Add json output

This commit is contained in:
Audrey 2024-04-12 13:49:10 -07:00
parent 49615b5017
commit 61caed9ccd
5 changed files with 1037 additions and 822 deletions

2
.gitignore vendored
View File

@ -1 +1,3 @@
/target
*.log
*.json

133
Cargo.lock generated
View File

@ -89,6 +89,46 @@ version = "0.1.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "fd16c4719339c4530435d38e511904438d07cce7950afa3718a84ac36c10e89e"
[[package]]
name = "clap"
version = "4.5.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "90bc066a67923782aa8515dbaea16946c5bcc5addbd668bb80af688e53e548a0"
dependencies = [
"clap_builder",
"clap_derive",
]
[[package]]
name = "clap_builder"
version = "4.5.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ae129e2e766ae0ec03484e609954119f123cc1fe650337e155d03b022f24f7b4"
dependencies = [
"anstream",
"anstyle",
"clap_lex",
"strsim",
]
[[package]]
name = "clap_derive"
version = "4.5.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "528131438037fd55894f62d6e9f068b8f45ac57ffa77517819645d10aed04f64"
dependencies = [
"heck",
"proc-macro2",
"quote",
"syn",
]
[[package]]
name = "clap_lex"
version = "0.7.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "98cc8fbded0c607b7ba9dd60cd98df59af97e84d24e49c8557331cfc26d301ce"
[[package]]
name = "colorchoice"
version = "1.0.0"
@ -118,12 +158,24 @@ dependencies = [
"log",
]
[[package]]
name = "heck"
version = "0.5.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2304e00983f87ffb38b55b444b5e3b60a884b5d30c0fca7d82fe33449bbe55ea"
[[package]]
name = "humantime"
version = "2.1.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9a3a5bfb195931eeb336b2a7b4d761daec841b97f947d34394601737a7bba5e4"
[[package]]
name = "itoa"
version = "1.0.11"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "49f1f14873335454500d59611f1cf4a4b0f786f9ac11f4312a78e4cf2566695b"
[[package]]
name = "libc"
version = "0.2.153"
@ -169,10 +221,31 @@ name = "ontology"
version = "0.1.0"
dependencies = [
"anyhow",
"clap",
"env_logger",
"linux-personality",
"log",
"nix",
"serde",
"serde_json",
]
[[package]]
name = "proc-macro2"
version = "1.0.79"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e835ff2298f5721608eb1a980ecaee1aef2c132bf95ecc026a11b7bf3c01c02e"
dependencies = [
"unicode-ident",
]
[[package]]
name = "quote"
version = "1.0.36"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0fa76aaf39101c457836aec0ce2316dbdc3ab723cdda1c6bd4e6ad4208acaca7"
dependencies = [
"proc-macro2",
]
[[package]]
@ -204,6 +277,66 @@ version = "0.8.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "adad44e29e4c806119491a7f06f03de4d1af22c3a680dd47f1e6e179439d1f56"
[[package]]
name = "ryu"
version = "1.0.17"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e86697c916019a8588c99b5fac3cead74ec0b4b819707a682fd4d23fa0ce1ba1"
[[package]]
name = "serde"
version = "1.0.197"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3fb1c873e1b9b056a4dc4c0c198b24c3ffa059243875552b2bd0933b1aee4ce2"
dependencies = [
"serde_derive",
]
[[package]]
name = "serde_derive"
version = "1.0.197"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7eb0b34b42edc17f6b7cac84a52a1c5f0e1bb2227e997ca9011ea3dd34e8610b"
dependencies = [
"proc-macro2",
"quote",
"syn",
]
[[package]]
name = "serde_json"
version = "1.0.115"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "12dc5c46daa8e9fdf4f5e71b6cf9a53f2487da0e86e55808e2d35539666497dd"
dependencies = [
"itoa",
"ryu",
"serde",
]
[[package]]
name = "strsim"
version = "0.11.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7da8b5736845d9f2fcb837ea5d9e2628564b3b043a70948a3f0b778838c5fb4f"
[[package]]
name = "syn"
version = "2.0.58"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "44cfb93f38070beee36b3fef7d4f5a16f27751d94b187b666a5cc5e9b0d30687"
dependencies = [
"proc-macro2",
"quote",
"unicode-ident",
]
[[package]]
name = "unicode-ident"
version = "1.0.12"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3354b9ac3fae1ff6755cb6db53683adb661634f67557942dea4facebec0fee4b"
[[package]]
name = "utf8parse"
version = "0.2.1"

View File

@ -11,3 +11,6 @@ linux-personality = "1.0.0"
anyhow = "1"
log = "0.4"
env_logger = "0.11"
serde = { version = "1", features = ["derive"] }
serde_json = "1.0"
clap = { version = "4.5.4", features = ["derive"] }

View File

@ -1,834 +1,42 @@
use std::{
collections::HashMap,
ffi::CString,
path::PathBuf,
process::exit,
time::{Duration, Instant},
};
mod tracer;
use nix::{
errno::Errno,
libc::{pid_t, raise, tcsetpgrp, SYS_clone, SYS_clone3, AT_EMPTY_PATH, SIGSTOP, STDIN_FILENO},
sys::{
ptrace::{self, traceme, AddressType},
signal::Signal,
wait::{waitpid, WaitPidFlag, WaitStatus},
},
unistd::{execvp, getpid, setpgid, ForkResult, Pid},
};
use std::path::PathBuf;
use core::fmt;
use std::{
borrow::Cow,
fmt::{Display, Formatter},
io::{self, BufRead, BufReader, Read},
path::Path,
};
use clap::{Parser, Subcommand};
use nix::libc::AT_FDCWD;
use std::{ffi::OsString, os::unix::prelude::OsStringExt};
pub fn read_generic_string<TString>(
pid: Pid,
address: AddressType,
ctor: impl Fn(Vec<u8>) -> TString,
) -> anyhow::Result<TString> {
let mut buf = Vec::new();
let mut address = address;
const WORD_SIZE: usize = 8; // FIXME
loop {
let word = match ptrace::read(pid, address) {
Err(e) => {
log::warn!("Cannot read tracee {pid} memory {address:?}: {e}");
return Ok(ctor(buf));
}
Ok(word) => word,
};
let word_bytes = word.to_ne_bytes();
for &byte in word_bytes.iter() {
if byte == 0 {
return Ok(ctor(buf));
}
buf.push(byte);
}
address = unsafe { address.add(WORD_SIZE) };
}
#[derive(Parser, Debug)]
struct Cli {
#[command(subcommand)]
cmd: Subcommands,
}
#[allow(unused)]
pub fn read_cstring(pid: Pid, address: AddressType) -> anyhow::Result<CString> {
read_generic_string(pid, address, |x| CString::new(x).unwrap())
#[derive(Subcommand, Debug, Clone)]
enum Subcommands {
Run {
#[arg(short, long)]
output: Option<PathBuf>,
cmd: Vec<String>,
}
pub fn read_pathbuf(pid: Pid, address: AddressType) -> anyhow::Result<PathBuf> {
read_generic_string(pid, address, |x| PathBuf::from(OsString::from_vec(x)))
}
pub fn read_string(pid: Pid, address: AddressType) -> anyhow::Result<String> {
// Waiting on https://github.com/rust-lang/libs-team/issues/116
read_generic_string(pid, address, |x| String::from_utf8_lossy(&x).to_string())
}
pub fn read_null_ended_array<TItem>(
pid: Pid,
mut address: AddressType,
reader: impl Fn(Pid, AddressType) -> anyhow::Result<TItem>,
) -> anyhow::Result<Vec<TItem>> {
let mut res = Vec::new();
const WORD_SIZE: usize = 8; // FIXME
loop {
let ptr = match ptrace::read(pid, address) {
Err(e) => {
log::warn!("Cannot read tracee {pid} memory {address:?}: {e}");
return Ok(res);
}
Ok(ptr) => ptr,
};
if ptr == 0 {
return Ok(res);
} else {
res.push(reader(pid, ptr as AddressType)?);
}
address = unsafe { address.add(WORD_SIZE) };
}
}
#[allow(unused)]
pub fn read_cstring_array(pid: Pid, address: AddressType) -> anyhow::Result<Vec<CString>> {
read_null_ended_array(pid, address, read_cstring)
}
pub fn read_string_array(pid: Pid, address: AddressType) -> anyhow::Result<Vec<String>> {
read_null_ended_array(pid, address, read_string)
}
macro_rules! syscall_no_from_regs {
($regs:ident) => {
$regs.orig_rax as i64
};
}
macro_rules! syscall_res_from_regs {
($regs:ident) => {
$regs.rax as i64
};
}
macro_rules! syscall_arg {
($regs:ident, 0) => {
$regs.rdi
};
($regs:ident, 1) => {
$regs.rsi
};
($regs:ident, 2) => {
$regs.rdx
};
($regs:ident, 3) => {
$regs.r10
};
($regs:ident, 4) => {
$regs.r8
};
($regs:ident, 5) => {
$regs.r9
};
}
pub fn read_argv(pid: Pid) -> anyhow::Result<Vec<CString>> {
let filename = format!("/proc/{pid}/cmdline");
let buf = std::fs::read(filename)?;
Ok(buf
.split(|&c| c == 0)
.map(CString::new)
.collect::<Result<Vec<_>, _>>()?)
}
pub fn read_comm(pid: Pid) -> anyhow::Result<String> {
let filename = format!("/proc/{pid}/comm");
let mut buf = std::fs::read(filename)?;
buf.pop(); // remove trailing newline
Ok(String::from_utf8(buf)?)
}
pub fn read_cwd(pid: Pid) -> std::io::Result<PathBuf> {
let filename = format!("/proc/{pid}/cwd");
let buf = std::fs::read_link(filename)?;
Ok(buf)
}
pub fn read_fd(pid: Pid, fd: i32) -> std::io::Result<PathBuf> {
if fd == AT_FDCWD {
return read_cwd(pid);
}
let filename = format!("/proc/{pid}/fd/{fd}");
std::fs::read_link(filename)
}
#[derive(Debug)]
pub enum Interpreter {
None,
Shebang(String),
ExecutableUnaccessible,
Error(io::Error),
}
impl Display for Interpreter {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
match self {
Interpreter::None => write!(f, "none"),
Interpreter::Shebang(s) => write!(f, "{:?}", s),
Interpreter::ExecutableUnaccessible => {
write!(f, "executable unaccessible")
}
Interpreter::Error(e) => write!(f, "(err: {e})"),
}
}
}
pub fn read_interpreter_recursive(exe: impl AsRef<Path>) -> Vec<Interpreter> {
let mut exe = Cow::Borrowed(exe.as_ref());
let mut interpreters = Vec::new();
loop {
match read_interpreter(exe.as_ref()) {
Interpreter::Shebang(shebang) => {
exe = Cow::Owned(PathBuf::from(
shebang.split_ascii_whitespace().next().unwrap_or(""),
));
interpreters.push(Interpreter::Shebang(shebang));
}
Interpreter::None => break,
err => {
interpreters.push(err);
break;
}
};
}
interpreters
}
pub fn read_interpreter(exe: &Path) -> Interpreter {
fn err_to_interpreter(e: io::Error) -> Interpreter {
if e.kind() == io::ErrorKind::PermissionDenied || e.kind() == io::ErrorKind::NotFound {
Interpreter::ExecutableUnaccessible
} else {
Interpreter::Error(e)
}
}
let file = match std::fs::File::open(exe) {
Ok(file) => file,
Err(e) => return err_to_interpreter(e),
};
let mut reader = BufReader::new(file);
// First, check if it's a shebang script
let mut buf = [0u8; 2];
if let Err(e) = reader.read_exact(&mut buf) {
return Interpreter::Error(e);
};
if &buf != b"#!" {
return Interpreter::None;
}
// Read the rest of the line
let mut buf = Vec::new();
if let Err(e) = reader.read_until(b'\n', &mut buf) {
return Interpreter::Error(e);
};
// Get trimed shebang line [start, end) indices
// If the shebang line is empty, we don't care
let start = buf
.iter()
.position(|&c| !c.is_ascii_whitespace())
.unwrap_or(0);
let end = buf
.iter()
.rposition(|&c| !c.is_ascii_whitespace())
.map(|x| x + 1)
.unwrap_or(buf.len());
let shebang = String::from_utf8_lossy(&buf[start..end]);
Interpreter::Shebang(shebang.into_owned())
}
pub struct ProcessStateStore {
processes: HashMap<Pid, Vec<ProcessState>>,
}
#[derive(Debug)]
pub struct ProcessState {
pub pid: Pid,
pub ppid: Option<Pid>,
pub status: ProcessStatus,
pub start_time: u64,
pub argv: Vec<CString>,
pub comm: String,
pub presyscall: bool,
pub is_exec_successful: bool,
pub syscall: i64,
pub pending_syscall_event: Vec<Event>,
}
#[derive(Debug, Clone, PartialEq)]
pub enum ProcessStatus {
SigstopReceived,
PtraceForkEventReceived,
Running,
Exited(i32),
}
#[derive(Debug)]
pub struct ExecData {
pub filename: PathBuf,
pub argv: Vec<String>,
pub envp: Vec<String>,
pub cwd: PathBuf,
pub interpreters: Vec<Interpreter>,
}
impl ProcessStateStore {
pub fn new() -> Self {
Self {
processes: HashMap::new(),
}
}
pub fn insert(&mut self, state: ProcessState) {
self.processes.entry(state.pid).or_default().push(state);
}
pub fn get_current_mut(&mut self, pid: Pid) -> Option<&mut ProcessState> {
// The last process in the vector is the current process
// println!("Getting {pid}");
self.processes.get_mut(&pid)?.last_mut()
}
}
impl ProcessState {
pub fn new(pid: Pid, start_time: u64) -> anyhow::Result<Self> {
Ok(Self {
pid,
ppid: None,
status: ProcessStatus::Running,
comm: read_comm(pid)?,
argv: read_argv(pid)?,
start_time,
presyscall: true,
is_exec_successful: false,
syscall: -1,
pending_syscall_event: vec![],
})
}
}
#[derive(Debug)]
pub enum Event {
Fork { child: Pid },
Exec { prog: PathBuf },
Exit { code: i32 },
FdOpen { fd: i32, source: FdSource },
FdDup { oldfd: i32, newfd: i32 },
FdClose { fd: i32 },
FdRead { fd: i32 },
FdWrite { fd: i32 },
}
#[derive(Debug)]
pub enum FdSource {
File { path: PathBuf },
}
#[derive(Clone, Debug)]
pub struct Identifier {
machine: i32,
pid: Pid,
}
#[derive(Debug)]
pub struct LogEntry {
ident: Identifier,
event: Event,
timestamp: Duration,
}
impl Display for LogEntry {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
write!(
f,
"[{}.{:03} m{}p{}] {}",
self.timestamp.as_secs(),
self.timestamp.as_millis() % 1000,
self.ident.machine,
self.ident.pid,
self.event
)
}
}
impl Display for FdSource {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
match self {
FdSource::File { path } => write!(f, "File {}", path.to_string_lossy()),
}
}
}
impl Display for Event {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
match self {
Event::Fork { child } => write!(f, "fork {child}"),
Event::Exec { prog } => write!(f, "exec {}", prog.to_string_lossy()),
Event::Exit { code } => write!(f, "exit with {code}"),
Event::FdOpen { fd, source } => write!(f, "open fd {fd} from {source}"),
Event::FdDup { oldfd, newfd } => write!(f, "dup fd {oldfd} to {newfd}"),
Event::FdClose { fd } => write!(f, "close fd {fd}"),
Event::FdRead { fd } => write!(f, "read from fd {fd}"),
Event::FdWrite { fd } => write!(f, "write to fd {fd}"),
}
}
}
pub struct Tracer {
pub store: ProcessStateStore,
pub log: Vec<LogEntry>,
pub start_time: Instant,
}
fn ptrace_syscall(pid: Pid, sig: Option<Signal>) -> Result<(), Errno> {
match ptrace::syscall(pid, sig) {
Err(Errno::ESRCH) => {
log::info!("ptrace syscall failed: {pid}, ESRCH, child probably gone!");
Ok(())
}
other => other,
}
}
impl Tracer {
pub fn log(&mut self, ident: Identifier, event: Event) {
self.log.push(LogEntry {
ident,
event,
timestamp: Instant::now().duration_since(self.start_time),
});
}
pub fn log_root(&mut self, pid: Pid, event: Event) {
self.log(Identifier { pid, machine: 0 }, event);
}
pub fn new() -> anyhow::Result<Self> {
Ok(Self {
store: ProcessStateStore::new(),
log: vec![],
start_time: Instant::now(),
})
}
fn drain_syscall_events(&mut self, pid: Pid, mut filter: Box<dyn FnMut(&mut Event)>) {
let p = self.store.get_current_mut(pid).unwrap();
for mut event in p.pending_syscall_event.drain(..) {
(filter)(&mut event);
self.log.push(LogEntry {
ident: Identifier { pid, machine: 0 },
event,
timestamp: Instant::now().duration_since(self.start_time),
});
}
}
pub fn start_root_process(&mut self, args: Vec<String>) -> anyhow::Result<()> {
log::trace!("start_root_process: {:?}", args);
if let ForkResult::Parent { child: root_child } = unsafe { nix::unistd::fork()? } {
waitpid(root_child, Some(WaitPidFlag::WSTOPPED))?; // wait for child to stop
log::trace!("child stopped");
let mut root_child_state = ProcessState::new(root_child, 0)?;
root_child_state.ppid = Some(getpid());
self.store.insert(root_child_state);
// Set foreground process group of the terminal
if -1 == unsafe { tcsetpgrp(STDIN_FILENO, root_child.as_raw()) } {
return Err(Errno::last().into());
}
// restart child
log::trace!("resuming child");
let ptrace_opts = {
use nix::sys::ptrace::Options;
Options::PTRACE_O_TRACEEXEC
| Options::PTRACE_O_TRACEEXIT
| Options::PTRACE_O_EXITKILL
| Options::PTRACE_O_TRACESYSGOOD
| Options::PTRACE_O_TRACEFORK
| Options::PTRACE_O_TRACECLONE
| Options::PTRACE_O_TRACEVFORK
};
ptrace::setoptions(root_child, ptrace_opts)?;
// restart child
self.seccomp_aware_cont(root_child)?;
loop {
let status = waitpid(None, Some(WaitPidFlag::__WALL))?;
// log::trace!("waitpid: {:?}", status);
match status {
WaitStatus::Stopped(pid, sig) => {
log::trace!("stopped: {pid}, sig {:?}", sig);
match sig {
Signal::SIGSTOP => {
log::trace!("sigstop event, child: {pid}");
if let Some(state) = self.store.get_current_mut(pid) {
if state.status == ProcessStatus::PtraceForkEventReceived {
log::trace!("sigstop event received after ptrace fork event, pid: {pid}");
state.status = ProcessStatus::Running;
self.seccomp_aware_cont(pid)?;
} else if pid != root_child {
log::error!("Unexpected SIGSTOP: {state:?}")
}
} else {
log::trace!("sigstop event received before ptrace fork event, pid: {pid}");
let mut state = ProcessState::new(pid, 0)?;
state.status = ProcessStatus::SigstopReceived;
self.store.insert(state);
}
// https://stackoverflow.com/questions/29997244/occasionally-missing-ptrace-event-vfork-when-running-ptrace
// DO NOT send PTRACE_SYSCALL until we receive the PTRACE_EVENT_FORK, etc.
}
Signal::SIGCHLD => {
// From lurk:
//
// The SIGCHLD signal is sent to a process when a child process terminates, interrupted, or resumes after being interrupted
// This means, that if our tracee forked and said fork exits before the parent, the parent will get stopped.
// Therefor issue a PTRACE_SYSCALL request to the parent to continue execution.
// This is also important if we trace without the following forks option.
self.seccomp_aware_cont_with_signal(pid, Signal::SIGCHLD)?;
}
_ => {
// Just deliver the signal to tracee
self.seccomp_aware_cont_with_signal(pid, sig)?;
}
}
}
WaitStatus::Exited(pid, code) => {
log::trace!("exited: pid {}, code {:?}", pid, code);
self.log_root(pid, Event::Exit { code });
self.store.get_current_mut(pid).unwrap().status =
ProcessStatus::Exited(code);
if pid == root_child {
break;
}
}
WaitStatus::PtraceEvent(pid, sig, evt) => {
log::trace!("ptrace event: {:?} {:?}", sig, evt);
match evt {
nix::libc::PTRACE_EVENT_FORK
| nix::libc::PTRACE_EVENT_VFORK
| nix::libc::PTRACE_EVENT_CLONE => {
let new_child = Pid::from_raw(ptrace::getevent(pid)? as pid_t);
log::trace!(
"ptrace fork event, evt {evt}, pid: {pid}, child: {new_child}"
);
self.log_root(pid, Event::Fork { child: new_child });
if let Some(state) = self.store.get_current_mut(new_child) {
if state.status == ProcessStatus::SigstopReceived {
log::trace!("ptrace fork event received after sigstop, pid: {pid}, child: {new_child}");
state.status = ProcessStatus::Running;
state.ppid = Some(pid);
self.seccomp_aware_cont(new_child)?;
} else if new_child != root_child {
log::error!("Unexpected fork event: {state:?}")
}
} else {
log::trace!("ptrace fork event received before sigstop, pid: {pid}, child: {new_child}");
let mut state = ProcessState::new(new_child, 0)?;
state.status = ProcessStatus::PtraceForkEventReceived;
state.ppid = Some(pid);
self.store.insert(state);
}
// Resume parent
self.seccomp_aware_cont(pid)?;
}
nix::libc::PTRACE_EVENT_EXEC => {
log::trace!("exec event");
let p = self.store.get_current_mut(pid).unwrap();
assert!(!p.presyscall);
// After execve or execveat, in syscall exit event,
// the registers might be clobbered(e.g. aarch64).
// So we need to determine whether exec is successful here.
// PTRACE_EVENT_EXEC only happens for successful exec.
p.is_exec_successful = true;
self.drain_syscall_events(pid, Box::new(|_| {}));
// Don't use seccomp_aware_cont here because that will skip the next syscall exit stop
self.syscall_enter_cont(pid)?;
}
nix::libc::PTRACE_EVENT_EXIT => {
log::trace!("exit event");
self.seccomp_aware_cont(pid)?;
}
nix::libc::PTRACE_EVENT_SECCOMP => {
log::trace!("seccomp event");
self.on_syscall_enter(pid)?;
}
_ => {
log::trace!("other event");
self.seccomp_aware_cont(pid)?;
}
}
}
WaitStatus::Signaled(pid, sig, _) => {
log::debug!("signaled: {pid}, {:?}", sig);
if pid == root_child {
exit(128 + (sig as i32))
}
}
WaitStatus::PtraceSyscall(pid) => {
let presyscall = self.store.get_current_mut(pid).unwrap().presyscall;
if presyscall {
self.on_syscall_enter(pid)?;
} else {
self.on_syscall_exit(pid)?;
}
}
_ => {}
}
}
} else {
let me = getpid();
setpgid(me, me)?;
traceme()?;
if 0 != unsafe { raise(SIGSTOP) } {
log::error!("raise failed!");
exit(-1);
}
let args = args
.into_iter()
.map(CString::new)
.collect::<Result<Vec<CString>, _>>()?;
execvp(&args[0], &args)?;
}
Ok(())
}
fn on_syscall_enter(&mut self, pid: Pid) -> anyhow::Result<()> {
let p = self.store.get_current_mut(pid).unwrap();
p.presyscall = !p.presyscall;
// SYSCALL ENTRY
let regs = match ptrace::getregs(pid) {
Ok(regs) => regs,
Err(Errno::ESRCH) => {
log::info!("ptrace getregs failed: {pid}, ESRCH, child probably gone!");
return Ok(());
}
e => e?,
};
let syscallno = syscall_no_from_regs!(regs);
p.syscall = syscallno;
// log::trace!("pre syscall: {syscallno}");
match syscallno {
nix::libc::SYS_execveat => {
log::trace!("pre execveat");
// int execveat(int dirfd, const char *pathname,
// char *const _Nullable argv[],
// char *const _Nullable envp[],
// int flags);
let dirfd = syscall_arg!(regs, 0) as i32;
let pathname = read_string(pid, syscall_arg!(regs, 1) as AddressType)?;
//let argv = read_string_array(pid, syscall_arg!(regs, 2) as AddressType)?;
//let envp = read_string_array(pid, syscall_arg!(regs, 3) as AddressType)?;
let flags = syscall_arg!(regs, 4) as i32;
let filename = resolve_filename_at_fd(pid, pathname, dirfd, flags)?;
//let interpreters = read_interpreter_recursive(&filename);
p.pending_syscall_event.push(Event::Exec {
prog: filename,
});
}
nix::libc::SYS_execve => {
log::trace!("pre execve");
let filename = read_pathbuf(pid, syscall_arg!(regs, 0) as AddressType)?;
//let argv = read_string_array(pid, syscall_arg!(regs, 1) as AddressType)?;
//let envp = read_string_array(pid, syscall_arg!(regs, 2) as AddressType)?;
//let interpreters = read_interpreter_recursive(&filename);
p.pending_syscall_event.push(Event::Exec {
prog: filename,
});
}
nix::libc::SYS_open => {
let path = read_pathbuf(pid, syscall_arg!(regs, 0) as AddressType)?;
p.pending_syscall_event.push(Event::FdOpen {
source: FdSource::File { path },
fd: -1,
});
}
nix::libc::SYS_openat => {
let dirfd = syscall_arg!(regs, 0) as i32;
let pathname = read_string(pid, syscall_arg!(regs, 1) as AddressType)?;
let flags = syscall_arg!(regs, 2) as i32;
let path = resolve_filename_at_fd(pid, pathname, dirfd, flags)?;
p.pending_syscall_event.push(Event::FdOpen {
source: FdSource::File { path },
fd: 0,
});
}
nix::libc::SYS_read | nix::libc::SYS_readv | nix::libc::SYS_preadv | nix::libc::SYS_preadv2 => {
let fd = syscall_arg!(regs, 0) as i32;
p.pending_syscall_event.push(Event::FdRead { fd });
}
nix::libc::SYS_write | nix::libc::SYS_writev | nix::libc::SYS_pwritev | nix::libc::SYS_pwritev2 => {
let fd = syscall_arg!(regs, 0) as i32;
p.pending_syscall_event.push(Event::FdWrite { fd });
}
nix::libc::SYS_dup | nix::libc::SYS_dup2 | nix::libc::SYS_dup3 => {
let oldfd = syscall_arg!(regs, 0) as i32;
p.pending_syscall_event.push(Event::FdDup { oldfd, newfd: -1 });
}
nix::libc::SYS_fcntl => {
let fd = syscall_arg!(regs, 0) as i32;
let cmd = syscall_arg!(regs, 1) as i32;
match cmd {
nix::libc::F_DUPFD => p.pending_syscall_event.push(Event::FdDup { oldfd: fd, newfd: -1 }),
_ => {}
}
}
nix::libc::SYS_close => {
let fd = syscall_arg!(regs, 0) as i32;
p.pending_syscall_event.push(Event::FdClose { fd });
}
_ => {}
}
self.syscall_enter_cont(pid)?;
Ok(())
}
fn on_syscall_exit(&mut self, pid: Pid) -> anyhow::Result<()> {
// SYSCALL EXIT
// log::trace!("post syscall {}", p.syscall);
let p = self.store.get_current_mut(pid).unwrap();
p.presyscall = !p.presyscall;
let regs = match ptrace::getregs(pid) {
Ok(regs) => regs,
Err(Errno::ESRCH) => {
log::info!("ptrace getregs failed: {pid}, ESRCH, child probably gone!");
return Ok(());
}
e => e?,
};
let result = syscall_res_from_regs!(regs);
let filter: Option<Box<dyn FnMut(&mut Event)>> = match p.syscall {
nix::libc::SYS_execve => {
log::trace!("post execve");
// SAFETY: p.preexecve is false, so p.exec_data is Some
p.is_exec_successful = false;
// update comm
p.comm = read_comm(pid)?;
None
}
nix::libc::SYS_execveat => {
log::trace!("post execveat");
p.is_exec_successful = false;
// update comm
p.comm = read_comm(pid)?;
None
}
nix::libc::SYS_open | nix::libc::SYS_openat => {
if result >= 0 {
Some(Box::new(move |event| match event {
Event::FdOpen { fd: ref mut dest, ..} => { *dest = result as i32; }
_ => {}
}))
} else {
None
}
}
nix::libc::SYS_dup | nix::libc::SYS_dup2 | nix::libc::SYS_dup3 => {
if result >= 0 {
Some(Box::new(move |event| match event {
Event::FdDup { newfd: ref mut dest, ..} => { *dest = result as i32; }
_ => {}
}))
} else {
None
}
}
nix::libc::SYS_fcntl => {
if result >= 0 {
Some(Box::new(move |event| match event {
Event::FdDup { newfd: ref mut dest, ..} => { *dest = result as i32; }
_ => {}
}))
} else {
None
}
}
_ => {
if result >= 0 {
Some(Box::new(|_| {}))
} else {
None
}
}
};
if let Some(filter) = filter {
self.drain_syscall_events(pid, filter);
} else {
p.pending_syscall_event.clear();
}
self.seccomp_aware_cont(pid)?;
Ok(())
}
fn syscall_enter_cont(&self, pid: Pid) -> Result<(), Errno> {
ptrace_syscall(pid, None)
}
/// When seccomp-bpf is enabled, we use ptrace::cont instead of ptrace::syscall to improve performance.
/// Then the next syscall-entry stop is skipped and the seccomp stop is used as the syscall entry stop.
fn seccomp_aware_cont(&self, pid: Pid) -> Result<(), Errno> {
ptrace_syscall(pid, None)
}
fn seccomp_aware_cont_with_signal(&self, pid: Pid, sig: Signal) -> Result<(), Errno> {
ptrace_syscall(pid, Some(sig))
}
}
fn resolve_filename_at_fd(
pid: Pid,
pathname: String,
dirfd: i32,
flags: i32,
) -> anyhow::Result<PathBuf> {
let pathname_is_empty = pathname.is_empty();
let pathname = PathBuf::from(pathname);
Ok(
match (
pathname.is_absolute(),
pathname_is_empty && ((flags & AT_EMPTY_PATH) != 0),
) {
(true, _) => {
// If pathname is absolute, then dirfd is ignored.
pathname
}
(false, true) => {
// If pathname is an empty string and the AT_EMPTY_PATH flag is specified, then the file descriptor dirfd
// specifies the file to be executed
read_fd(pid, dirfd)?
}
(false, false) => {
// pathname is relative to dirfd
let dir = read_fd(pid, dirfd)?;
dir.join(pathname)
}
},
)
}
fn main() {
env_logger::init();
let mut t = Tracer::new().unwrap();
let args = std::env::args().into_iter().skip(1).collect();
t.start_root_process(args).unwrap();
let cli = Cli::parse();
match cli.cmd {
Subcommands::Run { output, cmd } => {
let fp: Box<dyn std::io::Write> = if let Some(output) = &output {
Box::new(std::fs::File::options().write(true).create(true).open(output).unwrap())
} else {
Box::new(std::io::stdout())
};
let mut t = tracer::Tracer::new().unwrap();
t.start_root_process(cmd).unwrap();
for event in &t.log {
println!("{event}");
if output.is_none() {
serde_json::to_writer_pretty(fp, &t.log).unwrap();
} else {
serde_json::to_writer(fp, &t.log).unwrap();
}
}
}
}

869
src/tracer.rs Normal file
View File

@ -0,0 +1,869 @@
use std::{
collections::HashMap,
ffi::CString,
ffi::OsString,
os::unix::prelude::OsStringExt,
path::PathBuf,
process::exit,
time::{Duration, Instant},
fmt::{Display, Formatter},
};
use core::fmt;
use nix::{
errno::Errno,
libc::{pid_t, raise, tcsetpgrp, AT_EMPTY_PATH, SIGSTOP, STDIN_FILENO, AT_FDCWD},
sys::{
ptrace::{self, traceme, AddressType},
signal::Signal,
wait::{waitpid, WaitPidFlag, WaitStatus},
},
unistd::{execvp, getpid, setpgid, ForkResult},
};
use serde::{Deserialize, Serialize};
#[derive(Copy, Clone, Serialize, Deserialize, Eq, PartialEq, Debug, Hash)]
pub struct Pid(i32);
impl From<nix::unistd::Pid> for Pid {
fn from(value: nix::unistd::Pid) -> Self {
Self(value.as_raw())
}
}
impl Into<nix::unistd::Pid> for Pid {
fn into(self) -> nix::unistd::Pid {
nix::unistd::Pid::from_raw(self.0)
}
}
impl Display for Pid {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
self.0.fmt(f)
}
}
pub fn read_generic_string<TString>(
pid: Pid,
address: AddressType,
ctor: impl Fn(Vec<u8>) -> TString,
) -> anyhow::Result<TString> {
let mut buf = Vec::new();
let mut address = address;
const WORD_SIZE: usize = 8; // FIXME
loop {
let word = match ptrace::read(pid.into(), address) {
Err(e) => {
log::warn!("Cannot read tracee {pid} memory {address:?}: {e}");
return Ok(ctor(buf));
}
Ok(word) => word,
};
let word_bytes = word.to_ne_bytes();
for &byte in word_bytes.iter() {
if byte == 0 {
return Ok(ctor(buf));
}
buf.push(byte);
}
address = unsafe { address.add(WORD_SIZE) };
}
}
#[allow(unused)]
pub fn read_cstring(pid: Pid, address: AddressType) -> anyhow::Result<CString> {
read_generic_string(pid, address, |x| CString::new(x).unwrap())
}
pub fn read_pathbuf(pid: Pid, address: AddressType) -> anyhow::Result<PathBuf> {
read_generic_string(pid, address, |x| PathBuf::from(OsString::from_vec(x)))
}
pub fn read_string(pid: Pid, address: AddressType) -> anyhow::Result<String> {
// Waiting on https://github.com/rust-lang/libs-team/issues/116
read_generic_string(pid, address, |x| String::from_utf8_lossy(&x).to_string())
}
pub fn read_null_ended_array<TItem>(
pid: Pid,
mut address: AddressType,
reader: impl Fn(Pid, AddressType) -> anyhow::Result<TItem>,
) -> anyhow::Result<Vec<TItem>> {
let mut res = Vec::new();
const WORD_SIZE: usize = 8; // FIXME
loop {
let ptr = match ptrace::read(pid.into(), address) {
Err(e) => {
log::warn!("Cannot read tracee {pid} memory {address:?}: {e}");
return Ok(res);
}
Ok(ptr) => ptr,
};
if ptr == 0 {
return Ok(res);
} else {
res.push(reader(pid, ptr as AddressType)?);
}
address = unsafe { address.add(WORD_SIZE) };
}
}
#[allow(unused)]
pub fn read_cstring_array(pid: Pid, address: AddressType) -> anyhow::Result<Vec<CString>> {
read_null_ended_array(pid, address, read_cstring)
}
#[allow(unused)]
pub fn read_string_array(pid: Pid, address: AddressType) -> anyhow::Result<Vec<String>> {
read_null_ended_array(pid, address, read_string)
}
macro_rules! syscall_no_from_regs {
($regs:ident) => {
$regs.orig_rax as i64
};
}
macro_rules! syscall_res_from_regs {
($regs:ident) => {
$regs.rax as i64
};
}
macro_rules! syscall_arg {
($regs:ident, 0) => {
$regs.rdi
};
($regs:ident, 1) => {
$regs.rsi
};
($regs:ident, 2) => {
$regs.rdx
};
($regs:ident, 3) => {
$regs.r10
};
($regs:ident, 4) => {
$regs.r8
};
($regs:ident, 5) => {
$regs.r9
};
}
pub fn read_argv(pid: Pid) -> anyhow::Result<Vec<CString>> {
let filename = format!("/proc/{pid}/cmdline");
let buf = std::fs::read(filename)?;
Ok(buf
.split(|&c| c == 0)
.map(CString::new)
.collect::<Result<Vec<_>, _>>()?)
}
pub fn read_comm(pid: Pid) -> anyhow::Result<String> {
let filename = format!("/proc/{pid}/comm");
let mut buf = std::fs::read(filename)?;
buf.pop(); // remove trailing newline
Ok(String::from_utf8(buf)?)
}
pub fn read_cwd(pid: Pid) -> std::io::Result<PathBuf> {
let filename = format!("/proc/{pid}/cwd");
let buf = std::fs::read_link(filename)?;
Ok(buf)
}
pub fn read_fd(pid: Pid, fd: i32) -> std::io::Result<PathBuf> {
if fd == AT_FDCWD {
return read_cwd(pid);
}
let filename = format!("/proc/{pid}/fd/{fd}");
std::fs::read_link(filename)
}
/*
#[derive(Debug)]
pub enum Interpreter {
None,
Shebang(String),
ExecutableUnaccessible,
Error(io::Error),
}
impl Display for Interpreter {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
match self {
Interpreter::None => write!(f, "none"),
Interpreter::Shebang(s) => write!(f, "{:?}", s),
Interpreter::ExecutableUnaccessible => {
write!(f, "executable unaccessible")
}
Interpreter::Error(e) => write!(f, "(err: {e})"),
}
}
}
pub fn read_interpreter_recursive(exe: impl AsRef<Path>) -> Vec<Interpreter> {
let mut exe = Cow::Borrowed(exe.as_ref());
let mut interpreters = Vec::new();
loop {
match read_interpreter(exe.as_ref()) {
Interpreter::Shebang(shebang) => {
exe = Cow::Owned(PathBuf::from(
shebang.split_ascii_whitespace().next().unwrap_or(""),
));
interpreters.push(Interpreter::Shebang(shebang));
}
Interpreter::None => break,
err => {
interpreters.push(err);
break;
}
};
}
interpreters
}
pub fn read_interpreter(exe: &Path) -> Interpreter {
fn err_to_interpreter(e: io::Error) -> Interpreter {
if e.kind() == io::ErrorKind::PermissionDenied || e.kind() == io::ErrorKind::NotFound {
Interpreter::ExecutableUnaccessible
} else {
Interpreter::Error(e)
}
}
let file = match std::fs::File::open(exe) {
Ok(file) => file,
Err(e) => return err_to_interpreter(e),
};
let mut reader = BufReader::new(file);
// First, check if it's a shebang script
let mut buf = [0u8; 2];
if let Err(e) = reader.read_exact(&mut buf) {
return Interpreter::Error(e);
};
if &buf != b"#!" {
return Interpreter::None;
}
// Read the rest of the line
let mut buf = Vec::new();
if let Err(e) = reader.read_until(b'\n', &mut buf) {
return Interpreter::Error(e);
};
// Get trimed shebang line [start, end) indices
// If the shebang line is empty, we don't care
let start = buf
.iter()
.position(|&c| !c.is_ascii_whitespace())
.unwrap_or(0);
let end = buf
.iter()
.rposition(|&c| !c.is_ascii_whitespace())
.map(|x| x + 1)
.unwrap_or(buf.len());
let shebang = String::from_utf8_lossy(&buf[start..end]);
Interpreter::Shebang(shebang.into_owned())
}
*/
pub struct ProcessStateStore {
processes: HashMap<Pid, Vec<ProcessState>>,
}
#[derive(Debug)]
pub struct ProcessState {
pub pid: Pid,
pub ppid: Option<Pid>,
pub status: ProcessStatus,
pub start_time: u64,
pub argv: Vec<CString>,
pub comm: String,
pub presyscall: bool,
pub is_exec_successful: bool,
pub syscall: i64,
pub pending_syscall_event: Vec<Event>,
}
#[derive(Debug, Clone, PartialEq)]
pub enum ProcessStatus {
SigstopReceived,
PtraceForkEventReceived,
Running,
Exited(i32),
}
#[derive(Debug)]
pub struct ExecData {
pub filename: PathBuf,
pub argv: Vec<String>,
pub envp: Vec<String>,
pub cwd: PathBuf,
//pub interpreters: Vec<Interpreter>,
}
impl ProcessStateStore {
pub fn new() -> Self {
Self {
processes: HashMap::new(),
}
}
pub fn insert(&mut self, state: ProcessState) {
self.processes.entry(state.pid).or_default().push(state);
}
pub fn get_current_mut(&mut self, pid: Pid) -> Option<&mut ProcessState> {
// The last process in the vector is the current process
// println!("Getting {pid}");
self.processes.get_mut(&pid)?.last_mut()
}
}
impl ProcessState {
pub fn new(pid: Pid, start_time: u64) -> anyhow::Result<Self> {
Ok(Self {
pid,
ppid: None,
status: ProcessStatus::Running,
comm: read_comm(pid)?,
argv: read_argv(pid)?,
start_time,
presyscall: true,
is_exec_successful: false,
syscall: -1,
pending_syscall_event: vec![],
})
}
}
#[derive(Debug, Serialize, Deserialize)]
pub enum Event {
Fork { child: Pid },
Exec { prog: PathBuf },
Exit { code: i32 },
FdOpen { fd: i32, source: FdSource },
FdDup { oldfd: i32, newfd: i32 },
FdClose { fd: i32 },
FdRead { fd: i32 },
FdWrite { fd: i32 },
}
#[derive(Debug, Serialize, Deserialize)]
pub enum FdSource {
File { path: PathBuf },
Tty,
}
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct Identifier {
machine: i32,
pid: Pid,
}
#[derive(Debug, Serialize, Deserialize)]
pub struct LogEntry {
ident: Identifier,
event: Event,
timestamp: Duration,
}
impl Display for LogEntry {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
write!(
f,
"[{}.{:03} m{}p{}] {}",
self.timestamp.as_secs(),
self.timestamp.as_millis() % 1000,
self.ident.machine,
self.ident.pid,
self.event
)
}
}
impl Display for FdSource {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
match self {
FdSource::File { path } => write!(f, "file {}", path.to_string_lossy()),
FdSource::Tty => write!(f, "the terminal"),
}
}
}
impl Display for Event {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
match self {
Event::Fork { child } => write!(f, "fork {child}"),
Event::Exec { prog } => write!(f, "exec {}", prog.to_string_lossy()),
Event::Exit { code } => write!(f, "exit with {code}"),
Event::FdOpen { fd, source } => write!(f, "open fd {fd} from {source}"),
Event::FdDup { oldfd, newfd } => write!(f, "dup fd {oldfd} to {newfd}"),
Event::FdClose { fd } => write!(f, "close fd {fd}"),
Event::FdRead { fd } => write!(f, "read from fd {fd}"),
Event::FdWrite { fd } => write!(f, "write to fd {fd}"),
}
}
}
pub struct Tracer {
pub store: ProcessStateStore,
pub log: Vec<LogEntry>,
pub start_time: Instant,
}
fn ptrace_syscall(pid: Pid, sig: Option<Signal>) -> Result<(), Errno> {
match ptrace::syscall(pid.into(), sig) {
Err(Errno::ESRCH) => {
log::info!("ptrace syscall failed: {pid}, ESRCH, child probably gone!");
Ok(())
}
other => other,
}
}
impl Tracer {
pub fn log(&mut self, ident: Identifier, event: Event) {
self.log.push(LogEntry {
ident,
event,
timestamp: Instant::now().duration_since(self.start_time),
});
}
pub fn log_root(&mut self, pid: Pid, event: Event) {
self.log(Identifier { pid, machine: 0 }, event);
}
pub fn new() -> anyhow::Result<Self> {
Ok(Self {
store: ProcessStateStore::new(),
log: vec![],
start_time: Instant::now(),
})
}
fn drain_syscall_events(&mut self, pid: Pid, mut filter: Box<dyn FnMut(&mut Event)>) {
let p = self.store.get_current_mut(pid).unwrap();
for mut event in p.pending_syscall_event.drain(..) {
(filter)(&mut event);
self.log.push(LogEntry {
ident: Identifier { pid, machine: 0 },
event,
timestamp: Instant::now().duration_since(self.start_time),
});
}
}
pub fn start_root_process(&mut self, args: Vec<String>) -> anyhow::Result<()> {
log::trace!("start_root_process: {:?}", args);
if let ForkResult::Parent { child: root_child } = unsafe { nix::unistd::fork()? } {
waitpid(root_child, Some(WaitPidFlag::WSTOPPED))?; // wait for child to stop
let root_child = root_child.into();
log::trace!("child stopped");
let mut root_child_state = ProcessState::new(root_child, 0)?;
root_child_state.ppid = Some(getpid().into());
self.store.insert(root_child_state);
// Set foreground process group of the terminal
if -1 == unsafe { tcsetpgrp(STDIN_FILENO, root_child.0) } {
return Err(Errno::last().into());
}
// restart child
log::trace!("resuming child");
let ptrace_opts = {
use nix::sys::ptrace::Options;
Options::PTRACE_O_TRACEEXEC
| Options::PTRACE_O_TRACEEXIT
| Options::PTRACE_O_EXITKILL
| Options::PTRACE_O_TRACESYSGOOD
| Options::PTRACE_O_TRACEFORK
| Options::PTRACE_O_TRACECLONE
| Options::PTRACE_O_TRACEVFORK
};
ptrace::setoptions(root_child.into(), ptrace_opts)?;
// restart child
self.seccomp_aware_cont(root_child)?;
loop {
let status = waitpid(None, Some(WaitPidFlag::__WALL))?;
// log::trace!("waitpid: {:?}", status);
match status {
WaitStatus::Stopped(pid, sig) => {
let pid = pid.into();
log::trace!("stopped: {pid}, sig {:?}", sig);
match sig {
Signal::SIGSTOP => {
log::trace!("sigstop event, child: {pid}");
if let Some(state) = self.store.get_current_mut(pid) {
if state.status == ProcessStatus::PtraceForkEventReceived {
log::trace!("sigstop event received after ptrace fork event, pid: {pid}");
state.status = ProcessStatus::Running;
self.seccomp_aware_cont(pid)?;
} else if pid != root_child {
log::error!("Unexpected SIGSTOP: {state:?}")
}
} else {
log::trace!("sigstop event received before ptrace fork event, pid: {pid}");
let mut state = ProcessState::new(pid, 0)?;
state.status = ProcessStatus::SigstopReceived;
self.store.insert(state);
}
// https://stackoverflow.com/questions/29997244/occasionally-missing-ptrace-event-vfork-when-running-ptrace
// DO NOT send PTRACE_SYSCALL until we receive the PTRACE_EVENT_FORK, etc.
}
Signal::SIGCHLD => {
// From lurk:
//
// The SIGCHLD signal is sent to a process when a child process terminates, interrupted, or resumes after being interrupted
// This means, that if our tracee forked and said fork exits before the parent, the parent will get stopped.
// Therefor issue a PTRACE_SYSCALL request to the parent to continue execution.
// This is also important if we trace without the following forks option.
self.seccomp_aware_cont_with_signal(pid, Signal::SIGCHLD)?;
}
_ => {
// Just deliver the signal to tracee
self.seccomp_aware_cont_with_signal(pid, sig)?;
}
}
}
WaitStatus::Exited(pid, code) => {
let pid = pid.into();
log::trace!("exited: pid {}, code {:?}", pid, code);
self.log_root(pid, Event::Exit { code });
self.store.get_current_mut(pid).unwrap().status =
ProcessStatus::Exited(code);
if pid == root_child {
break;
}
}
WaitStatus::PtraceEvent(pid, sig, evt) => {
log::trace!("ptrace event: {:?} {:?}", sig, evt);
match evt {
nix::libc::PTRACE_EVENT_FORK
| nix::libc::PTRACE_EVENT_VFORK
| nix::libc::PTRACE_EVENT_CLONE => {
let new_child = Pid(ptrace::getevent(pid.into())? as pid_t);
log::trace!(
"ptrace fork event, evt {evt}, pid: {pid}, child: {new_child}"
);
self.log_root(pid.into(), Event::Fork { child: new_child });
if let Some(state) = self.store.get_current_mut(new_child) {
if state.status == ProcessStatus::SigstopReceived {
log::trace!("ptrace fork event received after sigstop, pid: {pid}, child: {new_child}");
state.status = ProcessStatus::Running;
state.ppid = Some(pid.into());
self.seccomp_aware_cont(new_child)?;
} else if new_child != root_child {
log::error!("Unexpected fork event: {state:?}")
}
} else {
log::trace!("ptrace fork event received before sigstop, pid: {pid}, child: {new_child}");
let mut state = ProcessState::new(new_child, 0)?;
state.status = ProcessStatus::PtraceForkEventReceived;
state.ppid = Some(pid.into());
self.store.insert(state);
}
// Resume parent
self.seccomp_aware_cont(pid.into())?;
}
nix::libc::PTRACE_EVENT_EXEC => {
log::trace!("exec event");
let p = self.store.get_current_mut(pid.into()).unwrap();
assert!(!p.presyscall);
// After execve or execveat, in syscall exit event,
// the registers might be clobbered(e.g. aarch64).
// So we need to determine whether exec is successful here.
// PTRACE_EVENT_EXEC only happens for successful exec.
p.is_exec_successful = true;
self.drain_syscall_events(pid.into(), Box::new(|_| {}));
// Don't use seccomp_aware_cont here because that will skip the next syscall exit stop
self.syscall_enter_cont(pid.into())?;
}
nix::libc::PTRACE_EVENT_EXIT => {
log::trace!("exit event");
self.seccomp_aware_cont(pid.into())?;
}
nix::libc::PTRACE_EVENT_SECCOMP => {
log::trace!("seccomp event");
self.on_syscall_enter(pid.into())?;
}
_ => {
log::trace!("other event");
self.seccomp_aware_cont(pid.into())?;
}
}
}
WaitStatus::Signaled(pid, sig, _) => {
let pid: Pid = pid.into();
log::debug!("signaled: {pid}, {:?}", sig);
if pid == root_child {
exit(128 + (sig as i32))
}
}
WaitStatus::PtraceSyscall(pid) => {
let pid = pid.into();
let presyscall = self.store.get_current_mut(pid).unwrap().presyscall;
if presyscall {
self.on_syscall_enter(pid)?;
} else {
self.on_syscall_exit(pid)?;
}
}
_ => {}
}
}
} else {
let me = getpid();
setpgid(me, me)?;
traceme()?;
if 0 != unsafe { raise(SIGSTOP) } {
log::error!("raise failed!");
exit(-1);
}
let args = args
.into_iter()
.map(CString::new)
.collect::<Result<Vec<CString>, _>>()?;
execvp(&args[0], &args)?;
}
Ok(())
}
fn on_syscall_enter(&mut self, pid: Pid) -> anyhow::Result<()> {
let p = self.store.get_current_mut(pid).unwrap();
p.presyscall = !p.presyscall;
// SYSCALL ENTRY
let regs = match ptrace::getregs(pid.into()) {
Ok(regs) => regs,
Err(Errno::ESRCH) => {
log::info!("ptrace getregs failed: {pid}, ESRCH, child probably gone!");
return Ok(());
}
e => e?,
};
let syscallno = syscall_no_from_regs!(regs);
p.syscall = syscallno;
// log::trace!("pre syscall: {syscallno}");
match syscallno {
nix::libc::SYS_execveat => {
log::trace!("pre execveat");
// int execveat(int dirfd, const char *pathname,
// char *const _Nullable argv[],
// char *const _Nullable envp[],
// int flags);
let dirfd = syscall_arg!(regs, 0) as i32;
let pathname = read_string(pid, syscall_arg!(regs, 1) as AddressType)?;
//let argv = read_string_array(pid, syscall_arg!(regs, 2) as AddressType)?;
//let envp = read_string_array(pid, syscall_arg!(regs, 3) as AddressType)?;
let flags = syscall_arg!(regs, 4) as i32;
let filename = resolve_filename_at_fd(pid, pathname, dirfd, flags)?;
//let interpreters = read_interpreter_recursive(&filename);
p.pending_syscall_event.push(Event::Exec { prog: filename });
}
nix::libc::SYS_execve => {
log::trace!("pre execve");
let filename = read_pathbuf(pid, syscall_arg!(regs, 0) as AddressType)?;
//let argv = read_string_array(pid, syscall_arg!(regs, 1) as AddressType)?;
//let envp = read_string_array(pid, syscall_arg!(regs, 2) as AddressType)?;
//let interpreters = read_interpreter_recursive(&filename);
p.pending_syscall_event.push(Event::Exec { prog: filename });
}
nix::libc::SYS_open => {
let path = read_pathbuf(pid, syscall_arg!(regs, 0) as AddressType)?;
p.pending_syscall_event.push(Event::FdOpen {
source: FdSource::File { path },
fd: -1,
});
}
nix::libc::SYS_openat => {
let dirfd = syscall_arg!(regs, 0) as i32;
let pathname = read_string(pid, syscall_arg!(regs, 1) as AddressType)?;
let flags = syscall_arg!(regs, 2) as i32;
let path = resolve_filename_at_fd(pid, pathname, dirfd, flags)?;
p.pending_syscall_event.push(Event::FdOpen {
source: FdSource::File { path },
fd: 0,
});
}
nix::libc::SYS_read
| nix::libc::SYS_readv
| nix::libc::SYS_preadv
| nix::libc::SYS_preadv2 => {
let fd = syscall_arg!(regs, 0) as i32;
p.pending_syscall_event.push(Event::FdRead { fd });
}
nix::libc::SYS_write
| nix::libc::SYS_writev
| nix::libc::SYS_pwritev
| nix::libc::SYS_pwritev2 => {
let fd = syscall_arg!(regs, 0) as i32;
p.pending_syscall_event.push(Event::FdWrite { fd });
}
nix::libc::SYS_dup | nix::libc::SYS_dup2 | nix::libc::SYS_dup3 => {
let oldfd = syscall_arg!(regs, 0) as i32;
p.pending_syscall_event
.push(Event::FdDup { oldfd, newfd: -1 });
}
nix::libc::SYS_fcntl => {
let fd = syscall_arg!(regs, 0) as i32;
let cmd = syscall_arg!(regs, 1) as i32;
match cmd {
nix::libc::F_DUPFD => p.pending_syscall_event.push(Event::FdDup {
oldfd: fd,
newfd: -1,
}),
_ => {}
}
}
nix::libc::SYS_close => {
let fd = syscall_arg!(regs, 0) as i32;
p.pending_syscall_event.push(Event::FdClose { fd });
}
_ => {}
}
self.syscall_enter_cont(pid)?;
Ok(())
}
fn on_syscall_exit(&mut self, pid: Pid) -> anyhow::Result<()> {
// SYSCALL EXIT
// log::trace!("post syscall {}", p.syscall);
let p = self.store.get_current_mut(pid).unwrap();
p.presyscall = !p.presyscall;
let regs = match ptrace::getregs(pid.into()) {
Ok(regs) => regs,
Err(Errno::ESRCH) => {
log::info!("ptrace getregs failed: {pid}, ESRCH, child probably gone!");
return Ok(());
}
e => e?,
};
let result = syscall_res_from_regs!(regs);
let filter: Option<Box<dyn FnMut(&mut Event)>> = match p.syscall {
nix::libc::SYS_execve => {
log::trace!("post execve");
// SAFETY: p.preexecve is false, so p.exec_data is Some
p.is_exec_successful = false;
// update comm
p.comm = read_comm(pid)?;
None
}
nix::libc::SYS_execveat => {
log::trace!("post execveat");
p.is_exec_successful = false;
// update comm
p.comm = read_comm(pid)?;
None
}
nix::libc::SYS_open | nix::libc::SYS_openat => {
if result >= 0 {
Some(Box::new(move |event| match event {
Event::FdOpen {
fd: ref mut dest, ..
} => {
*dest = result as i32;
}
_ => {}
}))
} else {
None
}
}
nix::libc::SYS_dup | nix::libc::SYS_dup2 | nix::libc::SYS_dup3 => {
if result >= 0 {
Some(Box::new(move |event| match event {
Event::FdDup {
newfd: ref mut dest,
..
} => {
*dest = result as i32;
}
_ => {}
}))
} else {
None
}
}
nix::libc::SYS_fcntl => {
if result >= 0 {
Some(Box::new(move |event| match event {
Event::FdDup {
newfd: ref mut dest,
..
} => {
*dest = result as i32;
}
_ => {}
}))
} else {
None
}
}
_ => {
if result >= 0 {
Some(Box::new(|_| {}))
} else {
None
}
}
};
if let Some(filter) = filter {
self.drain_syscall_events(pid, filter);
} else {
p.pending_syscall_event.clear();
}
self.seccomp_aware_cont(pid)?;
Ok(())
}
fn syscall_enter_cont(&self, pid: Pid) -> Result<(), Errno> {
ptrace_syscall(pid, None)
}
/// When seccomp-bpf is enabled, we use ptrace::cont instead of ptrace::syscall to improve performance.
/// Then the next syscall-entry stop is skipped and the seccomp stop is used as the syscall entry stop.
fn seccomp_aware_cont(&self, pid: Pid) -> Result<(), Errno> {
ptrace_syscall(pid, None)
}
fn seccomp_aware_cont_with_signal(&self, pid: Pid, sig: Signal) -> Result<(), Errno> {
ptrace_syscall(pid, Some(sig))
}
}
fn resolve_filename_at_fd(
pid: Pid,
pathname: String,
dirfd: i32,
flags: i32,
) -> anyhow::Result<PathBuf> {
let pathname_is_empty = pathname.is_empty();
let pathname = PathBuf::from(pathname);
Ok(
match (
pathname.is_absolute(),
pathname_is_empty && ((flags & AT_EMPTY_PATH) != 0),
) {
(true, _) => {
// If pathname is absolute, then dirfd is ignored.
pathname
}
(false, true) => {
// If pathname is an empty string and the AT_EMPTY_PATH flag is specified, then the file descriptor dirfd
// specifies the file to be executed
read_fd(pid, dirfd)?
}
(false, false) => {
// pathname is relative to dirfd
let dir = read_fd(pid, dirfd)?;
dir.join(pathname)
}
},
)
}