668 lines
24 KiB
C++
668 lines
24 KiB
C++
/*
|
|
* This program source code file is part of KiCad, a free EDA CAD application.
|
|
*
|
|
* Copyright (C) 2018 Jean-Pierre Charras, jp.charras at wanadoo.fr
|
|
* Copyright (C) 1992-2022 KiCad Developers, see AUTHORS.txt for contributors.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, you may find one here:
|
|
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
|
|
* or you may search the http://www.gnu.org website for the version 2 license,
|
|
* or you may write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
|
|
*/
|
|
|
|
#include <algorithm> // for max, min
|
|
#include <bitset> // for bitset::count
|
|
#include <math.h> // for atan2
|
|
|
|
#include <convert_basic_shapes_to_polygon.h>
|
|
#include <geometry/geometry_utils.h>
|
|
#include <geometry/shape_line_chain.h> // for SHAPE_LINE_CHAIN
|
|
#include <geometry/shape_poly_set.h> // for SHAPE_POLY_SET, SHAPE_POLY_SE...
|
|
#include <math/util.h>
|
|
#include <math/vector2d.h> // for VECTOR2I
|
|
#include <trigo.h>
|
|
|
|
|
|
void TransformCircleToPolygon( SHAPE_LINE_CHAIN& aCornerBuffer, const VECTOR2I& aCenter,
|
|
int aRadius, int aError, ERROR_LOC aErrorLoc, int aMinSegCount )
|
|
{
|
|
VECTOR2I corner_position;
|
|
int numSegs = GetArcToSegmentCount( aRadius, aError, FULL_CIRCLE );
|
|
numSegs = std::max( aMinSegCount, numSegs );
|
|
|
|
// The shape will be built with a even number of segs. Reason: the horizontal
|
|
// diameter begins and ends to points on the actual circle, or circle
|
|
// expanded by aError if aErrorLoc == ERROR_OUTSIDE.
|
|
// This is used by Arc to Polygon shape convert.
|
|
if( numSegs & 1 )
|
|
numSegs++;
|
|
|
|
EDA_ANGLE delta = ANGLE_360 / numSegs;
|
|
int radius = aRadius;
|
|
|
|
if( aErrorLoc == ERROR_OUTSIDE )
|
|
{
|
|
// The outer radius should be radius+aError
|
|
// Recalculate the actual approx error, as it can be smaller than aError
|
|
// because numSegs is clamped to a minimal value
|
|
int actual_delta_radius = CircleToEndSegmentDeltaRadius( radius, numSegs );
|
|
radius += GetCircleToPolyCorrection( actual_delta_radius );
|
|
}
|
|
|
|
for( EDA_ANGLE angle = ANGLE_0; angle < ANGLE_360; angle += delta )
|
|
{
|
|
corner_position.x = radius;
|
|
corner_position.y = 0;
|
|
RotatePoint( corner_position, angle );
|
|
corner_position += aCenter;
|
|
aCornerBuffer.Append( corner_position.x, corner_position.y );
|
|
}
|
|
|
|
aCornerBuffer.SetClosed( true );
|
|
}
|
|
|
|
|
|
void TransformCircleToPolygon( SHAPE_POLY_SET& aCornerBuffer, const VECTOR2I& aCenter, int aRadius,
|
|
int aError, ERROR_LOC aErrorLoc, int aMinSegCount )
|
|
{
|
|
VECTOR2I corner_position;
|
|
int numSegs = GetArcToSegmentCount( aRadius, aError, FULL_CIRCLE );
|
|
numSegs = std::max( aMinSegCount, numSegs );
|
|
|
|
// The shape will be built with a even number of segs. Reason: the horizontal
|
|
// diameter begins and ends to points on the actual circle, or circle
|
|
// expanded by aError if aErrorLoc == ERROR_OUTSIDE.
|
|
// This is used by Arc to Polygon shape convert.
|
|
if( numSegs & 1 )
|
|
numSegs++;
|
|
|
|
EDA_ANGLE delta = ANGLE_360 / numSegs;
|
|
int radius = aRadius;
|
|
|
|
if( aErrorLoc == ERROR_OUTSIDE )
|
|
{
|
|
// The outer radius should be radius+aError
|
|
// Recalculate the actual approx error, as it can be smaller than aError
|
|
// because numSegs is clamped to a minimal value
|
|
int actual_delta_radius = CircleToEndSegmentDeltaRadius( radius, numSegs );
|
|
radius += GetCircleToPolyCorrection( actual_delta_radius );
|
|
}
|
|
|
|
aCornerBuffer.NewOutline();
|
|
|
|
for( EDA_ANGLE angle = ANGLE_0; angle < ANGLE_360; angle += delta )
|
|
{
|
|
corner_position.x = radius;
|
|
corner_position.y = 0;
|
|
RotatePoint( corner_position, angle );
|
|
corner_position += aCenter;
|
|
aCornerBuffer.Append( corner_position.x, corner_position.y );
|
|
}
|
|
|
|
// Finish circle
|
|
corner_position.x = radius;
|
|
corner_position.y = 0;
|
|
corner_position += aCenter;
|
|
aCornerBuffer.Append( corner_position.x, corner_position.y );
|
|
}
|
|
|
|
|
|
void TransformOvalToPolygon( SHAPE_POLY_SET& aCornerBuffer, const VECTOR2I& aStart,
|
|
const VECTOR2I& aEnd, int aWidth, int aError, ERROR_LOC aErrorLoc,
|
|
int aMinSegCount )
|
|
{
|
|
// To build the polygonal shape outside the actual shape, we use a bigger
|
|
// radius to build rounded ends.
|
|
// However, the width of the segment is too big.
|
|
// so, later, we will clamp the polygonal shape with the bounding box
|
|
// of the segment.
|
|
int radius = aWidth / 2;
|
|
int numSegs = GetArcToSegmentCount( radius, aError, FULL_CIRCLE );
|
|
numSegs = std::max( aMinSegCount, numSegs );
|
|
|
|
EDA_ANGLE delta = ANGLE_360 / numSegs;
|
|
|
|
if( aErrorLoc == ERROR_OUTSIDE )
|
|
{
|
|
// The outer radius should be radius+aError
|
|
// Recalculate the actual approx error, as it can be smaller than aError
|
|
// because numSegs is clamped to a minimal value
|
|
int actual_delta_radius = CircleToEndSegmentDeltaRadius( radius, numSegs );
|
|
int correction = GetCircleToPolyCorrection( actual_delta_radius );
|
|
radius += correction;
|
|
}
|
|
|
|
// end point is the coordinate relative to aStart
|
|
VECTOR2I endp = aEnd - aStart;
|
|
VECTOR2I startp = aStart;
|
|
VECTOR2I corner;
|
|
SHAPE_POLY_SET polyshape;
|
|
|
|
polyshape.NewOutline();
|
|
|
|
// normalize the position in order to have endp.x >= 0
|
|
// it makes calculations more easy to understand
|
|
if( endp.x < 0 )
|
|
{
|
|
endp = aStart - aEnd;
|
|
startp = aEnd;
|
|
}
|
|
|
|
EDA_ANGLE delta_angle( endp );
|
|
int seg_len = KiROUND( EuclideanNorm( endp ) );
|
|
|
|
// Compute the outlines of the segment, and creates a polygon
|
|
// Note: the polygonal shape is built from the equivalent horizontal
|
|
// segment starting at {0,0}, and ending at {seg_len,0}
|
|
|
|
// add right rounded end:
|
|
|
|
for( EDA_ANGLE angle = ANGLE_0; angle < ANGLE_180; angle += delta )
|
|
{
|
|
corner = VECTOR2I( 0, radius );
|
|
RotatePoint( corner, angle );
|
|
corner.x += seg_len;
|
|
polyshape.Append( corner.x, corner.y );
|
|
}
|
|
|
|
// Finish arc:
|
|
corner = VECTOR2I( seg_len, -radius );
|
|
polyshape.Append( corner.x, corner.y );
|
|
|
|
// add left rounded end:
|
|
for( EDA_ANGLE angle = ANGLE_0; angle < ANGLE_180; angle += delta )
|
|
{
|
|
corner = VECTOR2I( 0, -radius );
|
|
RotatePoint( corner, angle );
|
|
polyshape.Append( corner.x, corner.y );
|
|
}
|
|
|
|
// Finish arc:
|
|
corner = VECTOR2I( 0, radius );
|
|
polyshape.Append( corner.x, corner.y );
|
|
|
|
// Now trim the edges of the polygonal shape which will be slightly outside the
|
|
// track width.
|
|
SHAPE_POLY_SET bbox;
|
|
bbox.NewOutline();
|
|
// Build the bbox (a horizontal rectangle).
|
|
int halfwidth = aWidth / 2; // Use the exact segment width for the bbox height
|
|
corner.x = -radius - 2; // use a bbox width slightly bigger to avoid
|
|
// creating useless corner at segment ends
|
|
corner.y = halfwidth;
|
|
bbox.Append( corner.x, corner.y );
|
|
corner.y = -halfwidth;
|
|
bbox.Append( corner.x, corner.y );
|
|
corner.x = radius + seg_len + 2;
|
|
bbox.Append( corner.x, corner.y );
|
|
corner.y = halfwidth;
|
|
bbox.Append( corner.x, corner.y );
|
|
|
|
// Now, clamp the shape
|
|
polyshape.BooleanIntersection( bbox, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
|
|
// Note the final polygon is a simple, convex polygon with no hole
|
|
// due to the shape of initial polygons
|
|
|
|
// Rotate and move the polygon to its right location
|
|
polyshape.Rotate( -delta_angle );
|
|
polyshape.Move( startp );
|
|
|
|
aCornerBuffer.Append( polyshape);
|
|
}
|
|
|
|
|
|
struct ROUNDED_CORNER
|
|
{
|
|
VECTOR2I m_position;
|
|
int m_radius;
|
|
ROUNDED_CORNER( int x, int y ) : m_position( VECTOR2I( x, y ) ), m_radius( 0 ) {}
|
|
ROUNDED_CORNER( int x, int y, int radius ) : m_position( VECTOR2I( x, y ) ), m_radius( radius ) {}
|
|
};
|
|
|
|
|
|
// Corner List requirements: no concave shape, corners in clockwise order, no duplicate corners
|
|
void CornerListToPolygon( SHAPE_POLY_SET& outline, std::vector<ROUNDED_CORNER>& aCorners,
|
|
int aInflate, int aError, ERROR_LOC aErrorLoc )
|
|
{
|
|
assert( aInflate >= 0 );
|
|
outline.NewOutline();
|
|
VECTOR2I incoming = aCorners[0].m_position - aCorners.back().m_position;
|
|
|
|
for( int n = 0, count = aCorners.size(); n < count; n++ )
|
|
{
|
|
ROUNDED_CORNER& cur = aCorners[n];
|
|
ROUNDED_CORNER& next = aCorners[( n + 1 ) % count];
|
|
VECTOR2I outgoing = next.m_position - cur.m_position;
|
|
|
|
if( !( aInflate || cur.m_radius ) )
|
|
{
|
|
outline.Append( cur.m_position );
|
|
}
|
|
else
|
|
{
|
|
VECTOR2I cornerPosition = cur.m_position;
|
|
int radius = cur.m_radius;
|
|
EDA_ANGLE endAngle;
|
|
double tanAngle2;
|
|
|
|
if( ( incoming.x == 0 && outgoing.y == 0 ) || ( incoming.y == 0 && outgoing.x == 0 ) )
|
|
{
|
|
endAngle = ANGLE_90;
|
|
tanAngle2 = 1.0;
|
|
}
|
|
else
|
|
{
|
|
double cosNum = (double) incoming.x * outgoing.x + (double) incoming.y * outgoing.y;
|
|
double cosDen = (double) incoming.EuclideanNorm() * outgoing.EuclideanNorm();
|
|
double angle = acos( cosNum / cosDen );
|
|
tanAngle2 = tan( ( M_PI - angle ) / 2 );
|
|
endAngle = EDA_ANGLE( angle, RADIANS_T );
|
|
}
|
|
|
|
if( aInflate )
|
|
{
|
|
radius += aInflate;
|
|
cornerPosition += incoming.Resize( aInflate / tanAngle2 )
|
|
+ incoming.Perpendicular().Resize( -aInflate );
|
|
}
|
|
|
|
// Ensure 16+ segments per 360deg and ensure first & last segment are the same size
|
|
int numSegs = std::max( 16, GetArcToSegmentCount( radius, aError, FULL_CIRCLE ) );
|
|
EDA_ANGLE angDelta = ANGLE_360 / numSegs;
|
|
EDA_ANGLE lastSeg = endAngle;
|
|
|
|
if( lastSeg > ANGLE_0 )
|
|
{
|
|
while( lastSeg > angDelta )
|
|
lastSeg -= angDelta;
|
|
}
|
|
else
|
|
{
|
|
while( lastSeg < -angDelta )
|
|
lastSeg += angDelta;
|
|
}
|
|
|
|
EDA_ANGLE angPos = lastSeg.IsZero() ? angDelta : ( angDelta + lastSeg ) / 2;
|
|
|
|
double arcTransitionDistance = radius / tanAngle2;
|
|
VECTOR2I arcStart = cornerPosition - incoming.Resize( arcTransitionDistance );
|
|
VECTOR2I arcCenter = arcStart + incoming.Perpendicular().Resize( radius );
|
|
VECTOR2I arcEnd, arcStartOrigin;
|
|
|
|
if( aErrorLoc == ERROR_INSIDE )
|
|
{
|
|
arcEnd = SEG( cornerPosition, arcCenter ).ReflectPoint( arcStart );
|
|
arcStartOrigin = arcStart - arcCenter;
|
|
outline.Append( arcStart );
|
|
}
|
|
else
|
|
{
|
|
// The outer radius should be radius+aError, recalculate because numSegs is clamped
|
|
int actualDeltaRadius = CircleToEndSegmentDeltaRadius( radius, numSegs );
|
|
int radiusExtend = GetCircleToPolyCorrection( actualDeltaRadius );
|
|
arcStart += incoming.Perpendicular().Resize( -radiusExtend );
|
|
arcStartOrigin = arcStart - arcCenter;
|
|
|
|
// To avoid "ears", we only add segments crossing/within the non-rounded outline
|
|
// Note: outlineIn is short and must be treated as defining an infinite line
|
|
SEG outlineIn( cornerPosition - incoming, cornerPosition );
|
|
VECTOR2I prevPt = arcStart;
|
|
arcEnd = cornerPosition; // default if no points within the outline are found
|
|
|
|
while( angPos < endAngle )
|
|
{
|
|
VECTOR2I pt = arcStartOrigin;
|
|
RotatePoint( pt, -angPos );
|
|
pt += arcCenter;
|
|
angPos += angDelta;
|
|
|
|
if( outlineIn.Side( pt ) > 0 )
|
|
{
|
|
VECTOR2I intersect = outlineIn.IntersectLines( SEG( prevPt, pt ) ).get();
|
|
outline.Append( intersect );
|
|
outline.Append( pt );
|
|
arcEnd = SEG( cornerPosition, arcCenter ).ReflectPoint( intersect );
|
|
break;
|
|
}
|
|
|
|
endAngle -= angDelta; // if skipping first, also skip last
|
|
prevPt = pt;
|
|
}
|
|
}
|
|
|
|
for( ; angPos < endAngle; angPos += angDelta )
|
|
{
|
|
VECTOR2I pt = arcStartOrigin;
|
|
RotatePoint( pt, -angPos );
|
|
outline.Append( pt + arcCenter );
|
|
}
|
|
|
|
outline.Append( arcEnd );
|
|
}
|
|
|
|
incoming = outgoing;
|
|
}
|
|
}
|
|
|
|
|
|
void CornerListRemoveDuplicates( std::vector<ROUNDED_CORNER>& aCorners )
|
|
{
|
|
VECTOR2I prev = aCorners[0].m_position;
|
|
|
|
for( int pos = aCorners.size() - 1; pos >= 0; pos-- )
|
|
{
|
|
if( aCorners[pos].m_position == prev )
|
|
aCorners.erase( aCorners.begin() + pos );
|
|
else
|
|
prev = aCorners[pos].m_position;
|
|
}
|
|
}
|
|
|
|
|
|
void TransformTrapezoidToPolygon( SHAPE_POLY_SET& aCornerBuffer, const VECTOR2I& aPosition,
|
|
const VECTOR2I& aSize, const EDA_ANGLE& aRotation, int aDeltaX,
|
|
int aDeltaY, int aInflate, int aError, ERROR_LOC aErrorLoc )
|
|
{
|
|
SHAPE_POLY_SET outline;
|
|
VECTOR2I size( aSize / 2 );
|
|
std::vector<ROUNDED_CORNER> corners;
|
|
|
|
if( aInflate < 0 )
|
|
{
|
|
if( !aDeltaX && !aDeltaY ) // rectangle
|
|
{
|
|
size.x = std::max( 1, size.x + aInflate );
|
|
size.y = std::max( 1, size.y + aInflate );
|
|
}
|
|
else if( aDeltaX ) // horizontal trapezoid
|
|
{
|
|
double slope = (double) aDeltaX / size.x;
|
|
int yShrink = KiROUND( ( std::hypot( size.x, aDeltaX ) * aInflate ) / size.x );
|
|
size.y = std::max( 1, size.y + yShrink );
|
|
size.x = std::max( 1, size.x + aInflate );
|
|
aDeltaX = KiROUND( size.x * slope );
|
|
|
|
if( aDeltaX > size.y ) // shrinking turned the trapezoid into a triangle
|
|
{
|
|
corners.reserve( 3 );
|
|
corners.emplace_back( -size.x, -size.y - aDeltaX );
|
|
corners.emplace_back( KiROUND( size.y / slope ), 0 );
|
|
corners.emplace_back( -size.x, size.y + aDeltaX );
|
|
}
|
|
}
|
|
else // vertical trapezoid
|
|
{
|
|
double slope = (double) aDeltaY / size.y;
|
|
int xShrink = KiROUND( ( std::hypot( size.y, aDeltaY ) * aInflate ) / size.y );
|
|
size.x = std::max( 1, size.x + xShrink );
|
|
size.y = std::max( 1, size.y + aInflate );
|
|
aDeltaY = KiROUND( size.y * slope );
|
|
|
|
if( aDeltaY > size.x )
|
|
{
|
|
corners.reserve( 3 );
|
|
corners.emplace_back( 0, -KiROUND( size.x / slope ) );
|
|
corners.emplace_back( size.x + aDeltaY, size.y );
|
|
corners.emplace_back( -size.x - aDeltaY, size.y );
|
|
}
|
|
}
|
|
|
|
aInflate = 0;
|
|
}
|
|
|
|
if( corners.empty() )
|
|
{
|
|
corners.reserve( 4 );
|
|
corners.emplace_back( -size.x + aDeltaY, -size.y - aDeltaX );
|
|
corners.emplace_back( size.x - aDeltaY, -size.y + aDeltaX );
|
|
corners.emplace_back( size.x + aDeltaY, size.y - aDeltaX );
|
|
corners.emplace_back( -size.x - aDeltaY, size.y + aDeltaX );
|
|
|
|
if( std::abs( aDeltaY ) == std::abs( size.x ) || std::abs( aDeltaX ) == std::abs( size.y ) )
|
|
CornerListRemoveDuplicates( corners );
|
|
}
|
|
|
|
CornerListToPolygon( outline, corners, aInflate, aError, aErrorLoc );
|
|
|
|
if( !aRotation.IsZero() )
|
|
outline.Rotate( aRotation );
|
|
|
|
outline.Move( VECTOR2I( aPosition ) );
|
|
aCornerBuffer.Append( outline );
|
|
}
|
|
|
|
|
|
void TransformRoundChamferedRectToPolygon( SHAPE_POLY_SET& aCornerBuffer, const VECTOR2I& aPosition,
|
|
const VECTOR2I& aSize, const EDA_ANGLE& aRotation,
|
|
int aCornerRadius, double aChamferRatio,
|
|
int aChamferCorners, int aInflate, int aError,
|
|
ERROR_LOC aErrorLoc )
|
|
{
|
|
SHAPE_POLY_SET outline;
|
|
VECTOR2I size( aSize / 2 );
|
|
int chamferCnt = std::bitset<8>( aChamferCorners ).count();
|
|
double chamferDeduct = 0;
|
|
|
|
if( aInflate < 0 )
|
|
{
|
|
size.x = std::max( 1, size.x + aInflate );
|
|
size.y = std::max( 1, size.y + aInflate );
|
|
chamferDeduct = aInflate * ( 2.0 - M_SQRT2 );
|
|
aCornerRadius = std::max( 0, aCornerRadius + aInflate );
|
|
aInflate = 0;
|
|
}
|
|
|
|
std::vector<ROUNDED_CORNER> corners;
|
|
corners.reserve( 4 + chamferCnt );
|
|
corners.emplace_back( -size.x, -size.y, aCornerRadius );
|
|
corners.emplace_back( size.x, -size.y, aCornerRadius );
|
|
corners.emplace_back( size.x, size.y, aCornerRadius );
|
|
corners.emplace_back( -size.x, size.y, aCornerRadius );
|
|
|
|
if( aChamferCorners )
|
|
{
|
|
int shorterSide = std::min( aSize.x, aSize.y );
|
|
int chamfer = std::max( 0, KiROUND( aChamferRatio * shorterSide + chamferDeduct ) );
|
|
int chamId[4] = { RECT_CHAMFER_TOP_LEFT, RECT_CHAMFER_TOP_RIGHT,
|
|
RECT_CHAMFER_BOTTOM_RIGHT, RECT_CHAMFER_BOTTOM_LEFT };
|
|
int sign[8] = { 0, 1, -1, 0, 0, -1, 1, 0 };
|
|
|
|
for( int cc = 0, pos = 0; cc < 4; cc++, pos++ )
|
|
{
|
|
if( !( aChamferCorners & chamId[cc] ) )
|
|
continue;
|
|
|
|
corners[pos].m_radius = 0;
|
|
|
|
if( chamfer == 0 )
|
|
continue;
|
|
|
|
corners.insert( corners.begin() + pos + 1, corners[pos] );
|
|
corners[pos].m_position.x += sign[( 2 * cc ) & 7] * chamfer;
|
|
corners[pos].m_position.y += sign[( 2 * cc - 2 ) & 7] * chamfer;
|
|
corners[pos + 1].m_position.x += sign[( 2 * cc + 1 ) & 7] * chamfer;
|
|
corners[pos + 1].m_position.y += sign[( 2 * cc - 1 ) & 7] * chamfer;
|
|
pos++;
|
|
}
|
|
|
|
if( chamferCnt > 1 && 2 * chamfer >= shorterSide )
|
|
CornerListRemoveDuplicates( corners );
|
|
}
|
|
|
|
CornerListToPolygon( outline, corners, aInflate, aError, aErrorLoc );
|
|
|
|
if( !aRotation.IsZero() )
|
|
outline.Rotate( aRotation );
|
|
|
|
outline.Move( aPosition );
|
|
aCornerBuffer.Append( outline );
|
|
}
|
|
|
|
|
|
int ConvertArcToPolyline( SHAPE_LINE_CHAIN& aPolyline, VECTOR2I aCenter, int aRadius,
|
|
const EDA_ANGLE& aStartAngle, const EDA_ANGLE& aArcAngle,
|
|
double aAccuracy, ERROR_LOC aErrorLoc )
|
|
{
|
|
int n = 2;
|
|
|
|
if( aRadius >= aAccuracy )
|
|
n = GetArcToSegmentCount( aRadius, aAccuracy, aArcAngle ) + 1;
|
|
|
|
EDA_ANGLE delta = aArcAngle / n;
|
|
|
|
if( aErrorLoc == ERROR_INSIDE )
|
|
{
|
|
// This is the easy case: with the error on the inside the endpoints of each segment
|
|
// are error-free.
|
|
|
|
EDA_ANGLE rot = aStartAngle;
|
|
|
|
for( int i = 0; i <= n; i++, rot += delta )
|
|
{
|
|
double x = aCenter.x + aRadius * rot.Cos();
|
|
double y = aCenter.y + aRadius * rot.Sin();
|
|
|
|
aPolyline.Append( KiROUND( x ), KiROUND( y ) );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// This is the hard case: with the error on the outside it's the segment midpoints
|
|
// that are error-free. So we need to add a half-segment at each end of the arc to get
|
|
// them correct.
|
|
|
|
int seg360 = std::abs( KiROUND( n * 360.0 / aArcAngle.AsDegrees() ) );
|
|
int actual_delta_radius = CircleToEndSegmentDeltaRadius( aRadius, seg360 );
|
|
int errorRadius = aRadius + actual_delta_radius;
|
|
|
|
double x = aCenter.x + aRadius * aStartAngle.Cos();
|
|
double y = aCenter.y + aRadius * aStartAngle.Sin();
|
|
|
|
aPolyline.Append( KiROUND( x ), KiROUND( y ) );
|
|
|
|
EDA_ANGLE rot = aStartAngle + delta / 2;
|
|
|
|
for( int i = 0; i < n; i++, rot += delta )
|
|
{
|
|
x = aCenter.x + errorRadius * rot.Cos();
|
|
y = aCenter.y + errorRadius * rot.Sin();
|
|
|
|
aPolyline.Append( KiROUND( x ), KiROUND( y ) );
|
|
}
|
|
|
|
x = aCenter.x + aRadius * ( aStartAngle + aArcAngle ).Cos();
|
|
y = aCenter.y + aRadius * ( aStartAngle + aArcAngle ).Sin();
|
|
|
|
aPolyline.Append( KiROUND( x ), KiROUND( y ) );
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
|
|
void TransformArcToPolygon( SHAPE_POLY_SET& aCornerBuffer, const VECTOR2I& aStart,
|
|
const VECTOR2I& aMid, const VECTOR2I& aEnd, int aWidth,
|
|
int aError, ERROR_LOC aErrorLoc )
|
|
{
|
|
SEG startToEnd( aStart, aEnd );
|
|
int distanceToMid = startToEnd.Distance( aMid );
|
|
|
|
if( distanceToMid <= 1 )
|
|
{
|
|
// Not an arc but essentially a straight line with a small error
|
|
TransformOvalToPolygon( aCornerBuffer, aStart, aEnd, aWidth + distanceToMid, aError,
|
|
aErrorLoc );
|
|
return;
|
|
}
|
|
|
|
// This appproximation builds a single polygon by starting with a 180 degree arc at one
|
|
// end, then the outer edge of the arc, then a 180 degree arc at the other end, and finally
|
|
// the inner edge of the arc.
|
|
SHAPE_ARC arc( aStart, aMid, aEnd, aWidth );
|
|
EDA_ANGLE arc_angle_start = arc.GetStartAngle();
|
|
EDA_ANGLE arc_angle = arc.GetCentralAngle();
|
|
EDA_ANGLE arc_angle_end = arc_angle_start + arc_angle;
|
|
EDA_ANGLE sweep = arc_angle < ANGLE_0 ? -ANGLE_180 : ANGLE_180;
|
|
|
|
if( arc_angle < ANGLE_0 )
|
|
{
|
|
std::swap( arc_angle_start, arc_angle_end );
|
|
arc = SHAPE_ARC( aEnd, aMid, aStart, aWidth );
|
|
arc_angle = -arc_angle;
|
|
}
|
|
|
|
int radial_offset = arc.GetWidth() / 2;
|
|
int arc_outer_radius = arc.GetRadius() + radial_offset;
|
|
int arc_inner_radius = arc.GetRadius() - radial_offset;
|
|
ERROR_LOC errorLocInner = ( aErrorLoc == ERROR_INSIDE ) ? ERROR_OUTSIDE : ERROR_INSIDE;
|
|
ERROR_LOC errorLocOuter = ( aErrorLoc == ERROR_INSIDE ) ? ERROR_INSIDE : ERROR_OUTSIDE;
|
|
|
|
SHAPE_POLY_SET polyshape;
|
|
polyshape.NewOutline();
|
|
|
|
SHAPE_LINE_CHAIN& outline = polyshape.Outline( 0 );
|
|
|
|
// Starting end
|
|
ConvertArcToPolyline( outline, arc.GetP0(), radial_offset, arc_angle_start - ANGLE_180,
|
|
ANGLE_180, aError, aErrorLoc );
|
|
|
|
// Outside edge
|
|
ConvertArcToPolyline( outline, arc.GetCenter(), arc_outer_radius, arc_angle_start, arc_angle,
|
|
aError, errorLocOuter );
|
|
|
|
// Other end
|
|
ConvertArcToPolyline( outline, arc.GetP1(), radial_offset, arc_angle_end, ANGLE_180, aError,
|
|
aErrorLoc );
|
|
|
|
// Inside edge
|
|
if( arc_inner_radius > 0 )
|
|
{
|
|
ConvertArcToPolyline( outline, arc.GetCenter(), arc_inner_radius, arc_angle_end,
|
|
-arc_angle, aError, errorLocInner );
|
|
}
|
|
|
|
aCornerBuffer.Append( polyshape );
|
|
}
|
|
|
|
|
|
void TransformRingToPolygon( SHAPE_POLY_SET& aCornerBuffer, const VECTOR2I& aCentre, int aRadius,
|
|
int aWidth, int aError, ERROR_LOC aErrorLoc )
|
|
{
|
|
int inner_radius = aRadius - ( aWidth / 2 );
|
|
int outer_radius = inner_radius + aWidth;
|
|
|
|
if( inner_radius <= 0 )
|
|
{
|
|
//In this case, the ring is just a circle (no hole inside)
|
|
TransformCircleToPolygon( aCornerBuffer, aCentre, aRadius + ( aWidth / 2 ), aError,
|
|
aErrorLoc );
|
|
return;
|
|
}
|
|
|
|
SHAPE_POLY_SET buffer;
|
|
|
|
TransformCircleToPolygon( buffer, aCentre, outer_radius, aError, aErrorLoc );
|
|
|
|
// Build the hole:
|
|
buffer.NewHole();
|
|
// The circle is the hole, so the approximation error location is the opposite of aErrorLoc
|
|
ERROR_LOC inner_err_loc = aErrorLoc == ERROR_OUTSIDE ? ERROR_INSIDE : ERROR_OUTSIDE;
|
|
TransformCircleToPolygon( buffer.Hole( 0, 0 ), aCentre, inner_radius,
|
|
aError, inner_err_loc );
|
|
|
|
buffer.Fracture( SHAPE_POLY_SET::PM_FAST );
|
|
aCornerBuffer.Append( buffer );
|
|
}
|