x, -vector.y, lineWidth );
currentManager->Vertex( aStartPoint.x, aStartPoint.y, layerDepth ); // v1
currentManager->Shader( SHADER_LINE, -vector.x, -vector.y, lineWidth );
currentManager->Vertex( aEndPoint.x, aEndPoint.y, layerDepth ); // v3
currentManager->Shader( SHADER_LINE, vector.x, vector.y, lineWidth );
currentManager->Vertex( aStartPoint.x, aStartPoint.y, layerDepth ); // v0
currentManager->Shader( SHADER_LINE, -vector.x, -vector.y, lineWidth );
currentManager->Vertex( aEndPoint.x, aEndPoint.y, layerDepth ); // v3
currentManager->Shader( SHADER_LINE, vector.x, vector.y, lineWidth );
currentManager->Vertex( aEndPoint.x, aEndPoint.y, layerDepth ); // v2
}
void OPENGL_GAL::drawSemiCircle( const VECTOR2D& aCenterPoint, double aRadius, double aAngle )
{
if( isFillEnabled )
{
currentManager->Color( fillColor.r, fillColor.g, fillColor.b, fillColor.a );
drawFilledSemiCircle( aCenterPoint, aRadius, aAngle );
}
if( isStrokeEnabled )
{
currentManager->Color( strokeColor.r, strokeColor.g, strokeColor.b, strokeColor.a );
drawStrokedSemiCircle( aCenterPoint, aRadius, aAngle );
}
}
void OPENGL_GAL::drawFilledSemiCircle( const VECTOR2D& aCenterPoint, double aRadius,
double aAngle )
{
Save();
currentManager->Reserve( 3 );
currentManager->Translate( aCenterPoint.x, aCenterPoint.y, 0.0f );
currentManager->Rotate( aAngle, 0.0f, 0.0f, 1.0f );
/* Draw a triangle that contains the semicircle, then shade it to leave only
* the semicircle. Parameters given to Shader() are indices of the triangle's vertices
* (if you want to understand more, check the vertex shader source [shader.vert]).
* Shader uses these coordinates to determine if fragments are inside the semicircle or not.
* v2
* /\
* /__\
* v0 //__\\ v1
*/
currentManager->Shader( SHADER_FILLED_CIRCLE, 4.0f );
currentManager->Vertex( -aRadius * 3.0f / sqrt( 3.0f ), 0.0f, layerDepth ); // v0
currentManager->Shader( SHADER_FILLED_CIRCLE, 5.0f );
currentManager->Vertex( aRadius * 3.0f / sqrt( 3.0f ), 0.0f, layerDepth ); // v1
currentManager->Shader( SHADER_FILLED_CIRCLE, 6.0f );
currentManager->Vertex( 0.0f, aRadius * 2.0f, layerDepth ); // v2
Restore();
}
void OPENGL_GAL::drawStrokedSemiCircle( const VECTOR2D& aCenterPoint, double aRadius,
double aAngle )
{
double outerRadius = aRadius + ( lineWidth / 2 );
Save();
currentManager->Reserve( 3 );
currentManager->Translate( aCenterPoint.x, aCenterPoint.y, 0.0f );
currentManager->Rotate( aAngle, 0.0f, 0.0f, 1.0f );
/* Draw a triangle that contains the semicircle, then shade it to leave only
* the semicircle. Parameters given to Shader() are indices of the triangle's vertices
* (if you want to understand more, check the vertex shader source [shader.vert]), the
* radius and the line width. Shader uses these coordinates to determine if fragments are
* inside the semicircle or not.
* v2
* /\
* /__\
* v0 //__\\ v1
*/
currentManager->Shader( SHADER_STROKED_CIRCLE, 4.0f, aRadius, lineWidth );
currentManager->Vertex( -outerRadius * 3.0f / sqrt( 3.0f ), 0.0f, layerDepth ); // v0
currentManager->Shader( SHADER_STROKED_CIRCLE, 5.0f, aRadius, lineWidth );
currentManager->Vertex( outerRadius * 3.0f / sqrt( 3.0f ), 0.0f, layerDepth ); // v1
currentManager->Shader( SHADER_STROKED_CIRCLE, 6.0f, aRadius, lineWidth );
currentManager->Vertex( 0.0f, outerRadius * 2.0f, layerDepth ); // v2
Restore();
}
void OPENGL_GAL::drawPolygon( GLdouble* aPoints, int aPointCount )
{
currentManager->Shader( SHADER_NONE );
currentManager->Color( fillColor.r, fillColor.g, fillColor.b, fillColor.a );
// Any non convex polygon needs to be tesselated
// for this purpose the GLU standard functions are used
TessParams params = { currentManager, tessIntersects };
gluTessBeginPolygon( tesselator, &params );
gluTessBeginContour( tesselator );
GLdouble* point = aPoints;
for( int i = 0; i < aPointCount; ++i )
{
gluTessVertex( tesselator, point, point );
point += 3; // 3 coordinates
}
gluTessEndContour( tesselator );
gluTessEndPolygon( tesselator );
// Free allocated intersecting points
tessIntersects.clear();
}
void OPENGL_GAL::drawPolyline( std::function<VECTOR2D (int)> aPointGetter, int aPointCount )
{
if( aPointCount < 2 )
return;
currentManager->Color( strokeColor.r, strokeColor.g, strokeColor.b, strokeColor.a );
int i;
for( i = 1; i < aPointCount; ++i )
{
auto start = aPointGetter( i - 1 );
auto end = aPointGetter( i );
const VECTOR2D startEndVector = ( end - start );
double lineAngle = startEndVector.Angle();
drawLineQuad( start, end );
// There is no need to draw line caps on both ends of polyline's segments
drawFilledSemiCircle( start, lineWidth / 2, lineAngle + M_PI / 2 );
}
// ..and now - draw the ending cap
auto start = aPointGetter( i - 2 );
auto end = aPointGetter( i - 1 );
const VECTOR2D startEndVector = ( end - start );
double lineAngle = startEndVector.Angle();
drawFilledSemiCircle( end, lineWidth / 2, lineAngle - M_PI / 2 );
}
int OPENGL_GAL::drawBitmapChar( unsigned long aChar )
{
const float TEX_X = font_image.width;
const float TEX_Y = font_image.height;
const FONT_GLYPH_TYPE* glyph = LookupGlyph(aChar);
if( !glyph ) return 0;
const float X = glyph->atlas_x + font_information.smooth_pixels;
const float Y = glyph->atlas_y + font_information.smooth_pixels;
const float XOFF = glyph->minx;
// adjust for height rounding
const float round_adjust = ( glyph->maxy - glyph->miny )
- float( glyph->atlas_h - font_information.smooth_pixels * 2 );
const float top_adjust = font_information.max_y - glyph->maxy;
const float YOFF = round_adjust + top_adjust;
const float W = glyph->atlas_w - font_information.smooth_pixels *2;
const float H = glyph->atlas_h - font_information.smooth_pixels *2;
const float B = 0;
currentManager->Reserve( 6 );
Translate( VECTOR2D( XOFF, YOFF ) );
/* Glyph:
* v0 v1
* +--+
* | /|
* |/ |
* +--+
* v2 v3
*/
currentManager->Shader( SHADER_FONT, X / TEX_X, ( Y + H ) / TEX_Y );
currentManager->Vertex( -B, -B, 0 ); // v0
currentManager->Shader( SHADER_FONT, ( X + W ) / TEX_X, ( Y + H ) / TEX_Y );
currentManager->Vertex( W + B, -B, 0 ); // v1
currentManager->Shader( SHADER_FONT, X / TEX_X, Y / TEX_Y );
currentManager->Vertex( -B, H + B, 0 ); // v2
currentManager->Shader( SHADER_FONT, ( X + W ) / TEX_X, ( Y + H ) / TEX_Y );
currentManager->Vertex( W + B, -B, 0 ); // v1
currentManager->Shader( SHADER_FONT, X / TEX_X, Y / TEX_Y );
currentManager->Vertex( -B, H + B, 0 ); // v2
currentManager->Shader( SHADER_FONT, ( X + W ) / TEX_X, Y / TEX_Y );
currentManager->Vertex( W + B, H + B, 0 ); // v3
Translate( VECTOR2D( -XOFF + glyph->advance, -YOFF ) );
return glyph->advance;
}
void OPENGL_GAL::drawBitmapOverbar( double aLength, double aHeight )
{
// To draw an overbar, simply draw an overbar
const FONT_GLYPH_TYPE* glyph = LookupGlyph( '_' );
const float H = glyph->maxy - glyph->miny;
Save();
Translate( VECTOR2D( -aLength, -aHeight-1.5*H ) );
currentManager->Reserve( 6 );
currentManager->Color( strokeColor.r, strokeColor.g, strokeColor.b, 1 );
currentManager->Shader( 0 );
currentManager->Vertex( 0, 0, 0 ); // v0
currentManager->Vertex( aLength, 0, 0 ); // v1
currentManager->Vertex( 0, H, 0 ); // v2
currentManager->Vertex( aLength, 0, 0 ); // v1
currentManager->Vertex( 0, H, 0 ); // v2
currentManager->Vertex( aLength, H, 0 ); // v3
Restore();
}
std::pair<VECTOR2D, float> OPENGL_GAL::computeBitmapTextSize( const wxString& aText ) const
{
VECTOR2D textSize( 0, 0 );
float commonOffset = std::numeric_limits<float>::max();
bool wasTilda = false;
for( unsigned int i = 0; i < aText.length(); ++i )
{
// Remove overbar control characters
if( aText[i] == '~' )
{
if( !wasTilda )
{
// Only double tildas are counted as characters, so skip it as it might
// be an overbar control character
wasTilda = true;
continue;
}
else
{
// Double tilda detected, reset the state and process as a normal character
wasTilda = false;
}
}
const FONT_GLYPH_TYPE* glyph = LookupGlyph(aText[i]);
if( glyph ) {
textSize.x += glyph->advance;
textSize.y = std::max<float>( textSize.y, font_information.max_y - glyph->miny );
commonOffset = std::min<float>( font_information.max_y - glyph->maxy, commonOffset );
}
}
textSize.y -= commonOffset;
return std::make_pair( textSize, commonOffset );
}
void OPENGL_GAL::onPaint( wxPaintEvent& WXUNUSED( aEvent ) )
{
PostPaint();
}
void OPENGL_GAL::skipMouseEvent( wxMouseEvent& aEvent )
{
// Post the mouse event to the event listener registered in constructor, if any
if( mouseListener )
wxPostEvent( mouseListener, aEvent );
}
void OPENGL_GAL::blitCursor()
{
if( !IsCursorEnabled() )
return;
compositor->SetBuffer( OPENGL_COMPOSITOR::DIRECT_RENDERING );
const int cursorSize = fullscreenCursor ? 8000 : 80;
VECTOR2D cursorBegin = cursorPosition - cursorSize / ( 2 * worldScale );
VECTOR2D cursorEnd = cursorPosition + cursorSize / ( 2 * worldScale );
VECTOR2D cursorCenter = ( cursorBegin + cursorEnd ) / 2;
const COLOR4D cColor = getCursorColor();
const COLOR4D color( cColor.r * cColor.a, cColor.g * cColor.a,
cColor.b * cColor.a, 1.0 );
glDisable( GL_TEXTURE_2D );
glLineWidth( 1.0 );
glColor4d( color.r, color.g, color.b, color.a );
glBegin( GL_LINES );
glVertex2d( cursorCenter.x, cursorBegin.y );
glVertex2d( cursorCenter.x, cursorEnd.y );
glVertex2d( cursorBegin.x, cursorCenter.y );
glVertex2d( cursorEnd.x, cursorCenter.y );
glEnd();
}
unsigned int OPENGL_GAL::getNewGroupNumber()
{
wxASSERT_MSG( groups.size() < std::numeric_limits<unsigned int>::max(),
wxT( "There are no free slots to store a group" ) );
while( groups.find( groupCounter ) != groups.end() )
{
groupCounter++;
}
return groupCounter++;
}
void OPENGL_GAL::init()
{
wxASSERT( IsShownOnScreen() );
GL_CONTEXT_MANAGER::Get().LockCtx( glPrivContext, this );
GLenum err = glewInit();
try
{
if( GLEW_OK != err )
throw std::runtime_error( (const char*) glewGetErrorString( err ) );
// Check the OpenGL version (minimum 2.1 is required)
if( !GLEW_VERSION_2_1 )
throw std::runtime_error( "OpenGL 2.1 or higher is required!" );
// Framebuffers have to be supported
if( !GLEW_EXT_framebuffer_object )
throw std::runtime_error( "Framebuffer objects are not supported!" );
// Vertex buffer has to be supported
if( !GLEW_ARB_vertex_buffer_object )
throw std::runtime_error( "Vertex buffer objects are not supported!" );
// Prepare shaders
if( !shader->IsLinked() && !shader->LoadShaderFromStrings( SHADER_TYPE_VERTEX, BUILTIN_SHADERS::kicad_vertex_shader ) )
throw std::runtime_error( "Cannot compile vertex shader!" );
if( !shader->IsLinked() && !shader->LoadShaderFromStrings( SHADER_TYPE_FRAGMENT, BUILTIN_SHADERS::kicad_fragment_shader ) )
throw std::runtime_error( "Cannot compile fragment shader!" );
if( !shader->IsLinked() && !shader->Link() )
throw std::runtime_error( "Cannot link the shaders!" );
// Check if video card supports textures big enough to fit the font atlas
int maxTextureSize;
glGetIntegerv( GL_MAX_TEXTURE_SIZE, &maxTextureSize );
if( maxTextureSize < (int) font_image.width || maxTextureSize < (int)font_image.height )
{
// TODO implement software texture scaling
// for bitmap fonts and use a higher resolution texture?
throw std::runtime_error( "Requested texture size is not supported" );
}
}
catch( std::runtime_error& )
{
GL_CONTEXT_MANAGER::Get().UnlockCtx( glPrivContext );
throw;
}
// Make VBOs use shaders
cachedManager->SetShader( *shader );
nonCachedManager->SetShader( *shader );
overlayManager->SetShader( *shader );
GL_CONTEXT_MANAGER::Get().UnlockCtx( glPrivContext );
isInitialized = true;
}
// ------------------------------------- // Callback functions for the tesselator // ------------------------------------- // Compare Redbook Chapter 11
void CALLBACK VertexCallback( GLvoid* aVertexPtr, void* aData )
{
GLdouble* vertex = static_cast<GLdouble*>( aVertexPtr );
OPENGL_GAL::TessParams* param = static_cast<OPENGL_GAL::TessParams*>( aData );
VERTEX_MANAGER* vboManager = param->vboManager;
assert( vboManager );
vboManager->Vertex( vertex[0], vertex[1], vertex[2] );
}
void CALLBACK CombineCallback( GLdouble coords[3],
GLdouble* vertex_data[4],
GLfloat weight[4], GLdouble** dataOut, void* aData )
{
GLdouble* vertex = new GLdouble[3];
OPENGL_GAL::TessParams* param = static_cast<OPENGL_GAL::TessParams*>( aData );
// Save the pointer so we can delete it later
param->intersectPoints.push_back( boost::shared_array<GLdouble>( vertex ) );
memcpy( vertex, coords, 3 * sizeof(GLdouble) );
*dataOut = vertex;
}
void CALLBACK EdgeCallback( GLboolean aEdgeFlag )
{
// This callback is needed to force GLU tesselator to use triangles only
}
void CALLBACK ErrorCallback( GLenum aErrorCode )
{
//throw std::runtime_error( std::string( "Tessellation error: " ) +
//std::string( (const char*) gluErrorString( aErrorCode ) );
}
static void InitTesselatorCallbacks( GLUtesselator* aTesselator )
{
gluTessCallback( aTesselator, GLU_TESS_VERTEX_DATA, ( void (CALLBACK*)() )VertexCallback );
gluTessCallback( aTesselator, GLU_TESS_COMBINE_DATA, ( void (CALLBACK*)() )CombineCallback );
gluTessCallback( aTesselator, GLU_TESS_EDGE_FLAG, ( void (CALLBACK*)() )EdgeCallback );
gluTessCallback( aTesselator, GLU_TESS_ERROR, ( void (CALLBACK*)() )ErrorCallback );
}