kicad/3d-viewer/3d_rendering/track_ball.cpp

175 lines
5.2 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2015-2016 Mario Luzeiro <mrluzeiro@ua.pt>
* Copyright (C) 2015-2020 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/**
* @file track_ball.cpp
* @brief Implementation of a track ball camera. A track ball is placed in the
* center of the screen and rotates the camera.
*/
#include "track_ball.h"
#include "trackball.h"
#include "../3d_math.h"
#include <wx/log.h>
#include <glm/gtc/quaternion.hpp>
// stdlib
#include <algorithm>
TRACK_BALL::TRACK_BALL( float aInitialDistance ) :
CAMERA( aInitialDistance )
{
wxLogTrace( m_logTrace, wxT( "TRACK_BALL::TRACK_BALL" ) );
memset( m_quat_t0, 0, sizeof( m_quat_t0 ) );
memset( m_quat_t1, 0, sizeof( m_quat_t1 ) );
trackball( m_quat_t0, 0.0, 0.0, 0.0, 0.0 );
trackball( m_quat_t1, 0.0, 0.0, 0.0, 0.0 );
}
void TRACK_BALL::Drag( const wxPoint& aNewMousePosition )
{
m_parametersChanged = true;
double spin_quat[4];
// "Pass the x and y coordinates of the last and current positions of
// the mouse, scaled so they are from (-1.0 ... 1.0)."
const float zoom = 1.0f;
trackball( spin_quat, zoom * ( 2.0 * m_lastPosition.x - m_windowSize.x ) / m_windowSize.x,
zoom * ( m_windowSize.y - 2.0 * m_lastPosition.y ) / m_windowSize.y,
zoom * ( 2.0 * aNewMousePosition.x - m_windowSize.x ) / m_windowSize.x,
zoom * ( m_windowSize.y - 2.0 * aNewMousePosition.y ) / m_windowSize.y );
float spin_matrix[4][4];
build_rotmatrix( spin_matrix, spin_quat );
m_rotationMatrix = glm::make_mat4( &spin_matrix[0][0] ) * m_rotationMatrix;
updateViewMatrix();
updateFrustum();
}
void TRACK_BALL::Pan( const wxPoint& aNewMousePosition )
{
m_parametersChanged = true;
if( m_projectionType == PROJECTION_TYPE::ORTHO )
{
m_camera_pos.x -= m_frustum.nw *
( m_lastPosition.x - aNewMousePosition.x ) / m_windowSize.x;
m_camera_pos.y -= m_frustum.nh *
( aNewMousePosition.y - m_lastPosition.y ) / m_windowSize.y;
}
else // PROJECTION_TYPE::PERSPECTIVE
{
// Unproject the coordinates using the precomputed frustum tangent (zoom level dependent)
const float panFactor = -m_camera_pos.z * m_frustum.tang * 2;
m_camera_pos.x -= panFactor * m_frustum.ratio *
( m_lastPosition.x - aNewMousePosition.x ) / m_windowSize.x;
m_camera_pos.y -= panFactor * ( aNewMousePosition.y - m_lastPosition.y ) / m_windowSize.y;
}
updateViewMatrix();
updateFrustum();
}
void TRACK_BALL::Pan( const SFVEC3F& aDeltaOffsetInc )
{
m_parametersChanged = true;
m_camera_pos += aDeltaOffsetInc;
updateViewMatrix();
updateFrustum();
}
void TRACK_BALL::Pan_T1( const SFVEC3F& aDeltaOffsetInc )
{
m_camera_pos_t1 = m_camera_pos + aDeltaOffsetInc;
}
void TRACK_BALL::Reset_T1()
{
CAMERA::Reset_T1();
memset( m_quat_t1, 0, sizeof( m_quat_t1 ) );
trackball( m_quat_t1, 0.0, 0.0, 0.0, 0.0 );
}
void TRACK_BALL::SetT0_and_T1_current_T()
{
CAMERA::SetT0_and_T1_current_T();
double quat[4];
// Charge the quaternions with the current rotation matrix to allow dual input.
std::copy_n( glm::value_ptr( glm::conjugate( glm::quat_cast( m_rotationMatrix ) ) ),
sizeof( quat ) / sizeof( quat[0] ), quat );
memcpy( m_quat_t0, quat, sizeof( quat ) );
memcpy( m_quat_t1, quat, sizeof( quat ) );
}
void TRACK_BALL::Interpolate( float t )
{
wxASSERT( t >= 0.0f );
// Limit t o 1.0
t = ( t > 1.0f ) ? 1.0f : t;
switch( m_interpolation_mode )
{
case CAMERA_INTERPOLATION::BEZIER:
t = BezierBlend( t );
break;
case CAMERA_INTERPOLATION::EASING_IN_OUT:
t = QuadricEasingInOut( t );
break;
case CAMERA_INTERPOLATION::LINEAR:
default:
break;
}
const float t0 = 1.0f - t;
double quat[4];
quat[0] = m_quat_t0[0] * t0 + m_quat_t1[0] * t;
quat[1] = m_quat_t0[1] * t0 + m_quat_t1[1] * t;
quat[2] = m_quat_t0[2] * t0 + m_quat_t1[2] * t;
quat[3] = m_quat_t0[3] * t0 + m_quat_t1[3] * t;
float rotationMatrix[4][4];
build_rotmatrix( rotationMatrix, quat );
m_rotationMatrix = glm::make_mat4( &rotationMatrix[0][0] );
CAMERA::Interpolate( t );
}