kicad/include/gal/opengl/vertex_manager.h

392 lines
13 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2013-2016 CERN
* @author Maciej Suminski <maciej.suminski@cern.ch>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/**
* @file vertex_manager.h
* @brief Class to control vertex container and GPU with possibility of emulating old-style OpenGL
* 1.0 state machine using modern OpenGL methods.
*/
#ifndef VERTEX_MANAGER_H_
#define VERTEX_MANAGER_H_
#define GLM_FORCE_RADIANS
#include <glm/gtc/matrix_transform.hpp>
#include <glm/glm.hpp>
#include <gal/opengl/vertex_common.h>
#include <gal/color4d.h>
#include <stack>
#include <memory>
#include <wx/log.h>
namespace KIGFX
{
class SHADER;
class VERTEX_ITEM;
class VERTEX_CONTAINER;
class GPU_MANAGER;
class VERTEX_MANAGER
{
public:
/**
* @brief Constructor.
*
* @param aCached says if vertices should be cached in GPU or system memory. For data that
* does not change every frame, it is better to store vertices in GPU memory.
*/
VERTEX_MANAGER( bool aCached );
/**
* Function Map()
* maps vertex buffer.
*/
void Map();
/**
* Function Unmap()
* unmaps vertex buffer.
*/
void Unmap();
/**
* Function Reserve()
* allocates space for vertices, so it will be used with subsequent Vertex() calls.
*
* @param aSize is the number of vertices that should be available in the reserved space.
* @return True if successful, false otherwise.
*/
bool Reserve( unsigned int aSize );
/**
* Function Vertex()
* adds a vertex with the given coordinates to the currently set item. Color & shader
* parameters stored in aVertex are ignored, instead color & shader set by Color() and
* Shader() functions are used. Vertex coordinates will have the current transformation
* matrix applied.
*
* @param aVertex contains vertex coordinates.
* @return True if successful, false otherwise.
*/
inline bool Vertex( const VERTEX& aVertex )
{
return Vertex( aVertex.x, aVertex.y, aVertex.z );
}
/**
* Function Vertex()
* adds a vertex with the given coordinates to the currently set item. Vertex coordinates will
* have the current transformation matrix applied.
*
* @param aX is the X coordinate of the new vertex.
* @param aY is the Y coordinate of the new vertex.
* @param aZ is the Z coordinate of the new vertex.
* @return True if successful, false otherwise.
*/
bool Vertex( GLfloat aX, GLfloat aY, GLfloat aZ );
/**
* Function Vertex()
* adds a vertex with the given coordinates to the currently set item. Vertex coordinates will
* have the current transformation matrix applied.
*
* @param aXY are the XY coordinates of the new vertex.
* @param aZ is the Z coordinate of the new vertex.
* @return True if successful, false otherwise.
*/
bool Vertex( const VECTOR2D& aXY, GLfloat aZ )
{
return Vertex( aXY.x, aXY.y, aZ );
}
/**
* Function Vertices()
* adds one or more vertices to the currently set item. It takes advantage of allocating memory
* in advance, so should be faster than adding vertices one by one. Color & shader
* parameters stored in aVertices are ignored, instead color & shader set by Color() and
* Shader() functions are used. All the vertex coordinates will have the current
* transformation matrix applied.
*
* @param aVertices contains vertices to be added
* @param aSize is the number of vertices to be added.
* @return True if successful, false otherwise.
*/
bool Vertices( const VERTEX aVertices[], unsigned int aSize );
/**
* Function Color()
* changes currently used color that will be applied to newly added vertices.
*
* @param aColor is the new color.
*/
inline void Color( const COLOR4D& aColor )
{
m_color[0] = aColor.r * 255.0;
m_color[1] = aColor.g * 255.0;
m_color[2] = aColor.b * 255.0;
m_color[3] = aColor.a * 255.0;
}
/**
* Function Color()
* changes currently used color that will be applied to newly added vertices. It is the
* equivalent of glColor4f() function.
* @param aRed is the red component of the new color.
* @param aGreen is the green component of the new color.
* @param aBlue is the blue component of the new color.
* @param aAlpha is the alpha component of the new color.
*/
inline void Color( GLfloat aRed, GLfloat aGreen, GLfloat aBlue, GLfloat aAlpha )
{
m_color[0] = aRed * 255.0;
m_color[1] = aGreen * 255.0;
m_color[2] = aBlue * 255.0;
m_color[3] = aAlpha * 255.0;
}
/**
* Function Shader()
* changes currently used shader and its parameters that will be applied to newly added
* vertices. Parameters depend on shader, for more information have a look at shaders source
* code.
* @see SHADER_TYPE
*
* @param aShaderType is the a shader type to be applied.
* @param aParam1 is the optional parameter for a shader.
* @param aParam2 is the optional parameter for a shader.
* @param aParam3 is the optional parameter for a shader.
*/
inline void Shader( int aShaderType, GLfloat aParam1 = 0.0f,
GLfloat aParam2 = 0.0f, GLfloat aParam3 = 0.0f )
{
m_shader[0] = (float) aShaderType;
m_shader[1] = aParam1;
m_shader[2] = aParam2;
m_shader[3] = aParam3;
}
/**
* Function Translate()
* multiplies the current matrix by a translation matrix, so newly vertices will be
* translated by the given vector. It is the equivalent of the glTranslatef() function.
*
* @param aX is the X coordinate of a translation vector.
* @param aY is the X coordinate of a translation vector.
* @param aZ is the X coordinate of a translation vector.
*/
inline void Translate( GLfloat aX, GLfloat aY, GLfloat aZ )
{
m_transform = glm::translate( m_transform, glm::vec3( aX, aY, aZ ) );
}
/**
* Function Rotate()
* multiplies the current matrix by a rotation matrix, so the newly vertices will be
* rotated by the given angles. It is the equivalent of the glRotatef() function.
*
* @param aAngle is the angle of rotation, in radians.
* @param aX is a multiplier for the X axis
* @param aY is a multiplier for the Y axis
* @param aZ is a multiplier for the Z axis.
*/
inline void Rotate( GLfloat aAngle, GLfloat aX, GLfloat aY, GLfloat aZ )
{
m_transform = glm::rotate( m_transform, aAngle, glm::vec3( aX, aY, aZ ) );
}
/**
* Function Scale()
* multiplies the current matrix by a scaling matrix, so the newly vertices will be
* scaled by the given factors. It is the equivalent of the glScalef() function.
*
* @param aX is the X axis scaling factor.
* @param aY is the Y axis scaling factor.
* @param aZ is the Z axis scaling factor.
*/
inline void Scale( GLfloat aX, GLfloat aY, GLfloat aZ )
{
m_transform = glm::scale( m_transform, glm::vec3( aX, aY, aZ ) );
}
/**
* Function PushMatrix()
* pushes the current transformation matrix stack. It is the equivalent of the glPushMatrix()
* function.
*/
inline void PushMatrix()
{
m_transformStack.push( m_transform );
// Every transformation starts with PushMatrix
m_noTransform = false;
}
/**
* Function PopMatrix()
* pops the current transformation matrix stack. It is the equivalent of the glPopMatrix()
* function.
*/
void PopMatrix()
{
wxASSERT( !m_transformStack.empty() );
m_transform = m_transformStack.top();
m_transformStack.pop();
if( m_transformStack.empty() )
{
// We return back to the identity matrix, thus no vertex transformation is needed
m_noTransform = true;
}
}
/**
* Function SetItem()
* sets an item to start its modifications. After calling the function it is possible to add
* vertices using function Add().
*
* @param aItem is the item that is going to store vertices in the container.
*/
void SetItem( VERTEX_ITEM& aItem ) const;
/**
* Function FinishItem()
* does the cleaning after adding an item.
*/
void FinishItem() const;
/**
* Function FreeItem()
* frees the memory occupied by the item, so it is no longer stored in the container.
*
* @param aItem is the item to be freed
*/
void FreeItem( VERTEX_ITEM& aItem ) const;
/**
* Function ChangeItemColor()
* changes the color of all vertices owned by an item.
*
* @param aItem is the item to change.
* @param aColor is the new color to be applied.
*/
void ChangeItemColor( const VERTEX_ITEM& aItem, const COLOR4D& aColor ) const;
/**
* Function ChangeItemDepth()
* changes the depth of all vertices owned by an item.
*
* @param aItem is the item to change.
* @param aDepth is the new color to be applied.
*/
void ChangeItemDepth( const VERTEX_ITEM& aItem, GLfloat aDepth ) const;
/**
* Function GetVertices()
* returns a pointer to the vertices owned by an item.
*
* @param aItem is the owner of vertices that are going to be returned.
* @return Pointer to the vertices or NULL if the item is not stored at the container.
*/
VERTEX* GetVertices( const VERTEX_ITEM& aItem ) const;
const glm::mat4& GetTransformation() const
{
return m_transform;
}
/**
* Function SetShader()
* sets a shader program that is going to be used during rendering.
* @param aShader is the object containing compiled and linked shader program.
*/
void SetShader( SHADER& aShader ) const;
/**
* Function Clear()
* removes all the stored vertices from the container.
*/
void Clear() const;
/**
* Function BeginDrawing()
* prepares buffers and items to start drawing.
*/
void BeginDrawing() const;
/**
* Function DrawItem()
* draws an item to the buffer.
*
* @param aItem is the item to be drawn.
*/
void DrawItem( const VERTEX_ITEM& aItem ) const;
/**
* Function EndDrawing()
* finishes drawing operations.
*/
void EndDrawing() const;
protected:
/**
* Function putVertex()
* applies all transformation to the given coordinates and store them at the specified target.
*
* @param aTarget is the place where the new vertex is going to be stored (it has to be
* allocated first).
* @param aX is the X coordinate of the new vertex.
* @param aY is the Y coordinate of the new vertex.
* @param aZ is the Z coordinate of the new vertex.
*/
void putVertex( VERTEX& aTarget, GLfloat aX, GLfloat aY, GLfloat aZ ) const;
/// Container for vertices, may be cached or noncached
std::shared_ptr<VERTEX_CONTAINER> m_container;
/// GPU manager for data transfers and drawing operations
std::shared_ptr<GPU_MANAGER> m_gpu;
/// State machine variables
/// True in case there is no need to transform vertices
bool m_noTransform;
/// Currently used transform matrix
glm::mat4 m_transform;
/// Stack of transformation matrices, used for Push/PopMatrix
std::stack<glm::mat4> m_transformStack;
/// Currently used color
GLubyte m_color[COLOR_STRIDE];
/// Currently used shader and its parameters
GLfloat m_shader[SHADER_STRIDE];
/// Currently reserved chunk to store vertices
VERTEX* m_reserved;
/// Currently available reserved space
unsigned int m_reservedSpace;
};
} // namespace KIGFX
#endif /* VERTEX_MANAGER_H_ */