kicad/pcbnew/router/pns_node.cpp

1258 lines
31 KiB
C++

/*
* KiRouter - a push-and-(sometimes-)shove PCB router
*
* Copyright (C) 2013-2014 CERN
* Author: Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <vector>
#include <cassert>
#include <math/vector2d.h>
#include <geometry/seg.h>
#include <geometry/shape.h>
#include <geometry/shape_line_chain.h>
#include <geometry/shape_index.h>
#include "trace.h"
#include "pns_item.h"
#include "pns_line.h"
#include "pns_node.h"
#include "pns_via.h"
#include "pns_solid.h"
#include "pns_joint.h"
#include "pns_index.h"
#include "pns_router.h"
using boost::unordered_set;
using boost::unordered_map;
#ifdef DEBUG
static boost::unordered_set<PNS_NODE*> allocNodes;
#endif
PNS_NODE::PNS_NODE()
{
TRACE( 0, "PNS_NODE::create %p", this );
m_depth = 0;
m_root = this;
m_parent = NULL;
m_maxClearance = 800000; // fixme: depends on how thick traces are.
m_index = new PNS_INDEX;
#ifdef DEBUG
allocNodes.insert( this );
#endif
}
PNS_NODE::~PNS_NODE()
{
TRACE( 0, "PNS_NODE::delete %p", this );
if( !m_children.empty() )
{
TRACEn( 0, "attempting to free a node that has kids.\n" );
assert( false );
}
#ifdef DEBUG
if( allocNodes.find( this ) == allocNodes.end() )
{
TRACEn( 0, "attempting to free an already-free'd node.\n" );
assert( false );
}
allocNodes.erase( this );
#endif
for( PNS_INDEX::ITEM_SET::iterator i = m_index->begin(); i != m_index->end(); ++i )
{
if( (*i)->BelongsTo( this ) )
delete *i;
}
unlinkParent();
delete m_index;
}
int PNS_NODE::GetClearance( const PNS_ITEM* aA, const PNS_ITEM* aB ) const
{
return (*m_clearanceFunctor)( aA, aB );
}
PNS_NODE* PNS_NODE::Branch()
{
PNS_NODE* child = new PNS_NODE;
TRACE( 0, "PNS_NODE::branch %p (parent %p)", child % this );
m_children.push_back( child );
child->m_depth = m_depth + 1;
child->m_parent = this;
child->m_clearanceFunctor = m_clearanceFunctor;
child->m_root = isRoot() ? this : m_root;
// immmediate offspring of the root branch needs not copy anything.
// For the rest, deep-copy joints, overridden item map and pointers
// to stored items.
if( !isRoot() )
{
JOINT_MAP::iterator j;
for( PNS_INDEX::ITEM_SET::iterator i = m_index->begin(); i != m_index->end(); ++i )
child->m_index->Add( *i );
child->m_joints = m_joints;
child->m_override = m_override;
}
TRACE( 2, "%d items, %d joints, %d overrides",
child->m_index->Size() % child->m_joints.size() % child->m_override.size() );
return child;
}
void PNS_NODE::unlinkParent()
{
if( isRoot() )
return;
for( std::vector<PNS_NODE*>::iterator i = m_parent->m_children.begin();
i != m_parent->m_children.end(); ++i )
{
if( *i == this )
{
m_parent->m_children.erase( i );
return;
}
}
}
// function object that visits potential obstacles and performs
// the actual collision refining
struct PNS_NODE::OBSTACLE_VISITOR
{
///> node we are searching in (either root or a branch)
PNS_NODE* m_node;
///> node that overrides root entries
PNS_NODE* m_override;
///> list of encountered obstacles
OBSTACLES& m_tab;
///> the item we are looking for collisions with
const PNS_ITEM* m_item;
///> acccepted kinds of colliding items (solids, vias, segments, etc...)
int m_kindMask;
///> max number of hits
int m_limitCount;
///> number of items found so far
int m_matchCount;
///> additional clearance
int m_extraClearance;
OBSTACLE_VISITOR( PNS_NODE::OBSTACLES& aTab, const PNS_ITEM* aItem, int aKindMask ) :
m_tab( aTab ),
m_item( aItem ),
m_kindMask( aKindMask ),
m_limitCount( -1 ),
m_matchCount( 0 ),
m_extraClearance( 0 )
{
if( aItem->Kind() == PNS_ITEM::LINE )
m_extraClearance += static_cast<const PNS_LINE*>( aItem )->Width() / 2;
}
void SetCountLimit( int aLimit )
{
m_limitCount = aLimit;
}
void SetWorld( PNS_NODE* aNode, PNS_NODE* aOverride = NULL )
{
m_node = aNode;
m_override = aOverride;
}
bool operator()( PNS_ITEM* aItem )
{
if( !aItem->OfKind( m_kindMask ) )
return true;
// check if there is a more recent branch with a newer
// (possibily modified) version of this item.
if( m_override && m_override->overrides( aItem ) )
return true;
int clearance = m_extraClearance + m_node->GetClearance( aItem, m_item );
if( aItem->Kind() == PNS_ITEM::LINE )
clearance += static_cast<PNS_LINE *>(aItem)->Width() / 2;
if( !aItem->Collide( m_item, clearance ) )
return true;
PNS_OBSTACLE obs;
obs.m_item = aItem;
m_tab.push_back( obs );
m_matchCount++;
if( m_limitCount > 0 && m_matchCount >= m_limitCount )
return false;
return true;
};
};
int PNS_NODE::QueryColliding( const PNS_ITEM* aItem,
PNS_NODE::OBSTACLES& aObstacles, int aKindMask, int aLimitCount )
{
OBSTACLE_VISITOR visitor( aObstacles, aItem, aKindMask );
#ifdef DEBUG
assert( allocNodes.find( this ) != allocNodes.end() );
#endif
visitor.SetCountLimit( aLimitCount );
visitor.SetWorld( this, NULL );
// first, look for colliding items in the local index
m_index->Query( aItem, m_maxClearance, visitor );
// if we haven't found enough items, look in the root branch as well.
if( !isRoot() && ( visitor.m_matchCount < aLimitCount || aLimitCount < 0 ) )
{
visitor.SetWorld( m_root, this );
m_root->m_index->Query( aItem, m_maxClearance, visitor );
}
return aObstacles.size();
}
PNS_NODE::OPT_OBSTACLE PNS_NODE::NearestObstacle( const PNS_LINE* aItem, int aKindMask )
{
OBSTACLES obs_list;
bool found_isects = false;
const SHAPE_LINE_CHAIN& line = aItem->CLine();
obs_list.reserve( 100 );
int n = 0;
for( int i = 0; i < line.SegmentCount(); i++ )
{
const PNS_SEGMENT s( *aItem, line.CSegment( i ) );
n += QueryColliding( &s, obs_list, aKindMask );
}
if( aItem->EndsWithVia() )
n += QueryColliding( &aItem->Via(), obs_list, aKindMask );
// if(! QueryColliding ( aItem, obs_list, aKindMask ))
if( !n )
return OPT_OBSTACLE();
PNS_LINE& aLine = (PNS_LINE&) *aItem;
PNS_OBSTACLE nearest;
nearest.m_item = NULL;
nearest.m_distFirst = INT_MAX;
BOOST_FOREACH( PNS_OBSTACLE obs, obs_list )
{
VECTOR2I ip_first, ip_last;
int dist_max = INT_MIN;
std::vector<SHAPE_LINE_CHAIN::INTERSECTION> isect_list;
int clearance = GetClearance( obs.m_item, &aLine );
SHAPE_LINE_CHAIN hull = obs.m_item->Hull( clearance, aItem->Width() );
if( aLine.EndsWithVia() )
{
int clearance = GetClearance( obs.m_item, &aLine.Via() );
SHAPE_LINE_CHAIN viaHull = aLine.Via().Hull( clearance, aItem->Width() );
viaHull.Intersect( hull, isect_list );
BOOST_FOREACH( SHAPE_LINE_CHAIN::INTERSECTION isect, isect_list )
{
int dist = aLine.CLine().Length() +
( isect.p - aLine.Via().Pos() ).EuclideanNorm();
if( dist < nearest.m_distFirst )
{
found_isects = true;
nearest.m_distFirst = dist;
nearest.m_ipFirst = isect.p;
nearest.m_item = obs.m_item;
nearest.m_hull = hull;
}
if( dist > dist_max )
{
dist_max = dist;
ip_last = isect.p;
}
}
}
isect_list.clear();
hull.Intersect( aLine.CLine(), isect_list );
BOOST_FOREACH( SHAPE_LINE_CHAIN::INTERSECTION isect, isect_list )
{
int dist = aLine.CLine().PathLength( isect.p );
if( dist < nearest.m_distFirst )
{
found_isects = true;
nearest.m_distFirst = dist;
nearest.m_ipFirst = isect.p;
nearest.m_item = obs.m_item;
nearest.m_hull = hull;
}
if( dist > dist_max )
{
dist_max = dist;
ip_last = isect.p;
}
}
nearest.m_ipLast = ip_last;
nearest.m_distLast = dist_max;
}
if( !found_isects )
nearest.m_item = obs_list[0].m_item;
return nearest;
}
PNS_NODE::OPT_OBSTACLE PNS_NODE::CheckColliding( const PNS_ITEMSET& aSet, int aKindMask )
{
BOOST_FOREACH( const PNS_ITEM* item, aSet.CItems() )
{
OPT_OBSTACLE obs = CheckColliding( item, aKindMask );
if( obs )
return obs;
}
return OPT_OBSTACLE();
}
PNS_NODE::OPT_OBSTACLE PNS_NODE::CheckColliding( const PNS_ITEM* aItemA, int aKindMask )
{
OBSTACLES obs;
obs.reserve( 100 );
if( aItemA->Kind() == PNS_ITEM::LINE )
{
int n = 0;
const PNS_LINE* line = static_cast<const PNS_LINE*>( aItemA );
const SHAPE_LINE_CHAIN& l = line->CLine();
for( int i = 0; i < l.SegmentCount(); i++ )
{
const PNS_SEGMENT s( *line, l.CSegment( i ) );
n += QueryColliding( &s, obs, aKindMask, 1 );
if( n )
return OPT_OBSTACLE( obs[0] );
}
if( line->EndsWithVia() )
{
n += QueryColliding( &line->Via(), obs, aKindMask, 1 );
if( n )
return OPT_OBSTACLE( obs[0] );
}
}
else if( QueryColliding( aItemA, obs, aKindMask, 1 ) > 0 )
return OPT_OBSTACLE( obs[0] );
return OPT_OBSTACLE();
}
bool PNS_NODE::CheckColliding( const PNS_ITEM* aItemA, const PNS_ITEM* aItemB, int aKindMask )
{
assert( aItemB );
int clearance = GetClearance( aItemA, aItemB );
// fixme: refactor
if( aItemA->Kind() == PNS_ITEM::LINE )
clearance += static_cast<const PNS_LINE*>( aItemA )->Width() / 2;
if( aItemB->Kind() == PNS_ITEM::LINE )
clearance += static_cast<const PNS_LINE*>( aItemB )->Width() / 2;
return aItemA->Collide( aItemB, clearance );
}
struct HIT_VISITOR
{
PNS_ITEMSET& m_items;
const VECTOR2I& m_point;
const PNS_NODE* m_world;
HIT_VISITOR( PNS_ITEMSET& aTab, const VECTOR2I& aPoint, const PNS_NODE* aWorld ) :
m_items( aTab ), m_point( aPoint ), m_world( aWorld )
{}
bool operator()( PNS_ITEM* aItem )
{
SHAPE_CIRCLE cp( m_point, 0 );
int cl = 0;
if( aItem->Shape()->Collide( &cp, cl ) )
m_items.Add( aItem );
return true;
}
};
const PNS_ITEMSET PNS_NODE::HitTest( const VECTOR2I& aPoint ) const
{
PNS_ITEMSET items;
// fixme: we treat a point as an infinitely small circle - this is inefficient.
SHAPE_CIRCLE s( aPoint, 0 );
HIT_VISITOR visitor( items, aPoint, this );
m_index->Query( &s, m_maxClearance, visitor );
if( !isRoot() ) // fixme: could be made cleaner
{
PNS_ITEMSET items_root;
HIT_VISITOR visitor_root( items_root, aPoint, m_root );
m_root->m_index->Query( &s, m_maxClearance, visitor_root );
BOOST_FOREACH( PNS_ITEM* item, items_root.Items() )
{
if( !overrides( item ) )
items.Add( item );
}
}
return items;
}
void PNS_NODE::addSolid( PNS_SOLID* aSolid )
{
linkJoint( aSolid->Pos(), aSolid->Layers(), aSolid->Net(), aSolid );
m_index->Add( aSolid );
}
void PNS_NODE::addVia( PNS_VIA* aVia )
{
linkJoint( aVia->Pos(), aVia->Layers(), aVia->Net(), aVia );
m_index->Add( aVia );
}
void PNS_NODE::addLine( PNS_LINE* aLine, bool aAllowRedundant )
{
SHAPE_LINE_CHAIN& l = aLine->Line();
for( int i = 0; i < l.SegmentCount(); i++ )
{
SEG s = l.CSegment( i );
if( s.A != s.B )
{
PNS_SEGMENT* pseg = new PNS_SEGMENT( *aLine, s );
PNS_SEGMENT* psegR = NULL;
if ( !aAllowRedundant )
psegR = findRedundantSegment( pseg );
if( psegR )
aLine->LinkSegment( psegR );
else
{
pseg->SetOwner( this );
linkJoint( s.A, pseg->Layers(), aLine->Net(), pseg );
linkJoint( s.B, pseg->Layers(), aLine->Net(), pseg );
aLine->LinkSegment( pseg );
m_index->Add( pseg );
}
}
}
}
void PNS_NODE::addSegment( PNS_SEGMENT* aSeg, bool aAllowRedundant )
{
if( aSeg->Seg().A == aSeg->Seg().B )
{
TRACEn( 0, "attempting to add a segment with same end coordinates, ignoring." )
return;
}
if( !aAllowRedundant && findRedundantSegment ( aSeg ) )
return;
aSeg->SetOwner( this );
linkJoint( aSeg->Seg().A, aSeg->Layers(), aSeg->Net(), aSeg );
linkJoint( aSeg->Seg().B, aSeg->Layers(), aSeg->Net(), aSeg );
m_index->Add( aSeg );
}
void PNS_NODE::Add( PNS_ITEM* aItem, bool aAllowRedundant )
{
aItem->SetOwner( this );
switch( aItem->Kind() )
{
case PNS_ITEM::SOLID:
addSolid( static_cast<PNS_SOLID*>( aItem ) );
break;
case PNS_ITEM::SEGMENT:
addSegment( static_cast<PNS_SEGMENT*>( aItem ), aAllowRedundant );
break;
case PNS_ITEM::LINE:
addLine( static_cast<PNS_LINE*>( aItem ), aAllowRedundant );
break;
case PNS_ITEM::VIA:
addVia( static_cast<PNS_VIA*>( aItem ) );
break;
default:
assert( false );
}
}
void PNS_NODE::doRemove( PNS_ITEM* aItem )
{
// assert(m_root->m_index->Contains(aItem) || m_index->Contains(aItem));
// case 1: removing an item that is stored in the root node from any branch:
// mark it as overridden, but do not remove
if( aItem->BelongsTo( m_root ) && !isRoot() )
m_override.insert( aItem );
// case 2: the item belongs to this branch or a parent, non-root branch,
// or the root itself and we are the root: remove from the index
else if( !aItem->BelongsTo( m_root ) || isRoot() )
m_index->Remove( aItem );
// the item belongs to this particular branch: un-reference it
if( aItem->BelongsTo( this ) )
aItem->SetOwner( NULL );
}
void PNS_NODE::removeSegment( PNS_SEGMENT* aSeg )
{
unlinkJoint( aSeg->Seg().A, aSeg->Layers(), aSeg->Net(), aSeg );
unlinkJoint( aSeg->Seg().B, aSeg->Layers(), aSeg->Net(), aSeg );
doRemove( aSeg );
}
void PNS_NODE::removeLine( PNS_LINE* aLine )
{
std::vector<PNS_SEGMENT*>* segRefs = aLine->LinkedSegments();
if(! aLine->SegmentCount() )
return;
assert (segRefs != NULL);
assert (aLine->Owner());
if ( (int) segRefs->size() != aLine->SegmentCount() )
{
//printf("******weird deletion: segrefs %d segcount %d hasloops %d\n", segRefs->size(), aLine->SegmentCount(), aLine->HasLoops());
}
BOOST_FOREACH( PNS_SEGMENT* seg, *segRefs )
{
removeSegment( seg );
}
aLine->SetOwner( NULL );
aLine->ClearSegmentLinks();
}
void PNS_NODE::removeVia( PNS_VIA* aVia )
{
// We have to split a single joint (associated with a via, binding together multiple layers)
// into multiple independent joints. As I'm a lazy bastard, I simply delete the via and all its links and re-insert them.
PNS_JOINT::HASH_TAG tag;
VECTOR2I p( aVia->Pos() );
PNS_LAYERSET vLayers( aVia->Layers() );
int net = aVia->Net();
PNS_JOINT* jt = FindJoint( p, vLayers.Start(), net );
PNS_JOINT::LINKED_ITEMS links( jt->LinkList() );
tag.net = net;
tag.pos = p;
bool split;
do
{
split = false;
std::pair<JOINT_MAP::iterator, JOINT_MAP::iterator> range = m_joints.equal_range( tag );
if( range.first == m_joints.end() )
break;
// find and remove all joints containing the via to be removed
for( JOINT_MAP::iterator f = range.first; f != range.second; ++f )
{
if( aVia->LayersOverlap ( &f->second ) )
{
m_joints.erase( f );
split = true;
break;
}
}
} while( split );
// and re-link them, using the former via's link list
BOOST_FOREACH(PNS_ITEM* item, links)
{
if( item != aVia )
linkJoint ( p, item->Layers(), net, item );
}
doRemove( aVia );
}
void PNS_NODE::Replace( PNS_ITEM* aOldItem, PNS_ITEM* aNewItem )
{
Remove( aOldItem );
Add( aNewItem );
}
void PNS_NODE::Remove( PNS_ITEM* aItem )
{
switch( aItem->Kind() )
{
case PNS_ITEM::SOLID:
// fixme: this fucks up the joints, but it's only used for marking colliding obstacles for the moment, so we don't care.
doRemove ( aItem );
break;
case PNS_ITEM::SEGMENT:
removeSegment( static_cast<PNS_SEGMENT*>( aItem ) );
break;
case PNS_ITEM::LINE:
removeLine( static_cast<PNS_LINE*>( aItem ) );
break;
case PNS_ITEM::VIA:
removeVia( static_cast<PNS_VIA*>( aItem ) );
break;
default:
break;
}
}
void PNS_NODE::followLine( PNS_SEGMENT* aCurrent, bool aScanDirection, int& aPos,
int aLimit, VECTOR2I* aCorners, PNS_SEGMENT** aSegments, bool& aGuardHit )
{
bool prevReversed = false;
const VECTOR2I guard = aScanDirection ? aCurrent->Seg().B : aCurrent->Seg().A;
for( int count = 0 ; ; ++count )
{
const VECTOR2I p =
( aScanDirection ^ prevReversed ) ? aCurrent->Seg().B : aCurrent->Seg().A;
const PNS_JOINT* jt = FindJoint( p, aCurrent );
assert( jt );
aCorners[aPos] = jt->Pos();
if( count && guard == p )
{
aSegments[aPos] = NULL;
aGuardHit = true;
break;
}
aSegments[aPos] = aCurrent;
aPos += ( aScanDirection ? 1 : -1 );
if( !jt->IsLineCorner() || aPos < 0 || aPos == aLimit )
break;
aCurrent = jt->NextSegment( aCurrent );
prevReversed =
( jt->Pos() == (aScanDirection ? aCurrent->Seg().B : aCurrent->Seg().A ) );
}
}
PNS_LINE* PNS_NODE::AssembleLine( PNS_SEGMENT* aSeg, int* aOriginSegmentIndex)
{
const int MaxVerts = 1024;
VECTOR2I corners[MaxVerts + 1];
PNS_SEGMENT* segs[MaxVerts + 1];
PNS_LINE* pl = new PNS_LINE;
bool guardHit = false;
int i_start = MaxVerts / 2, i_end = i_start + 1;
pl->SetWidth( aSeg->Width() );
pl->SetLayers( aSeg->Layers() );
pl->SetNet( aSeg->Net() );
pl->SetOwner( this );
followLine( aSeg, false, i_start, MaxVerts, corners, segs, guardHit );
if( !guardHit )
followLine( aSeg, true, i_end, MaxVerts, corners, segs, guardHit );
int n = 0;
PNS_SEGMENT* prev_seg = NULL;
for( int i = i_start + 1; i < i_end; i++ )
{
const VECTOR2I& p = corners[i];
pl->Line().Append( p );
if( segs[i] && prev_seg != segs[i] )
{
pl->LinkSegment( segs[i] );
if( segs[i] == aSeg && aOriginSegmentIndex )
*aOriginSegmentIndex = n;
n++;
}
prev_seg = segs[i];
}
assert( pl->SegmentCount() != 0 );
assert( pl->SegmentCount() == (int) pl->LinkedSegments()->size() );
return pl;
}
void PNS_NODE::FindLineEnds( PNS_LINE* aLine, PNS_JOINT& aA, PNS_JOINT& aB )
{
aA = *FindJoint( aLine->CPoint( 0 ), aLine );
aB = *FindJoint( aLine->CPoint( -1 ), aLine );
}
void PNS_NODE::MapConnectivity ( PNS_JOINT* aStart, std::vector<PNS_JOINT*>& aFoundJoints )
{
std::deque<PNS_JOINT*> searchQueue;
std::set<PNS_JOINT*> processed;
searchQueue.push_back( aStart );
processed.insert( aStart );
while( !searchQueue.empty() )
{
PNS_JOINT* current = searchQueue.front();
searchQueue.pop_front();
BOOST_FOREACH( PNS_ITEM* item, current->LinkList() )
{
if ( item->OfKind( PNS_ITEM::SEGMENT ) )
{
PNS_SEGMENT* seg = static_cast<PNS_SEGMENT *>( item );
PNS_JOINT* a = FindJoint( seg->Seg().A, seg );
PNS_JOINT* b = FindJoint( seg->Seg().B, seg );
PNS_JOINT* next = ( *a == *current ) ? b : a;
if( processed.find( next ) == processed.end() )
{
processed.insert( next );
searchQueue.push_back( next );
}
}
}
}
BOOST_FOREACH(PNS_JOINT* jt, processed)
aFoundJoints.push_back( jt );
}
PNS_ITEM* PNS_NODE::NearestUnconnectedItem( PNS_JOINT* aStart, int* aAnchor, int aKindMask )
{
std::set<PNS_ITEM*> disconnected;
std::vector<PNS_JOINT*> joints;
AllItemsInNet( aStart->Net(), disconnected );
MapConnectivity ( aStart, joints );
BOOST_FOREACH( PNS_JOINT *jt, joints )
{
BOOST_FOREACH( PNS_ITEM* link, jt->LinkList() )
{
if( disconnected.find( link ) != disconnected.end() )
disconnected.erase( link );
}
}
int best_dist = INT_MAX;
PNS_ITEM* best = NULL;
BOOST_FOREACH( PNS_ITEM* item, disconnected )
{
if( item->OfKind( aKindMask ) )
{
for(int i = 0; i < item->AnchorCount(); i++)
{
VECTOR2I p = item->Anchor( i );
int d = ( p - aStart->Pos() ).EuclideanNorm();
if( d < best_dist )
{
best_dist = d;
best = item;
if( aAnchor )
*aAnchor = i;
}
}
}
}
return best;
}
int PNS_NODE::FindLinesBetweenJoints( PNS_JOINT& aA, PNS_JOINT& aB, std::vector<PNS_LINE*>& aLines )
{
BOOST_FOREACH( PNS_ITEM* item, aA.LinkList() )
{
if( item->Kind() == PNS_ITEM::SEGMENT )
{
PNS_SEGMENT* seg = static_cast<PNS_SEGMENT*>( item );
PNS_LINE* line = AssembleLine( seg );
PNS_JOINT j_start, j_end;
FindLineEnds( line, j_start, j_end );
int id_start = line->CLine().Find( aA.Pos() );
int id_end = line->CLine().Find( aB.Pos() );
if( id_end < id_start )
std::swap( id_end, id_start );
if( id_start >= 0 && id_end >= 0 )
{
line->ClipVertexRange ( id_start, id_end );
aLines.push_back( line );
}
else
delete line;
}
}
return 0;
}
PNS_JOINT* PNS_NODE::FindJoint( const VECTOR2I& aPos, int aLayer, int aNet )
{
PNS_JOINT::HASH_TAG tag;
tag.net = aNet;
tag.pos = aPos;
JOINT_MAP::iterator f = m_joints.find( tag ), end = m_joints.end();
if( f == end && !isRoot() )
{
end = m_root->m_joints.end();
f = m_root->m_joints.find( tag ); // m_root->FindJoint(aPos, aLayer, aNet);
}
if( f == end )
return NULL;
while( f != end )
{
if( f->second.Layers().Overlaps( aLayer ) )
return &f->second;
++f;
}
return NULL;
}
PNS_JOINT& PNS_NODE::touchJoint( const VECTOR2I& aPos, const PNS_LAYERSET& aLayers, int aNet )
{
PNS_JOINT::HASH_TAG tag;
tag.pos = aPos;
tag.net = aNet;
// try to find the joint in this node.
JOINT_MAP::iterator f = m_joints.find( tag );
std::pair<JOINT_MAP::iterator, JOINT_MAP::iterator> range;
// not found and we are not root? find in the root and copy results here.
if( f == m_joints.end() && !isRoot() )
{
range = m_root->m_joints.equal_range( tag );
for( f = range.first; f != range.second; ++f )
m_joints.insert( *f );
}
// now insert and combine overlapping joints
PNS_JOINT jt( aPos, aLayers, aNet );
bool merged;
do
{
merged = false;
range = m_joints.equal_range( tag );
if( range.first == m_joints.end() )
break;
for( f = range.first; f != range.second; ++f )
{
if( aLayers.Overlaps( f->second.Layers() ) )
{
jt.Merge( f->second );
m_joints.erase( f );
merged = true;
break;
}
}
}
while( merged );
return m_joints.insert( TagJointPair( tag, jt ) )->second;
}
void PNS_JOINT::Dump() const
{
printf( "joint layers %d-%d, net %d, pos %s, links: %d\n", m_layers.Start(),
m_layers.End(), m_tag.net, m_tag.pos.Format().c_str(), LinkCount() );
}
void PNS_NODE::linkJoint( const VECTOR2I& aPos, const PNS_LAYERSET& aLayers,
int aNet, PNS_ITEM* aWhere )
{
PNS_JOINT& jt = touchJoint( aPos, aLayers, aNet );
jt.Link( aWhere );
}
void PNS_NODE::unlinkJoint( const VECTOR2I& aPos, const PNS_LAYERSET& aLayers,
int aNet, PNS_ITEM* aWhere )
{
// fixme: remove dangling joints
PNS_JOINT& jt = touchJoint( aPos, aLayers, aNet );
jt.Unlink( aWhere );
}
void PNS_NODE::Dump( bool aLong )
{
#if 0
boost::unordered_set<PNS_SEGMENT*> all_segs;
SHAPE_INDEX_LIST<PNS_ITEM*>::iterator i;
for( i = m_items.begin(); i != m_items.end(); i++ )
{
if( (*i)->GetKind() == PNS_ITEM::SEGMENT )
all_segs.insert( static_cast<PNS_SEGMENT*>( *i ) );
}
if( !isRoot() )
{
for( i = m_root->m_items.begin(); i != m_root->m_items.end(); i++ )
{
if( (*i)->GetKind() == PNS_ITEM::SEGMENT && !overrides( *i ) )
all_segs.insert( static_cast<PNS_SEGMENT*>(*i) );
}
}
JOINT_MAP::iterator j;
if( aLong )
for( j = m_joints.begin(); j != m_joints.end(); ++j )
{
printf( "joint : %s, links : %d\n",
j->second.GetPos().Format().c_str(), j->second.LinkCount() );
PNS_JOINT::LINKED_ITEMS::const_iterator k;
for( k = j->second.GetLinkList().begin(); k != j->second.GetLinkList().end(); ++k )
{
const PNS_ITEM* m_item = *k;
switch( m_item->GetKind() )
{
case PNS_ITEM::SEGMENT:
{
const PNS_SEGMENT* seg = static_cast<const PNS_SEGMENT*>( m_item );
printf( " -> seg %s %s\n", seg->GetSeg().A.Format().c_str(),
seg->GetSeg().B.Format().c_str() );
break;
}
default:
break;
}
}
}
int lines_count = 0;
while( !all_segs.empty() )
{
PNS_SEGMENT* s = *all_segs.begin();
PNS_LINE* l = AssembleLine( s );
PNS_LINE::LinkedSegments* seg_refs = l->GetLinkedSegments();
if( aLong )
printf( "Line: %s, net %d ", l->GetLine().Format().c_str(), l->GetNet() );
for( std::vector<PNS_SEGMENT*>::iterator j = seg_refs->begin(); j != seg_refs->end(); ++j )
{
printf( "%s ", (*j)->GetSeg().A.Format().c_str() );
if( j + 1 == seg_refs->end() )
printf( "%s\n", (*j)->GetSeg().B.Format().c_str() );
all_segs.erase( *j );
}
lines_count++;
}
printf( "Local joints: %d, lines : %d \n", m_joints.size(), lines_count );
#endif
}
void PNS_NODE::GetUpdatedItems( ITEM_VECTOR& aRemoved, ITEM_VECTOR& aAdded )
{
aRemoved.reserve( m_override.size() );
aAdded.reserve( m_index->Size() );
if( isRoot() )
return;
BOOST_FOREACH( PNS_ITEM* item, m_override )
aRemoved.push_back( item );
for( PNS_INDEX::ITEM_SET::iterator i = m_index->begin(); i != m_index->end(); ++i )
aAdded.push_back( *i );
}
void PNS_NODE::releaseChildren()
{
// copy the kids as the PNS_NODE destructor erases the item from the parent node.
std::vector<PNS_NODE*> kids = m_children;
BOOST_FOREACH( PNS_NODE * node, kids )
{
node->releaseChildren();
delete node;
}
}
void PNS_NODE::Commit( PNS_NODE* aNode )
{
if( aNode->isRoot() )
return;
BOOST_FOREACH( PNS_ITEM * item, aNode->m_override )
Remove( item );
for( PNS_INDEX::ITEM_SET::iterator i = aNode->m_index->begin();
i != aNode->m_index->end(); ++i )
{
(*i)->SetRank( -1 );
(*i)->Unmark();
Add( *i );
}
releaseChildren();
}
void PNS_NODE::KillChildren()
{
assert ( isRoot() );
releaseChildren();
}
void PNS_NODE::AllItemsInNet( int aNet, std::set<PNS_ITEM*>& aItems )
{
PNS_INDEX::NET_ITEMS_LIST* l_cur = m_index->GetItemsForNet( aNet );
if( l_cur )
{
BOOST_FOREACH( PNS_ITEM*item, *l_cur )
aItems.insert( item );
}
if( !isRoot() )
{
PNS_INDEX::NET_ITEMS_LIST* l_root = m_root->m_index->GetItemsForNet( aNet );
if( l_root )
for( PNS_INDEX::NET_ITEMS_LIST::iterator i = l_root->begin(); i!= l_root->end(); ++i )
if( !overrides( *i ) )
aItems.insert( *i );
}
}
void PNS_NODE::ClearRanks()
{
for( PNS_INDEX::ITEM_SET::iterator i = m_index->begin(); i != m_index->end(); ++i )
{
(*i)->SetRank( -1 );
(*i)->Mark( 0 );
}
}
int PNS_NODE::FindByMarker( int aMarker, PNS_ITEMSET& aItems )
{
for( PNS_INDEX::ITEM_SET::iterator i = m_index->begin(); i != m_index->end(); ++i )
{
if( (*i)->Marker() & aMarker )
aItems.Add( *i );
}
return 0;
}
int PNS_NODE::RemoveByMarker( int aMarker )
{
for( PNS_INDEX::ITEM_SET::iterator i = m_index->begin(); i != m_index->end(); ++i )
{
if ( (*i)->Marker() & aMarker )
{
Remove( *i );
}
}
return 0;
}
PNS_SEGMENT* PNS_NODE::findRedundantSegment ( PNS_SEGMENT *aSeg )
{
PNS_JOINT* jtStart = FindJoint ( aSeg->Seg().A, aSeg );
if( !jtStart )
return NULL;
BOOST_FOREACH( PNS_ITEM* item, jtStart->LinkList() )
{
if( item->OfKind( PNS_ITEM::SEGMENT ) )
{
PNS_SEGMENT* seg2 = (PNS_SEGMENT*) item;
const VECTOR2I a1( aSeg->Seg().A );
const VECTOR2I b1( aSeg->Seg().B );
const VECTOR2I a2( seg2->Seg().A );
const VECTOR2I b2( seg2->Seg().B );
if( seg2->Layers().Start() == aSeg->Layers().Start() &&
( ( a1 == a2 && b1 == b2 ) || ( a1 == b2 && a2 == b1 ) ) )
return seg2;
}
}
return NULL;
}