blackmagic/src/target/efm32.c

436 lines
13 KiB
C
Raw Normal View History

/*
* This file is part of the Black Magic Debug project.
*
* Copyright (C) 2015 Richard Meadows <richardeoin>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/* This file implements EFM32 target specific functions for
* detecting the device, providing the XML memory map and Flash memory
* programming.
*
* Both EFM32 (microcontroller only) and EZR32 (microcontroller+radio)
* devices should be supported through this driver.
*
* Tested with:
* * EZR32LG230 (EZR Leopard Gecko M3)
* *
*/
/* Refer to the family reference manuals:
*
*
* Also refer to AN0062 "Programming Internal Flash Over the Serial Wire Debug Interface"
* http://www.silabs.com/Support%20Documents/TechnicalDocs/an0062.pdf
*/
#include "general.h"
#include "target.h"
#include "target_internal.h"
#include "cortexm.h"
#define SRAM_BASE 0x20000000
#define STUB_BUFFER_BASE ALIGN(SRAM_BASE + sizeof(efm32_flash_write_stub), 4)
static int efm32_flash_erase(struct target_flash *t, target_addr addr, size_t len);
static int efm32_flash_write(struct target_flash *f,
target_addr dest, const void *src, size_t len);
static const uint16_t efm32_flash_write_stub[] = {
#include "flashstub/efm32.stub"
};
static bool efm32_cmd_erase_all(target *t);
static bool efm32_cmd_serial(target *t);
const struct command_s efm32_cmd_list[] = {
{"erase_mass", (cmd_handler)efm32_cmd_erase_all, "Erase entire flash memory"},
{"serial", (cmd_handler)efm32_cmd_serial, "Prints unique number"},
{NULL, NULL, NULL}
};
/* -------------------------------------------------------------------------- */
/* Memory System Controller (MSC) Registers */
/* -------------------------------------------------------------------------- */
2015-11-14 14:55:43 +00:00
#define EFM32_MSC 0x400c0000
#define EFM32_MSC_WRITECTRL (EFM32_MSC+0x008)
#define EFM32_MSC_WRITECMD (EFM32_MSC+0x00c)
#define EFM32_MSC_ADDRB (EFM32_MSC+0x010)
#define EFM32_MSC_WDATA (EFM32_MSC+0x018)
#define EFM32_MSC_STATUS (EFM32_MSC+0x01c)
#define EFM32_MSC_LOCK (EFM32_MSC+0x03c)
#define EFM32_MSC_CMD (EFM32_MSC+0x040)
#define EFM32_MSC_TIMEBASE (EFM32_MSC+0x050)
#define EFM32_MSC_MASSLOCK (EFM32_MSC+0x054)
#define EFM32_MSC_LOCK_LOCKKEY 0x1b71
#define EFM32_MSC_MASSLOCK_LOCKKEY 0x631a
#define EFM32_MSC_WRITECMD_LADDRIM (1<<0)
#define EFM32_MSC_WRITECMD_ERASEPAGE (1<<1)
#define EFM32_MSC_WRITECMD_WRITEEND (1<<2)
#define EFM32_MSC_WRITECMD_WRITEONCE (1<<3)
#define EFM32_MSC_WRITECMD_WRITETRIG (1<<4)
#define EFM32_MSC_WRITECMD_ERASEABORT (1<<5)
#define EFM32_MSC_WRITECMD_ERASEMAIN0 (1<<8)
#define EFM32_MSC_STATUS_BUSY (1<<0)
#define EFM32_MSC_STATUS_LOCKED (1<<1)
#define EFM32_MSC_STATUS_INVADDR (1<<2)
#define EFM32_MSC_STATUS_WDATAREADY (1<<3)
/* -------------------------------------------------------------------------- */
/* Flash Infomation Area */
/* -------------------------------------------------------------------------- */
#define EFM32_INFO 0x0fe00000
#define EFM32_USER_DATA (EFM32_INFO+0x0000)
#define EFM32_LOCK_BITS (EFM32_INFO+0x4000)
#define EFM32_DI (EFM32_INFO+0x8000)
/* -------------------------------------------------------------------------- */
/* Device Information (DI) Area */
/* -------------------------------------------------------------------------- */
#define EFM32_DI_CMU_LFRCOCTRL (EFM32_DI+0x020)
#define EFM32_DI_CMU_HFRCOCTRL (EFM32_DI+0x028)
#define EFM32_DI_CMU_AUXHFRCOCTRL (EFM32_DI+0x030)
#define EFM32_DI_ADC0_CAL (EFM32_DI+0x040)
#define EFM32_DI_ADC0_BIASPROG (EFM32_DI+0x048)
#define EFM32_DI_DAC0_CAL (EFM32_DI+0x050)
#define EFM32_DI_DAC0_BIASPROG (EFM32_DI+0x058)
#define EFM32_DI_ACMP0_CTRL (EFM32_DI+0x060)
#define EFM32_DI_ACMP1_CTRL (EFM32_DI+0x068)
#define EFM32_DI_CMU_LCDCTRL (EFM32_DI+0x078)
#define EFM32_DI_DAC0_OPACTRL (EFM32_DI+0x0A0)
#define EFM32_DI_DAC0_OPAOFFSET (EFM32_DI+0x0A8)
#define EFM32_DI_EMU_BUINACT (EFM32_DI+0x0B0)
#define EFM32_DI_EMU_BUACT (EFM32_DI+0x0B8)
#define EFM32_DI_EMU_BUBODBUVINCAL (EFM32_DI+0x0C0)
#define EFM32_DI_EMU_BUBODUNREGCAL (EFM32_DI+0x0C8)
#define EFM32_DI_MCM_REV_MIN (EFM32_DI+0x1AA)
#define EFM32_DI_MCM_REV_MAJ (EFM32_DI+0x1AB)
#define EFM32_DI_RADIO_REV_MIN (EFM32_DI+0x1AC)
#define EFM32_DI_RADIO_REV_MAJ (EFM32_DI+0x1AD)
#define EFM32_DI_RADIO_OPN (EFM32_DI+0x1AE)
#define EFM32_DI_DI_CRC (EFM32_DI+0x1B0)
#define EFM32_DI_CAL_TEMP_0 (EFM32_DI+0x1B2)
#define EFM32_DI_ADC0_CAL_1V25 (EFM32_DI+0x1B4)
#define EFM32_DI_ADC0_CAL_2V5 (EFM32_DI+0x1B6)
#define EFM32_DI_ADC0_CAL_VDD (EFM32_DI+0x1B8)
#define EFM32_DI_ADC0_CAL_5VDIFF (EFM32_DI+0x1BA)
#define EFM32_DI_ADC0_CAL_2XVDD (EFM32_DI+0x1BC)
#define EFM32_DI_ADC0_TEMP_0_READ_1V25 (EFM32_DI+0x1BE)
#define EFM32_DI_DAC0_CAL_1V25 (EFM32_DI+0x1C8)
#define EFM32_DI_DAC0_CAL_2V5 (EFM32_DI+0x1CC)
#define EFM32_DI_DAC0_CAL_VDD (EFM32_DI+0x1D0)
#define EFM32_DI_AUXHFRCO_CALIB_BAND_1 (EFM32_DI+0x1D4)
#define EFM32_DI_AUXHFRCO_CALIB_BAND_7 (EFM32_DI+0x1D5)
#define EFM32_DI_AUXHFRCO_CALIB_BAND_11 (EFM32_DI+0x1D6)
#define EFM32_DI_AUXHFRCO_CALIB_BAND_14 (EFM32_DI+0x1D7)
#define EFM32_DI_AUXHFRCO_CALIB_BAND_21 (EFM32_DI+0x1D8)
#define EFM32_DI_AUXHFRCO_CALIB_BAND_28 (EFM32_DI+0x1D9)
#define EFM32_DI_HFRCO_CALIB_BAND_1 (EFM32_DI+0x1DC)
#define EFM32_DI_HFRCO_CALIB_BAND_7 (EFM32_DI+0x1DD)
#define EFM32_DI_HFRCO_CALIB_BAND_11 (EFM32_DI+0x1DE)
#define EFM32_DI_HFRCO_CALIB_BAND_14 (EFM32_DI+0x1DF)
#define EFM32_DI_HFRCO_CALIB_BAND_21 (EFM32_DI+0x1E0)
#define EFM32_DI_HFRCO_CALIB_BAND_28 (EFM32_DI+0x1E1)
#define EFM32_DI_MEM_INFO_PAGE_SIZE (EFM32_DI+0x1E7)
#define EFM32_DI_RADIO_ID (EFM32_DI+0x1EE)
#define EFM32_DI_EUI64_0 (EFM32_DI+0x1F0)
#define EFM32_DI_EUI64_1 (EFM32_DI+0x1F4)
#define EFM32_DI_MEM_INFO_FLASH (EFM32_DI+0x1F8)
#define EFM32_DI_MEM_INFO_RAM (EFM32_DI+0x1FA)
#define EFM32_DI_PART_NUMBER (EFM32_DI+0x1FC)
#define EFM32_DI_PART_FAMILY (EFM32_DI+0x1FE)
#define EFM32_DI_PROD_REV (EFM32_DI+0x1FF)
/* top 24 bits of eui */
#define EFM32_DI_EUI_SILABS 0x000b57
2015-11-14 14:55:43 +00:00
#define EFM32_DI_PART_FAMILY_GECKO 71
#define EFM32_DI_PART_FAMILY_GIANT_GECKO 72
#define EFM32_DI_PART_FAMILY_TINY_GECKO 73
#define EFM32_DI_PART_FAMILY_LEOPARD_GECKO 74
#define EFM32_DI_PART_FAMILY_WONDER_GECKO 75
#define EFM32_DI_PART_FAMILY_ZERO_GECKO 76
#define EFM32_DI_PART_FAMILY_EZR_WONDER_GECKO 120
#define EFM32_DI_PART_FAMILY_EZR_LEOPARD_GECKO 121
/* -------------------------------------------------------------------------- */
/* Helper functions */
/* -------------------------------------------------------------------------- */
/**
* Reads the EFM32 Extended Unique Identifier
*/
2015-11-14 14:55:43 +00:00
uint64_t efm32_read_eui(target *t)
{
uint64_t eui;
2015-11-14 14:55:43 +00:00
eui = (uint64_t)target_mem_read32(t, EFM32_DI_EUI64_1) << 32;
eui |= (uint64_t)target_mem_read32(t, EFM32_DI_EUI64_0) << 0;
2015-11-14 14:55:43 +00:00
return eui;
}
/**
* Reads the EFM32 flash size in kiB
*/
uint16_t efm32_read_flash_size(target *t)
{
2015-11-14 14:55:43 +00:00
return target_mem_read16(t, EFM32_DI_MEM_INFO_FLASH);
}
/**
* Reads the EFM32 RAM size in kiB
*/
uint16_t efm32_read_ram_size(target *t)
{
2015-11-14 14:55:43 +00:00
return target_mem_read16(t, EFM32_DI_MEM_INFO_RAM);
}
/**
* Reads the EFM32 Part Number
*/
uint16_t efm32_read_part_number(target *t)
{
2015-11-14 14:55:43 +00:00
return target_mem_read16(t, EFM32_DI_PART_NUMBER);
}
/**
* Reads the EFM32 Part Family
*/
uint8_t efm32_read_part_family(target *t)
{
2015-11-14 14:55:43 +00:00
return target_mem_read8(t, EFM32_DI_PART_FAMILY);
}
/**
* Reads the EFM32 Radio part number (EZR parts only)
*/
uint16_t efm32_read_radio_part_number(target *t)
{
2015-11-14 14:55:43 +00:00
return target_mem_read16(t, EFM32_DI_RADIO_OPN);
}
static void efm32_add_flash(target *t, target_addr addr, size_t length,
2015-11-14 14:55:43 +00:00
size_t page_size)
{
struct target_flash *f = calloc(1, sizeof(*f));
f->start = addr;
f->length = length;
f->blocksize = page_size;
f->erase = efm32_flash_erase;
f->write = target_flash_write_buffered;
f->done = target_flash_done_buffered;
f->write_buf = efm32_flash_write;
f->buf_size = page_size;
target_add_flash(t, f);
}
char variant_string[40];
bool efm32_probe(target *t)
{
/* Read the IDCODE register from the SW-DP */
ADIv5_AP_t *ap = cortexm_ap(t);
uint32_t ap_idcode = ap->dp->idcode;
/* Check the idcode is silabs. See AN0062 Section 2.2 */
if (ap_idcode == 0x2BA01477) {
/* Cortex M3, Cortex M4 */
} else if (ap_idcode == 0x0BC11477) {
/* Cortex M0+ */
} else {
2015-11-14 14:55:43 +00:00
return false;
}
/* Read the part number and family */
uint16_t part_number = efm32_read_part_number(t);
uint8_t part_family = efm32_read_part_family(t);
2015-11-14 14:55:43 +00:00
uint16_t radio_number, radio_number_short; /* optional, for ezr parts */
uint32_t flash_page_size; uint16_t flash_kb;
2015-11-14 14:55:43 +00:00
switch(part_family) {
case EFM32_DI_PART_FAMILY_GECKO:
sprintf(variant_string,
"EFM32 Gecko");
flash_page_size = 512;
2015-11-14 14:55:43 +00:00
break;
case EFM32_DI_PART_FAMILY_GIANT_GECKO:
sprintf(variant_string,
"EFM32 Giant Gecko");
flash_page_size = 2048; /* Could be 2048 or 4096, assume 2048 */
2015-11-14 14:55:43 +00:00
break;
case EFM32_DI_PART_FAMILY_TINY_GECKO:
sprintf(variant_string,
"EFM32 Tiny Gecko");
flash_page_size = 512;
2015-11-14 14:55:43 +00:00
break;
case EFM32_DI_PART_FAMILY_LEOPARD_GECKO:
sprintf(variant_string,
"EFM32 Leopard Gecko");
flash_page_size = 2048; /* Could be 2048 or 4096, assume 2048 */
2015-11-14 14:55:43 +00:00
break;
case EFM32_DI_PART_FAMILY_WONDER_GECKO:
sprintf(variant_string,
"EFM32 Wonder Gecko");
flash_page_size = 2048;
2015-11-14 14:55:43 +00:00
break;
case EFM32_DI_PART_FAMILY_ZERO_GECKO:
sprintf(variant_string,
"EFM32 Zero Gecko");
flash_page_size = 1024;
2015-11-14 14:55:43 +00:00
break;
case EFM32_DI_PART_FAMILY_EZR_WONDER_GECKO:
radio_number = efm32_read_radio_part_number(t); /* on-chip radio */
radio_number_short = radio_number % 100;
flash_kb = efm32_read_flash_size(t);
sprintf(variant_string,
"EZR32WG%dF%dR%d (radio si%d)",
part_number, flash_kb,
radio_number_short, radio_number);
flash_page_size = 2048;
break;
case EFM32_DI_PART_FAMILY_EZR_LEOPARD_GECKO:
radio_number = efm32_read_radio_part_number(t); /* on-chip radio */
radio_number_short = radio_number % 100;
flash_kb = efm32_read_flash_size(t);
sprintf(variant_string,
"EZR32LG%dF%dR%d (radio si%d)",
part_number, flash_kb,
radio_number_short, radio_number);
flash_page_size = 2048;
break;
default: /* Unknown family */
return false;
}
/* Read memory sizes, convert to bytes */
uint32_t flash_size = efm32_read_flash_size(t) * 0x400;
uint32_t ram_size = efm32_read_ram_size(t) * 0x400;
/* Setup Target */
t->target_options |= CORTEXM_TOPT_INHIBIT_SRST;
t->driver = variant_string;
tc_printf(t, "flash size %d page size %d\n", flash_size, flash_page_size);
target_add_ram (t, SRAM_BASE, ram_size);
efm32_add_flash(t, 0x00000000, flash_size, flash_page_size);
target_add_commands(t, efm32_cmd_list, "EFM32");
return true;
}
/**
* Erase flash row by row
*/
static int efm32_flash_erase(struct target_flash *f, target_addr addr, size_t len)
{
target *t = f->t;
2015-11-14 14:55:43 +00:00
/* Set WREN bit to enabel MSC write and erase functionality */
target_mem_write32(t, EFM32_MSC_WRITECTRL, 1);
while (len) {
/* Write address of first word in row to erase it */
target_mem_write32(t, EFM32_MSC_ADDRB, addr);
target_mem_write32(t, EFM32_MSC_WRITECMD, EFM32_MSC_WRITECMD_LADDRIM);
/* Issue the erase command */
target_mem_write32(t, EFM32_MSC_WRITECMD, EFM32_MSC_WRITECMD_ERASEPAGE );
/* Poll MSC Busy */
while ((target_mem_read32(t, EFM32_MSC_STATUS) & EFM32_MSC_STATUS_BUSY)) {
if (target_check_error(t))
return -1;
}
addr += f->blocksize;
len -= f->blocksize;
}
return 0;
}
/**
* Write flash page by page
*/
static int efm32_flash_write(struct target_flash *f,
target_addr dest, const void *src, size_t len)
{
(void)len;
target *t = f->t;
/* Write flashloader */
target_mem_write(t, SRAM_BASE, efm32_flash_write_stub,
2015-11-14 14:55:43 +00:00
sizeof(efm32_flash_write_stub));
/* Write Buffer */
target_mem_write(t, STUB_BUFFER_BASE, src, len);
/* Run flashloader */
return cortexm_run_stub(t, SRAM_BASE, dest, STUB_BUFFER_BASE, len, 0);
return 0;
}
/**
* Uses the MSC ERASEMAIN0 command to erase the entire flash
*/
static bool efm32_cmd_erase_all(target *t)
{
2015-11-14 14:55:43 +00:00
/* Set WREN bit to enabel MSC write and erase functionality */
target_mem_write32(t, EFM32_MSC_WRITECTRL, 1);
/* Unlock mass erase */
target_mem_write32(t, EFM32_MSC_MASSLOCK, EFM32_MSC_MASSLOCK_LOCKKEY);
/* Erase operation */
target_mem_write32(t, EFM32_MSC_WRITECMD, EFM32_MSC_WRITECMD_ERASEMAIN0);
/* Poll MSC Busy */
while ((target_mem_read32(t, EFM32_MSC_STATUS) & EFM32_MSC_STATUS_BUSY)) {
if (target_check_error(t))
return false;
}
/* Relock mass erase */
target_mem_write32(t, EFM32_MSC_MASSLOCK, 0);
tc_printf(t, "Erase successful!\n");
return true;
}
/**
* Reads the 40-bit unique number
*/
static bool efm32_cmd_serial(target *t)
{
2015-11-14 14:55:43 +00:00
/* Read the extended unique identifier */
uint64_t eui = efm32_read_eui(t);
/* 64 bits of unique number */
tc_printf(t, "Unique Number: 0x%016llx\n", eui);
return true;
}