Merge pull request #70 from richardeoin/samd

Added support for SAMD10/11/21 and SAMD Security Bit
This commit is contained in:
Gareth McMullin 2015-01-26 10:54:22 +13:00
commit 8b01a0aa0c
6 changed files with 793 additions and 652 deletions

View File

@ -32,7 +32,7 @@ SRC = \
nrf51.c \ nrf51.c \
platform.c \ platform.c \
sam3x.c \ sam3x.c \
samd20.c \ samd.c \
stm32f1.c \ stm32f1.c \
stm32f4.c \ stm32f4.c \
stm32l1.c \ stm32l1.c \
@ -53,4 +53,3 @@ clean: host_clean
-$(RM) platforms/*/*.o platforms/*/*.d mapfile -$(RM) platforms/*/*.o platforms/*/*.d mapfile
-include *.d -include *.d

View File

@ -60,8 +60,6 @@ const struct command_s cortexm_cmd_list[] = {
#define SIGTRAP 5 #define SIGTRAP 5
#define SIGSEGV 11 #define SIGSEGV 11
static bool cortexm_attach(struct target_s *target);
static int cortexm_regs_read(struct target_s *target, void *data); static int cortexm_regs_read(struct target_s *target, void *data);
static int cortexm_regs_write(struct target_s *target, const void *data); static int cortexm_regs_write(struct target_s *target, const void *data);
static int cortexm_pc_write(struct target_s *target, const uint32_t val); static int cortexm_pc_write(struct target_s *target, const uint32_t val);
@ -261,7 +259,7 @@ cortexm_probe(struct target_s *target)
PROBE(lpc43xx_probe); PROBE(lpc43xx_probe);
PROBE(sam3x_probe); PROBE(sam3x_probe);
PROBE(nrf51_probe); PROBE(nrf51_probe);
PROBE(samd20_probe); PROBE(samd_probe);
PROBE(lmi_probe); PROBE(lmi_probe);
PROBE(kinetis_probe); PROBE(kinetis_probe);
#undef PROBE #undef PROBE
@ -269,8 +267,7 @@ cortexm_probe(struct target_s *target)
return true; return true;
} }
static bool bool cortexm_attach(struct target_s *target)
cortexm_attach(struct target_s *target)
{ {
ADIv5_AP_t *ap = adiv5_target_ap(target); ADIv5_AP_t *ap = adiv5_target_ap(target);
struct cortexm_priv *priv = ap->priv; struct cortexm_priv *priv = ap->priv;

View File

@ -123,6 +123,7 @@
#define CORTEXM_DWT_FUNC_FUNC_WRITE (6 << 0) #define CORTEXM_DWT_FUNC_FUNC_WRITE (6 << 0)
#define CORTEXM_DWT_FUNC_FUNC_ACCESS (7 << 0) #define CORTEXM_DWT_FUNC_FUNC_ACCESS (7 << 0)
bool cortexm_attach(struct target_s *target);
void cortexm_detach(struct target_s *target); void cortexm_detach(struct target_s *target);
void cortexm_halt_resume(struct target_s *target, bool step); void cortexm_halt_resume(struct target_s *target, bool step);

View File

@ -224,7 +224,7 @@ bool lpc11xx_probe(struct target_s *target);
bool lpc43xx_probe(struct target_s *target); bool lpc43xx_probe(struct target_s *target);
bool sam3x_probe(struct target_s *target); bool sam3x_probe(struct target_s *target);
bool nrf51_probe(struct target_s *target); bool nrf51_probe(struct target_s *target);
bool samd20_probe(struct target_s *target); bool samd_probe(struct target_s *target);
bool kinetis_probe(struct target_s *target); bool kinetis_probe(struct target_s *target);
#endif #endif

788
src/samd.c Normal file
View File

@ -0,0 +1,788 @@
/*
* This file is part of the Black Magic Debug project.
*
* Copyright (C) 2014 Richard Meadows <richardeoin>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/* This file implements Atmel SAM D target specific functions for
* detecting the device, providing the XML memory map and Flash memory
* programming.
*
* Tested with
* * SAMD20E17A (rev C)
* * SAMD20J18A (rev B)
* * SAMD21J18A (rev B)
* *
*/
/* Refer to the SAM D20 Datasheet:
* http://www.atmel.com/Images/Atmel-42129-SAM-D20_Datasheet.pdf
* particularly Sections 12. DSU and 20. NVMCTRL
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "general.h"
#include "jtagtap.h"
#include "adiv5.h"
#include "target.h"
#include "command.h"
#include "gdb_packet.h"
#include "cortexm.h"
static int samd_flash_erase(struct target_s *target, uint32_t addr, int len);
static int samd_flash_write(struct target_s *target, uint32_t dest,
const uint8_t *src, int len);
static bool samd_cmd_erase_all(target *t);
static bool samd_cmd_lock_flash(target *t);
static bool samd_cmd_unlock_flash(target *t);
static bool samd_cmd_read_userrow(target *t);
static bool samd_cmd_serial(target *t);
static bool samd_cmd_mbist(target *t);
static bool samd_cmd_ssb(target *t);
const struct command_s samd_cmd_list[] = {
{"erase_mass", (cmd_handler)samd_cmd_erase_all, "Erase entire flash memory"},
{"lock_flash", (cmd_handler)samd_cmd_lock_flash, "Locks flash against spurious commands"},
{"unlock_flash", (cmd_handler)samd_cmd_unlock_flash, "Unlocks flash"},
{"user_row", (cmd_handler)samd_cmd_read_userrow, "Prints user row from flash"},
{"serial", (cmd_handler)samd_cmd_serial, "Prints serial number"},
{"mbist", (cmd_handler)samd_cmd_mbist, "Runs the built-in memory test"},
{"set_security_bit", (cmd_handler)samd_cmd_ssb, "Sets the Security Bit"},
{NULL, NULL, NULL}
};
/**
* 256KB Flash Max., 32KB RAM Max. The smallest unit of erase is the
* one row = 256 bytes.
*/
static const char samd_xml_memory_map[] = "<?xml version=\"1.0\"?>"
/* "<!DOCTYPE memory-map "
" PUBLIC \"+//IDN gnu.org//DTD GDB Memory Map V1.0//EN\""
" \"http://sourceware.org/gdb/gdb-memory-map.dtd\">"*/
"<memory-map>"
" <memory type=\"flash\" start=\"0x0\" length=\"0x40000\">"
" <property name=\"blocksize\">0x100</property>"
" </memory>"
" <memory type=\"ram\" start=\"0x20000000\" length=\"0x8000\"/>"
"</memory-map>";
/* Non-Volatile Memory Controller (NVMC) Parameters */
#define SAMD_ROW_SIZE 256
#define SAMD_PAGE_SIZE 64
/* -------------------------------------------------------------------------- */
/* Non-Volatile Memory Controller (NVMC) Registers */
/* -------------------------------------------------------------------------- */
#define SAMD_NVMC 0x41004000
#define SAMD_NVMC_CTRLA (SAMD_NVMC + 0x0)
#define SAMD_NVMC_CTRLB (SAMD_NVMC + 0x04)
#define SAMD_NVMC_PARAM (SAMD_NVMC + 0x08)
#define SAMD_NVMC_INTFLAG (SAMD_NVMC + 0x14)
#define SAMD_NVMC_STATUS (SAMD_NVMC + 0x18)
#define SAMD_NVMC_ADDRESS (SAMD_NVMC + 0x1C)
/* Control A Register (CTRLA) */
#define SAMD_CTRLA_CMD_KEY 0xA500
#define SAMD_CTRLA_CMD_ERASEROW 0x0002
#define SAMD_CTRLA_CMD_WRITEPAGE 0x0004
#define SAMD_CTRLA_CMD_ERASEAUXROW 0x0005
#define SAMD_CTRLA_CMD_WRITEAUXPAGE 0x0006
#define SAMD_CTRLA_CMD_LOCK 0x0040
#define SAMD_CTRLA_CMD_UNLOCK 0x0041
#define SAMD_CTRLA_CMD_PAGEBUFFERCLEAR 0x0044
#define SAMD_CTRLA_CMD_SSB 0x0045
#define SAMD_CTRLA_CMD_INVALL 0x0046
/* Interrupt Flag Register (INTFLAG) */
#define SAMD_NVMC_READY (1 << 0)
/* Non-Volatile Memory Calibration and Auxiliary Registers */
#define SAMD_NVM_USER_ROW_LOW 0x00804000
#define SAMD_NVM_USER_ROW_HIGH 0x00804004
#define SAMD_NVM_CALIBRATION 0x00806020
#define SAMD_NVM_SERIAL(n) (0x0080A00C + (0x30 * ((n + 3) / 4)) + \
(0x4 * n))
/* -------------------------------------------------------------------------- */
/* Device Service Unit (DSU) Registers */
/* -------------------------------------------------------------------------- */
#define SAMD_DSU 0x41002000
#define SAMD_DSU_EXT_ACCESS (SAMD_DSU + 0x100)
#define SAMD_DSU_CTRLSTAT (SAMD_DSU_EXT_ACCESS + 0x0)
#define SAMD_DSU_ADDRESS (SAMD_DSU_EXT_ACCESS + 0x4)
#define SAMD_DSU_LENGTH (SAMD_DSU_EXT_ACCESS + 0x8)
#define SAMD_DSU_DID (SAMD_DSU_EXT_ACCESS + 0x018)
#define SAMD_DSU_PID(n) (SAMD_DSU + 0x1FE0 + \
(0x4 * (n % 4)) - (0x10 * (n / 4)))
#define SAMD_DSU_CID(n) (SAMD_DSU + 0x1FF0 + \
(0x4 * (n % 4)))
/* Control and Status Register (CTRLSTAT) */
#define SAMD_CTRL_CHIP_ERASE (1 << 4)
#define SAMD_CTRL_MBIST (1 << 3)
#define SAMD_CTRL_CRC (1 << 2)
#define SAMD_STATUSA_PERR (1 << 12)
#define SAMD_STATUSA_FAIL (1 << 11)
#define SAMD_STATUSA_BERR (1 << 10)
#define SAMD_STATUSA_CRSTEXT (1 << 9)
#define SAMD_STATUSA_DONE (1 << 8)
#define SAMD_STATUSB_PROT (1 << 16)
/* Device Identification Register (DID) */
#define SAMD_DID_MASK 0xFFBC0000
#define SAMD_DID_CONST_VALUE 0x10000000
#define SAMD_DID_DEVSEL_MASK 0x0F
#define SAMD_DID_DEVSEL_POS 0
#define SAMD_DID_REVISION_MASK 0x0F
#define SAMD_DID_REVISION_POS 8
#define SAMD_DID_SERIES_MASK 0x03
#define SAMD_DID_SERIES_POS 16
/* Peripheral ID */
#define SAMD_PID_MASK 0x00F7FFFF
#define SAMD_PID_CONST_VALUE 0x0001FCD0
/* Component ID */
#define SAMD_CID_VALUE 0xB105100D
/* Utility */
#define MINIMUM(a,b) ((a < b) ? a : b)
/**
* Reads the SAM D20 Peripheral ID
*/
uint64_t samd_read_pid(struct target_s *target)
{
ADIv5_AP_t *ap = adiv5_target_ap(target);
uint64_t pid = 0;
uint8_t i, j;
/* Five PID registers to read LSB first */
for (i = 0, j = 0; i < 5; i++, j += 8)
pid |= (adiv5_ap_mem_read(ap, SAMD_DSU_PID(i)) & 0xFF) << j;
return pid;
}
/**
* Reads the SAM D20 Component ID
*/
uint32_t samd_read_cid(struct target_s *target)
{
ADIv5_AP_t *ap = adiv5_target_ap(target);
uint64_t cid = 0;
uint8_t i, j;
/* Four CID registers to read LSB first */
for (i = 0, j = 0; i < 4; i++, j += 8)
cid |= (adiv5_ap_mem_read(ap, SAMD_DSU_CID(i)) & 0xFF) << j;
return cid;
}
/**
* Overloads the default cortexm reset function with a version that
* removes the target from extended reset where required.
*/
static void
samd_reset(struct target_s *target)
{
ADIv5_AP_t *ap = adiv5_target_ap(target);
/**
* SRST is not asserted here as it appears to reset the adiv5
* logic, meaning that subsequent adiv5_* calls PLATFORM_FATAL_ERROR.
*
* This is ok as normally you can just connect the debugger and go,
* but if that's not possible (protection or SWCLK being used for
* something else) then having SWCLK low on reset should get you
* debug access (cold-plugging). TODO: Confirm this
*
* See the SAM D20 datasheet §12.6 Debug Operation for more
* details.
*
* jtagtap_srst(true);
* jtagtap_srst(false);
*/
/* Read DHCSR here to clear S_RESET_ST bit before reset */
adiv5_ap_mem_read(ap, CORTEXM_DHCSR);
/* Request system reset from NVIC: SRST doesn't work correctly */
/* This could be VECTRESET: 0x05FA0001 (reset only core)
* or SYSRESETREQ: 0x05FA0004 (system reset)
*/
adiv5_ap_mem_write(ap, CORTEXM_AIRCR,
CORTEXM_AIRCR_VECTKEY | CORTEXM_AIRCR_SYSRESETREQ);
/* Exit extended reset */
if (adiv5_ap_mem_read(ap, SAMD_DSU_CTRLSTAT) &
SAMD_STATUSA_CRSTEXT) {
/* Write bit to clear from extended reset */
adiv5_ap_mem_write(ap, SAMD_DSU_CTRLSTAT,
SAMD_STATUSA_CRSTEXT);
}
/* Poll for release from reset */
while(adiv5_ap_mem_read(ap, CORTEXM_DHCSR) & CORTEXM_DHCSR_S_RESET_ST);
/* Reset DFSR flags */
adiv5_ap_mem_write(ap, CORTEXM_DFSR, CORTEXM_DFSR_RESETALL);
/* Clear any target errors */
target_check_error(target);
}
/**
* Overloads the default cortexm detached function with a version that
* removes the target from extended reset where required.
*
* Only required for SAM D20 _Revision B_ Silicon
*/
static void
samd20_revB_detach(struct target_s *target)
{
ADIv5_AP_t *ap = adiv5_target_ap(target);
cortexm_detach(target);
/* ---- Additional ---- */
/* Exit extended reset */
if (adiv5_ap_mem_read(ap, SAMD_DSU_CTRLSTAT) &
SAMD_STATUSA_CRSTEXT) {
/* Write bit to clear from extended reset */
adiv5_ap_mem_write(ap, SAMD_DSU_CTRLSTAT,
SAMD_STATUSA_CRSTEXT);
}
}
/**
* Overloads the default cortexm halt_resume function with a version
* that removes the target from extended reset where required.
*
* Only required for SAM D20 _Revision B_ Silicon
*/
static void
samd20_revB_halt_resume(struct target_s *target, bool step)
{
ADIv5_AP_t *ap = adiv5_target_ap(target);
cortexm_halt_resume(target, step);
/* ---- Additional ---- */
/* Exit extended reset */
if (adiv5_ap_mem_read(ap, SAMD_DSU_CTRLSTAT) &
SAMD_STATUSA_CRSTEXT) {
/* Write bit to clear from extended reset */
adiv5_ap_mem_write(ap, SAMD_DSU_CTRLSTAT,
SAMD_STATUSA_CRSTEXT);
}
}
/**
* Overload the default cortexm attach for when the samd is protected.
*
* If the samd is protected then the default cortexm attach will
* fail as the S_HALT bit in the DHCSR will never go high. This
* function allows users to attach on a temporary basis so they can
* rescue the device.
*/
static bool
samd_protected_attach(struct target_s *target)
{
/**
* TODO: Notify the user that we're not really attached and
* they should issue the 'monitor erase_mass' command to
* regain access to the chip.
*/
/* Patch back in the normal cortexm attach for next time */
target->attach = cortexm_attach;
/* Allow attach this time */
return true;
}
/**
* Use the DSU Device Indentification Register to populate a struct
* describing the SAM D device.
*/
struct samd_descr {
uint8_t series;
char revision;
char pin;
uint8_t mem;
char package[3];
};
struct samd_descr samd_parse_device_id(uint32_t did)
{
struct samd_descr samd;
memset(samd.package, 0, 3);
uint8_t series = (did >> SAMD_DID_SERIES_POS)
& SAMD_DID_SERIES_MASK;
uint8_t revision = (did >> SAMD_DID_REVISION_POS)
& SAMD_DID_REVISION_MASK;
uint8_t devsel = (did >> SAMD_DID_DEVSEL_POS)
& SAMD_DID_DEVSEL_MASK;
/* Series */
switch (series) {
case 0: samd.series = 20; break;
case 1: samd.series = 21; break;
case 2: samd.series = 10; break;
case 3: samd.series = 11; break;
}
/* Revision */
samd.revision = 'A' + revision;
switch (samd.series) {
case 20: /* SAM D20 */
case 21: /* SAM D21 */
switch (devsel / 5) {
case 0: samd.pin = 'J'; break;
case 1: samd.pin = 'G'; break;
case 2: samd.pin = 'E'; break;
default: samd.pin = 'u'; break;
}
samd.mem = 18 - (devsel % 5);
break;
case 10: /* SAM D10 */
case 11: /* SAM D11 */
switch (devsel / 3) {
case 0: samd.package[0] = 'M'; break;
case 1: samd.package[0] = 'S'; samd.package[1] = 'S'; break;
}
samd.pin = 'D';
samd.mem = 14 - (devsel % 3);
break;
}
return samd;
}
char variant_string[40];
bool samd_probe(struct target_s *target)
{
ADIv5_AP_t *ap = adiv5_target_ap(target);
uint32_t cid = samd_read_cid(target);
uint32_t pid = samd_read_pid(target);
/* Check the ARM Coresight Component and Perhiperal IDs */
if (cid == SAMD_CID_VALUE &&
(pid & SAMD_PID_MASK) == SAMD_PID_CONST_VALUE) {
/* Read the Device ID */
uint32_t did = adiv5_ap_mem_read(ap, SAMD_DSU_DID);
/* If the Device ID matches */
if ((did & SAMD_DID_MASK) == SAMD_DID_CONST_VALUE) {
uint32_t ctrlstat = adiv5_ap_mem_read(ap, SAMD_DSU_CTRLSTAT);
struct samd_descr samd = samd_parse_device_id(did);
/* Protected? */
int protected = (ctrlstat & SAMD_STATUSB_PROT);
/* Part String */
if (protected) {
sprintf(variant_string,
"Atmel SAMD%d%c%dA%s (rev %c) (PROT=1)",
samd.series, samd.pin, samd.mem,
samd.package, samd.revision);
} else {
sprintf(variant_string,
"Atmel SAMD%d%c%dA%s (rev %c)",
samd.series, samd.pin, samd.mem,
samd.package, samd.revision);
}
/* Setup Target */
target->driver = variant_string;
target->reset = samd_reset;
if (samd.series == 20 && samd.revision == 'B') {
/**
* These functions check for and
* extended reset. Appears to be
* related to Errata 35.4.1 ref 12015
*/
target->detach = samd20_revB_detach;
target->halt_resume = samd20_revB_halt_resume;
}
if (protected) {
/**
* Overload the default cortexm attach
* for when the samd is protected.
* This function allows users to
* attach on a temporary basis so they
* can rescue the device.
*/
target->attach = samd_protected_attach;
}
target->xml_mem_map = samd_xml_memory_map;
target->flash_erase = samd_flash_erase;
target->flash_write = samd_flash_write;
target_add_commands(target, samd_cmd_list, "SAMD");
/* If we're not in reset here */
if (!connect_assert_srst) {
/* We'll have to release the target from
* extended reset to make attach possible */
if (adiv5_ap_mem_read(ap, SAMD_DSU_CTRLSTAT) &
SAMD_STATUSA_CRSTEXT) {
/* Write bit to clear from extended reset */
adiv5_ap_mem_write(ap, SAMD_DSU_CTRLSTAT,
SAMD_STATUSA_CRSTEXT);
}
}
return true;
}
}
return false;
}
/**
* Temporary (until next reset) flash memory locking / unlocking
*/
static void samd_lock_current_address(struct target_s *target)
{
ADIv5_AP_t *ap = adiv5_target_ap(target);
/* Issue the unlock command */
adiv5_ap_mem_write(ap, SAMD_NVMC_CTRLA, SAMD_CTRLA_CMD_KEY | SAMD_CTRLA_CMD_LOCK);
}
static void samd_unlock_current_address(struct target_s *target)
{
ADIv5_AP_t *ap = adiv5_target_ap(target);
/* Issue the unlock command */
adiv5_ap_mem_write(ap, SAMD_NVMC_CTRLA, SAMD_CTRLA_CMD_KEY | SAMD_CTRLA_CMD_UNLOCK);
}
/**
* Erase flash row by row
*/
static int samd_flash_erase(struct target_s *target, uint32_t addr, int len)
{
ADIv5_AP_t *ap = adiv5_target_ap(target);
addr &= ~(SAMD_ROW_SIZE - 1);
len &= ~(SAMD_ROW_SIZE - 1);
while (len) {
/* Write address of first word in row to erase it */
/* Must be shifted right for 16-bit address, see Datasheet §20.8.8 Address */
adiv5_ap_mem_write(ap, SAMD_NVMC_ADDRESS, addr >> 1);
/* Unlock */
samd_unlock_current_address(target);
/* Issue the erase command */
adiv5_ap_mem_write(ap, SAMD_NVMC_CTRLA, SAMD_CTRLA_CMD_KEY | SAMD_CTRLA_CMD_ERASEROW);
/* Poll for NVM Ready */
while ((adiv5_ap_mem_read(ap, SAMD_NVMC_INTFLAG) & SAMD_NVMC_READY) == 0)
if(target_check_error(target))
return -1;
/* Lock */
samd_lock_current_address(target);
addr += SAMD_ROW_SIZE;
len -= SAMD_ROW_SIZE;
}
return 0;
}
/**
* Write flash page by page
*/
static int samd_flash_write(struct target_s *target, uint32_t dest,
const uint8_t *src, int len)
{
ADIv5_AP_t *ap = adiv5_target_ap(target);
/* Find the size of our 32-bit data buffer */
uint32_t offset = dest % 4;
uint32_t words = (offset + len + 3) / 4;
uint32_t data[words], i = 0;
/* Populate the data buffer */
memset((uint8_t *)data, 0xFF, words * 4);
memcpy((uint8_t *)data + offset, src, len);
/* The address of the first word involved in the write */
uint32_t addr = dest & ~0x3;
/* The address of the last word involved in the write */
uint32_t end = (dest + len - 1) & ~0x3;
/* The start address of the first page involved in the write */
uint32_t first_page = dest & ~(SAMD_PAGE_SIZE - 1);
/* The start address of the last page involved in the write */
uint32_t last_page = (dest + len - 1) & ~(SAMD_PAGE_SIZE - 1);
uint32_t end_of_this_page;
for (uint32_t page = first_page; page <= last_page; page += SAMD_PAGE_SIZE) {
end_of_this_page = page + (SAMD_PAGE_SIZE - 4);
if (addr > page || (page == last_page && end < end_of_this_page)) {
/* Setup write */
adiv5_ap_write(ap, ADIV5_AP_CSW, ap->csw |
ADIV5_AP_CSW_SIZE_WORD | ADIV5_AP_CSW_ADDRINC_SINGLE);
adiv5_ap_write(ap, ADIV5_AP_TAR, addr);
adiv5_dp_write(ap->dp, ADIV5_DP_SELECT,
((uint32_t)ap->apsel << 24)|(ADIV5_AP_DRW & 0xF0));
/* Partial, manual page write */
for (; addr <= MINIMUM(end, end_of_this_page); addr += 4, i++) {
adiv5_dp_write_ap(ap->dp, ADIV5_AP_DRW, data[i]);
}
/* Unlock */
samd_unlock_current_address(target);
/* Issue the write page command */
adiv5_ap_mem_write(ap, SAMD_NVMC_CTRLA,
SAMD_CTRLA_CMD_KEY | SAMD_CTRLA_CMD_WRITEPAGE);
} else {
/* Write first word to set address */
adiv5_ap_mem_write(ap, addr, data[i]); addr += 4; i++;
/* Unlock */
samd_unlock_current_address(target);
/* Set up write */
adiv5_ap_write(ap, ADIV5_AP_CSW, ap->csw |
ADIV5_AP_CSW_SIZE_WORD | ADIV5_AP_CSW_ADDRINC_SINGLE);
adiv5_ap_write(ap, ADIV5_AP_TAR, addr);
adiv5_dp_write(ap->dp, ADIV5_DP_SELECT,
((uint32_t)ap->apsel << 24)|(ADIV5_AP_DRW & 0xF0));
/* Full, automatic page write */
for (; addr < page + SAMD_PAGE_SIZE; addr += 4, i++) {
adiv5_dp_write_ap(ap->dp, ADIV5_AP_DRW, data[i]);
}
}
/* Poll for NVM Ready */
while ((adiv5_ap_mem_read(ap, SAMD_NVMC_INTFLAG) & SAMD_NVMC_READY) == 0)
if(target_check_error(target))
return -1;
/* Lock */
samd_lock_current_address(target);
}
return 0;
}
/**
* Uses the Device Service Unit to erase the entire flash
*/
static bool samd_cmd_erase_all(target *t)
{
ADIv5_AP_t *ap = adiv5_target_ap(t);
/* Clear the DSU status bits */
adiv5_ap_mem_write(ap, SAMD_DSU_CTRLSTAT,
(SAMD_STATUSA_DONE | SAMD_STATUSA_PERR | SAMD_STATUSA_FAIL));
/* Erase all */
adiv5_ap_mem_write(ap, SAMD_DSU_CTRLSTAT, SAMD_CTRL_CHIP_ERASE);
/* Poll for DSU Ready */
uint32_t status;
while (((status = adiv5_ap_mem_read(ap, SAMD_DSU_CTRLSTAT)) &
(SAMD_STATUSA_DONE | SAMD_STATUSA_PERR | SAMD_STATUSA_FAIL)) == 0)
if(target_check_error(t))
return false;
/* Test the protection error bit in Status A */
if (status & SAMD_STATUSA_PERR) {
gdb_outf("Erase failed due to a protection error.\n");
return true;
}
/* Test the fail bit in Status A */
if (status & SAMD_STATUSA_FAIL) {
gdb_outf("Erase failed.\n");
return true;
}
gdb_outf("Erase successful!\n");
return true;
}
/**
* Sets the NVM region lock bits in the User Row. This value is read
* at startup as the default value for the lock bits, and hence does
* not take effect until a reset.
*
* 0x0000 = Lock, 0xFFFF = Unlock (default)
*/
static bool samd_set_flashlock(target *t, uint16_t value)
{
ADIv5_AP_t *ap = adiv5_target_ap(t);
uint32_t high = adiv5_ap_mem_read(ap, SAMD_NVM_USER_ROW_HIGH);
uint32_t low = adiv5_ap_mem_read(ap, SAMD_NVM_USER_ROW_LOW);
/* Write address of a word in the row to erase it */
/* Must be shifted right for 16-bit address, see Datasheet §20.8.8 Address */
adiv5_ap_mem_write(ap, SAMD_NVMC_ADDRESS, SAMD_NVM_USER_ROW_LOW >> 1);
/* Issue the erase command */
adiv5_ap_mem_write(ap, SAMD_NVMC_CTRLA, SAMD_CTRLA_CMD_KEY | SAMD_CTRLA_CMD_ERASEAUXROW);
/* Poll for NVM Ready */
while ((adiv5_ap_mem_read(ap, SAMD_NVMC_INTFLAG) & SAMD_NVMC_READY) == 0)
if(target_check_error(t))
return -1;
/* Modify the high byte of the user row */
high = (high & 0x0000FFFF) | ((value << 16) & 0xFFFF0000);
/* Write back */
adiv5_ap_mem_write(ap, SAMD_NVM_USER_ROW_LOW, low);
adiv5_ap_mem_write(ap, SAMD_NVM_USER_ROW_HIGH, high);
/* Issue the page write command */
adiv5_ap_mem_write(ap, SAMD_NVMC_CTRLA,
SAMD_CTRLA_CMD_KEY | SAMD_CTRLA_CMD_WRITEAUXPAGE);
return true;
}
static bool samd_cmd_lock_flash(target *t)
{
return samd_set_flashlock(t, 0x0000);
}
static bool samd_cmd_unlock_flash(target *t)
{
return samd_set_flashlock(t, 0xFFFF);
}
static bool samd_cmd_read_userrow(target *t)
{
ADIv5_AP_t *ap = adiv5_target_ap(t);
gdb_outf("User Row: 0x%08x%08x\n",
adiv5_ap_mem_read(ap, SAMD_NVM_USER_ROW_HIGH),
adiv5_ap_mem_read(ap, SAMD_NVM_USER_ROW_LOW));
return true;
}
/**
* Reads the 128-bit serial number from the NVM
*/
static bool samd_cmd_serial(target *t)
{
ADIv5_AP_t *ap = adiv5_target_ap(t);
gdb_outf("Serial Number: 0x");
for (uint32_t i = 0; i < 4; i++) {
gdb_outf("%08x", adiv5_ap_mem_read(ap, SAMD_NVM_SERIAL(i)));
}
gdb_outf("\n");
return true;
}
/**
* Returns the size (in bytes) of the current SAM D20's flash memory.
*/
static uint32_t samd_flash_size(target *t)
{
ADIv5_AP_t *ap = adiv5_target_ap(t);
/* Read the Device ID */
uint32_t did = adiv5_ap_mem_read(ap, SAMD_DSU_DID);
/* Mask off the device select bits */
uint8_t devsel = did & SAMD_DID_DEVSEL_MASK;
/* Shift the maximum flash size (256KB) down as appropriate */
return (0x40000 >> (devsel % 5));
}
/**
* Runs the Memory Built In Self Test (MBIST)
*/
static bool samd_cmd_mbist(target *t)
{
ADIv5_AP_t *ap = adiv5_target_ap(t);
/* Write the memory parameters to the DSU */
adiv5_ap_mem_write(ap, SAMD_DSU_ADDRESS, 0);
adiv5_ap_mem_write(ap, SAMD_DSU_LENGTH, samd_flash_size(t));
/* Clear the fail bit */
adiv5_ap_mem_write(ap, SAMD_DSU_CTRLSTAT, SAMD_STATUSA_FAIL);
/* Write the MBIST command */
adiv5_ap_mem_write(ap, SAMD_DSU_CTRLSTAT, SAMD_CTRL_MBIST);
/* Poll for DSU Ready */
uint32_t status;
while (((status = adiv5_ap_mem_read(ap, SAMD_DSU_CTRLSTAT)) &
(SAMD_STATUSA_DONE | SAMD_STATUSA_PERR | SAMD_STATUSA_FAIL)) == 0)
if(target_check_error(t))
return false;
/* Test the protection error bit in Status A */
if (status & SAMD_STATUSA_PERR) {
gdb_outf("MBIST not run due to protection error.\n");
return true;
}
/* Test the fail bit in Status A */
if (status & SAMD_STATUSA_FAIL) {
gdb_outf("MBIST Fail @ 0x%08x\n",
adiv5_ap_mem_read(ap, SAMD_DSU_ADDRESS));
} else {
gdb_outf("MBIST Passed!\n");
}
return true;
}
/**
* Sets the security bit
*/
static bool samd_cmd_ssb(target *t)
{
ADIv5_AP_t *ap = adiv5_target_ap(t);
/* Issue the ssb command */
adiv5_ap_mem_write(ap, SAMD_NVMC_CTRLA, SAMD_CTRLA_CMD_KEY | SAMD_CTRLA_CMD_SSB);
/* Poll for NVM Ready */
while ((adiv5_ap_mem_read(ap, SAMD_NVMC_INTFLAG) & SAMD_NVMC_READY) == 0)
if(target_check_error(t))
return -1;
gdb_outf("Set the security bit! "
"You will need to issue 'monitor erase_mass' to clear this.\n");
return true;
}

View File

@ -1,644 +0,0 @@
/*
* This file is part of the Black Magic Debug project.
*
* Copyright (C) 2014 Richard Meadows <richardeoin>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/* This file implements Atmel SAM D20 target specific functions for
* detecting the device, providing the XML memory map and Flash memory
* programming.
*/
/* Refer to the SAM D20 Datasheet:
* http://www.atmel.com/Images/Atmel-42129-SAM-D20_Datasheet.pdf
* particularly Sections 12. DSU and 20. NVMCTRL
*/
/* TODO: Support for the NVMCTRL Security Bit. If this is set then the
* device will probably not even be detected.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "general.h"
#include "jtagtap.h"
#include "adiv5.h"
#include "target.h"
#include "command.h"
#include "gdb_packet.h"
#include "cortexm.h"
static int samd20_flash_erase(struct target_s *target, uint32_t addr, int len);
static int samd20_flash_write(struct target_s *target, uint32_t dest,
const uint8_t *src, int len);
static bool samd20_cmd_erase_all(target *t);
static bool samd20_cmd_lock_flash(target *t);
static bool samd20_cmd_unlock_flash(target *t);
static bool samd20_cmd_read_userrow(target *t);
static bool samd20_cmd_serial(target *t);
static bool samd20_cmd_mbist(target *t);
const struct command_s samd20_cmd_list[] = {
{"erase_mass", (cmd_handler)samd20_cmd_erase_all, "Erase entire flash memory"},
{"lock_flash", (cmd_handler)samd20_cmd_lock_flash, "Locks flash against spurious commands"},
{"unlock_flash", (cmd_handler)samd20_cmd_unlock_flash, "Unlocks flash"},
{"user_row", (cmd_handler)samd20_cmd_read_userrow, "Prints user row from flash"},
{"serial", (cmd_handler)samd20_cmd_serial, "Prints serial number"},
{"mbist", (cmd_handler)samd20_cmd_mbist, "Runs the built-in memory test"},
{NULL, NULL, NULL}
};
/**
* 256KB Flash Max., 32KB RAM Max. The smallest unit of erase is the
* one row = 256 bytes.
*/
static const char samd20_xml_memory_map[] = "<?xml version=\"1.0\"?>"
/* "<!DOCTYPE memory-map "
" PUBLIC \"+//IDN gnu.org//DTD GDB Memory Map V1.0//EN\""
" \"http://sourceware.org/gdb/gdb-memory-map.dtd\">"*/
"<memory-map>"
" <memory type=\"flash\" start=\"0x0\" length=\"0x40000\">"
" <property name=\"blocksize\">0x100</property>"
" </memory>"
" <memory type=\"ram\" start=\"0x20000000\" length=\"0x8000\"/>"
"</memory-map>";
/* Non-Volatile Memory Controller (NVMC) Parameters */
#define SAMD20_ROW_SIZE 256
#define SAMD20_PAGE_SIZE 64
/* Non-Volatile Memory Controller (NVMC) Registers */
#define SAMD20_NVMC 0x41004000
#define SAMD20_NVMC_CMD (SAMD20_NVMC + 0x0)
#define SAMD20_NVMC_PARAM (SAMD20_NVMC + 0x08)
#define SAMD20_NVMC_INTFLAG (SAMD20_NVMC + 0x14)
#define SAMD20_NVMC_STATUS (SAMD20_NVMC + 0x18)
#define SAMD20_NVMC_ADDRESS (SAMD20_NVMC + 0x1C)
/* Command Register (CMD) */
#define SAMD20_CMD_KEY 0xA500
#define SAMD20_CMD_ERASEROW 0x0002
#define SAMD20_CMD_WRITEPAGE 0x0004
#define SAMD20_CMD_ERASEAUXROW 0x0005
#define SAMD20_CMD_WRITEAUXPAGE 0x0006
#define SAMD20_CMD_LOCK 0x0040
#define SAMD20_CMD_UNLOCK 0x0041
#define SAMD20_CMD_PAGEBUFFERCLEAR 0x0044
/* Interrupt Flag Register (INTFLAG) */
#define SAMD20_NVMC_READY (1 << 0)
/* Non-Volatile Memory Calibration and Auxiliary Registers */
#define SAMD20_NVM_USER_ROW_LOW 0x00804000
#define SAMD20_NVM_USER_ROW_HIGH 0x00804004
#define SAMD20_NVM_CALIBRATION 0x00806020
#define SAMD20_NVM_SERIAL(n) (0x0080A00C + (0x30 * ((n + 3) / 4)) + \
(0x4 * n))
/* Device Service Unit (DSU) Registers */
#define SAMD20_DSU 0x41002000
#define SAMD20_DSU_EXT_ACCESS (SAMD20_DSU + 0x100)
#define SAMD20_DSU_CTRLSTAT (SAMD20_DSU_EXT_ACCESS + 0x0)
#define SAMD20_DSU_ADDRESS (SAMD20_DSU_EXT_ACCESS + 0x4)
#define SAMD20_DSU_LENGTH (SAMD20_DSU_EXT_ACCESS + 0x8)
#define SAMD20_DSU_DID (SAMD20_DSU_EXT_ACCESS + 0x018)
#define SAMD20_DSU_PID(n) (SAMD20_DSU + 0x1FE0 + \
(0x4 * (n % 4)) - (0x10 * (n / 4)))
#define SAMD20_DSU_CID(n) (SAMD20_DSU + 0x1FF0 + \
(0x4 * (n % 4)))
/* Control and Status Register (CTRLSTAT) */
#define SAMD20_CTRL_CHIP_ERASE (1 << 4)
#define SAMD20_CTRL_MBIST (1 << 3)
#define SAMD20_CTRL_CRC (1 << 2)
#define SAMD20_STATUSA_PERR (1 << 12)
#define SAMD20_STATUSA_FAIL (1 << 11)
#define SAMD20_STATUSA_BERR (1 << 10)
#define SAMD20_STATUSA_CRSTEXT (1 << 9)
#define SAMD20_STATUSA_DONE (1 << 8)
/* Device Identification Register (DID) */
#define SAMD20_DID_MASK 0xFFBF0000
#define SAMD20_DID_CONST_VALUE 0x10000000
#define SAMD20_DID_DEVSEL_MASK 0x0F
#define SAMD20_DID_DEVSEL_POS 0
#define SAMD20_DID_REVISION_MASK 0x0F
#define SAMD20_DID_REVISION_POS 8
/* Peripheral ID */
#define SAMD20_PID_MASK 0x00F7FFFF
#define SAMD20_PID_CONST_VALUE 0x0001FCD0
/* Component ID */
#define SAMD20_CID_VALUE 0xB105100D
/* Utility */
#define MINIMUM(a,b) ((a < b) ? a : b)
/**
* Reads the SAM D20 Peripheral ID
*/
uint64_t samd20_read_pid(struct target_s *target)
{
ADIv5_AP_t *ap = adiv5_target_ap(target);
uint64_t pid = 0;
uint8_t i, j;
/* Five PID registers to read LSB first */
for (i = 0, j = 0; i < 5; i++, j += 8)
pid |= (adiv5_ap_mem_read(ap, SAMD20_DSU_PID(i)) & 0xFF) << j;
return pid;
}
/**
* Reads the SAM D20 Component ID
*/
uint32_t samd20_read_cid(struct target_s *target)
{
ADIv5_AP_t *ap = adiv5_target_ap(target);
uint64_t cid = 0;
uint8_t i, j;
/* Four CID registers to read LSB first */
for (i = 0, j = 0; i < 4; i++, j += 8)
cid |= (adiv5_ap_mem_read(ap, SAMD20_DSU_CID(i)) & 0xFF) << j;
return cid;
}
/**
* Overloads the default cortexm reset function with a version that
* removes the target from extended reset where required.
*/
static void
samd20_reset(struct target_s *target)
{
ADIv5_AP_t *ap = adiv5_target_ap(target);
/**
* SRST is not asserted here as it appears to reset the adiv5
* logic, meaning that subsequent adiv5_* calls PLATFORM_FATAL_ERROR.
*
* This is ok as normally you can just connect the debugger and go,
* but if that's not possible (protection or SWCLK being used for
* something else) then having SWCLK low on reset should get you
* debug access (cold-plugging). TODO: Confirm this
*
* See the SAM D20 datasheet §12.6 Debug Operation for more
* details.
*
* jtagtap_srst(true);
* jtagtap_srst(false);
*/
/* Read DHCSR here to clear S_RESET_ST bit before reset */
adiv5_ap_mem_read(ap, CORTEXM_DHCSR);
/* Request system reset from NVIC: SRST doesn't work correctly */
/* This could be VECTRESET: 0x05FA0001 (reset only core)
* or SYSRESETREQ: 0x05FA0004 (system reset)
*/
adiv5_ap_mem_write(ap, CORTEXM_AIRCR,
CORTEXM_AIRCR_VECTKEY | CORTEXM_AIRCR_SYSRESETREQ);
/* Exit extended reset */
if (adiv5_ap_mem_read(ap, SAMD20_DSU_CTRLSTAT) &
SAMD20_STATUSA_CRSTEXT) {
/* Write bit to clear from extended reset */
adiv5_ap_mem_write(ap, SAMD20_DSU_CTRLSTAT,
SAMD20_STATUSA_CRSTEXT);
}
/* Poll for release from reset */
while(adiv5_ap_mem_read(ap, CORTEXM_DHCSR) & CORTEXM_DHCSR_S_RESET_ST);
/* Reset DFSR flags */
adiv5_ap_mem_write(ap, CORTEXM_DFSR, CORTEXM_DFSR_RESETALL);
/* Clear any target errors */
target_check_error(target);
}
/**
* Overloads the default cortexm detached function with a version that
* removes the target from extended reset where required.
*
* Only required for SAM D20 _Revision B_ Silicon
*/
static void
samd20_revB_detach(struct target_s *target)
{
ADIv5_AP_t *ap = adiv5_target_ap(target);
cortexm_detach(target);
/* ---- Additional ---- */
/* Exit extended reset */
if (adiv5_ap_mem_read(ap, SAMD20_DSU_CTRLSTAT) &
SAMD20_STATUSA_CRSTEXT) {
/* Write bit to clear from extended reset */
adiv5_ap_mem_write(ap, SAMD20_DSU_CTRLSTAT,
SAMD20_STATUSA_CRSTEXT);
}
}
/**
* Overloads the default cortexm halt_resume function with a version
* that removes the target from extended reset where required.
*
* Only required for SAM D20 _Revision B_ Silicon
*/
static void
samd20_revB_halt_resume(struct target_s *target, bool step)
{
ADIv5_AP_t *ap = adiv5_target_ap(target);
cortexm_halt_resume(target, step);
/* ---- Additional ---- */
/* Exit extended reset */
if (adiv5_ap_mem_read(ap, SAMD20_DSU_CTRLSTAT) &
SAMD20_STATUSA_CRSTEXT) {
/* Write bit to clear from extended reset */
adiv5_ap_mem_write(ap, SAMD20_DSU_CTRLSTAT,
SAMD20_STATUSA_CRSTEXT);
}
}
char variant_string[30];
bool samd20_probe(struct target_s *target)
{
ADIv5_AP_t *ap = adiv5_target_ap(target);
uint32_t cid = samd20_read_cid(target);
uint32_t pid = samd20_read_pid(target);
/* Check the ARM Coresight Component and Perhiperal IDs */
if (cid == SAMD20_CID_VALUE &&
(pid & SAMD20_PID_MASK) == SAMD20_PID_CONST_VALUE) {
/* Read the Device ID */
uint32_t did = adiv5_ap_mem_read(ap, SAMD20_DSU_DID);
/* If the Device ID matches */
if ((did & SAMD20_DID_MASK) == SAMD20_DID_CONST_VALUE) {
uint8_t devsel = (did >> SAMD20_DID_DEVSEL_POS)
& SAMD20_DID_DEVSEL_MASK;
uint8_t revision = (did >> SAMD20_DID_REVISION_POS)
& SAMD20_DID_REVISION_MASK;
/* Pin Variant */
char pin_variant;
switch (devsel / 5) {
case 0: pin_variant = 'J'; break;
case 1: pin_variant = 'G'; break;
case 2: pin_variant = 'E'; break;
default: pin_variant = 'u'; break;
}
/* Mem Variant */
uint8_t mem_variant = 18 - (devsel % 5);
/* Revision */
char revision_variant = 'A' + revision;
/* Part String */
sprintf(variant_string, "Atmel SAMD20%c%dA (rev %c)",
pin_variant, mem_variant, revision_variant);
/* Setup Target */
target->driver = variant_string;
target->reset = samd20_reset;
if (revision_variant == 'B') {
/**
* These functions check for and
* extended reset. Appears to be
* related to Errata 35.4.1 ref 12015
*/
target->detach = samd20_revB_detach;
target->halt_resume = samd20_revB_halt_resume;
}
target->xml_mem_map = samd20_xml_memory_map;
target->flash_erase = samd20_flash_erase;
target->flash_write = samd20_flash_write;
target_add_commands(target, samd20_cmd_list, "SAMD20");
/* If we're not in reset here */
if (!connect_assert_srst) {
/* We'll have to release the target from
* extended reset to make attach possible */
if (adiv5_ap_mem_read(ap, SAMD20_DSU_CTRLSTAT) &
SAMD20_STATUSA_CRSTEXT) {
/* Write bit to clear from extended reset */
adiv5_ap_mem_write(ap, SAMD20_DSU_CTRLSTAT,
SAMD20_STATUSA_CRSTEXT);
}
}
return true;
}
}
return false;
}
/**
* Temporary (until next reset) flash memory locking / unlocking
*/
static void samd20_lock_current_address(struct target_s *target)
{
ADIv5_AP_t *ap = adiv5_target_ap(target);
/* Issue the unlock command */
adiv5_ap_mem_write(ap, SAMD20_NVMC_CMD, SAMD20_CMD_KEY | SAMD20_CMD_LOCK);
}
static void samd20_unlock_current_address(struct target_s *target)
{
ADIv5_AP_t *ap = adiv5_target_ap(target);
/* Issue the unlock command */
adiv5_ap_mem_write(ap, SAMD20_NVMC_CMD, SAMD20_CMD_KEY | SAMD20_CMD_UNLOCK);
}
/**
* Erase flash row by row
*/
static int samd20_flash_erase(struct target_s *target, uint32_t addr, int len)
{
ADIv5_AP_t *ap = adiv5_target_ap(target);
addr &= ~(SAMD20_ROW_SIZE - 1);
len &= ~(SAMD20_ROW_SIZE - 1);
while (len) {
/* Write address of first word in row to erase it */
/* Must be shifted right for 16-bit address, see Datasheet §20.8.8 Address */
adiv5_ap_mem_write(ap, SAMD20_NVMC_ADDRESS, addr >> 1);
/* Unlock */
samd20_unlock_current_address(target);
/* Issue the erase command */
adiv5_ap_mem_write(ap, SAMD20_NVMC_CMD, SAMD20_CMD_KEY | SAMD20_CMD_ERASEROW);
/* Poll for NVM Ready */
while ((adiv5_ap_mem_read(ap, SAMD20_NVMC_INTFLAG) & SAMD20_NVMC_READY) == 0)
if(target_check_error(target))
return -1;
/* Lock */
samd20_lock_current_address(target);
addr += SAMD20_ROW_SIZE;
len -= SAMD20_ROW_SIZE;
}
return 0;
}
/**
* Write flash page by page
*/
static int samd20_flash_write(struct target_s *target, uint32_t dest,
const uint8_t *src, int len)
{
ADIv5_AP_t *ap = adiv5_target_ap(target);
/* Find the size of our 32-bit data buffer */
uint32_t offset = dest % 4;
uint32_t words = (offset + len + 3) / 4;
uint32_t data[words], i = 0;
/* Populate the data buffer */
memset((uint8_t *)data, 0xFF, words * 4);
memcpy((uint8_t *)data + offset, src, len);
/* The address of the first word involved in the write */
uint32_t addr = dest & ~0x3;
/* The address of the last word involved in the write */
uint32_t end = (dest + len - 1) & ~0x3;
/* The start address of the first page involved in the write */
uint32_t first_page = dest & ~(SAMD20_PAGE_SIZE - 1);
/* The start address of the last page involved in the write */
uint32_t last_page = (dest + len - 1) & ~(SAMD20_PAGE_SIZE - 1);
uint32_t end_of_this_page;
for (uint32_t page = first_page; page <= last_page; page += SAMD20_PAGE_SIZE) {
end_of_this_page = page + (SAMD20_PAGE_SIZE - 4);
if (addr > page || (page == last_page && end < end_of_this_page)) {
/* Setup write */
adiv5_ap_write(ap, ADIV5_AP_CSW, ap->csw |
ADIV5_AP_CSW_SIZE_WORD | ADIV5_AP_CSW_ADDRINC_SINGLE);
adiv5_ap_write(ap, ADIV5_AP_TAR, addr);
adiv5_dp_write(ap->dp, ADIV5_DP_SELECT,
((uint32_t)ap->apsel << 24)|(ADIV5_AP_DRW & 0xF0));
/* Partial, manual page write */
for (; addr <= MINIMUM(end, end_of_this_page); addr += 4, i++) {
adiv5_dp_write_ap(ap->dp, ADIV5_AP_DRW, data[i]);
}
/* Unlock */
samd20_unlock_current_address(target);
/* Issue the write page command */
adiv5_ap_mem_write(ap, SAMD20_NVMC_CMD,
SAMD20_CMD_KEY | SAMD20_CMD_WRITEPAGE);
} else {
/* Write first word to set address */
adiv5_ap_mem_write(ap, addr, data[i]); addr += 4; i++;
/* Unlock */
samd20_unlock_current_address(target);
/* Set up write */
adiv5_ap_write(ap, ADIV5_AP_CSW, ap->csw |
ADIV5_AP_CSW_SIZE_WORD | ADIV5_AP_CSW_ADDRINC_SINGLE);
adiv5_ap_write(ap, ADIV5_AP_TAR, addr);
adiv5_dp_write(ap->dp, ADIV5_DP_SELECT,
((uint32_t)ap->apsel << 24)|(ADIV5_AP_DRW & 0xF0));
/* Full, automatic page write */
for (; addr < page + SAMD20_PAGE_SIZE; addr += 4, i++) {
adiv5_dp_write_ap(ap->dp, ADIV5_AP_DRW, data[i]);
}
}
/* Poll for NVM Ready */
while ((adiv5_ap_mem_read(ap, SAMD20_NVMC_INTFLAG) & SAMD20_NVMC_READY) == 0)
if(target_check_error(target))
return -1;
/* Lock */
samd20_lock_current_address(target);
}
return 0;
}
/**
* Uses the Device Service Unit to erase the entire flash
*/
static bool samd20_cmd_erase_all(target *t)
{
ADIv5_AP_t *ap = adiv5_target_ap(t);
/* Erase all */
adiv5_ap_mem_write(ap, SAMD20_DSU_CTRLSTAT, SAMD20_CTRL_CHIP_ERASE);
/* Poll for DSU Ready */
while ((adiv5_ap_mem_read(ap, SAMD20_DSU_CTRLSTAT) & SAMD20_STATUSA_DONE) == 0)
if(target_check_error(t))
return false;
return true;
}
/**
* Sets the NVM region lock bits in the User Row. This value is read
* at startup as the default value for the lock bits, and hence does
* not take effect until a reset.
*
* 0x0000 = Lock, 0xFFFF = Unlock (default)
*/
static bool samd20_set_flashlock(target *t, uint16_t value)
{
ADIv5_AP_t *ap = adiv5_target_ap(t);
uint32_t high = adiv5_ap_mem_read(ap, SAMD20_NVM_USER_ROW_HIGH);
uint32_t low = adiv5_ap_mem_read(ap, SAMD20_NVM_USER_ROW_LOW);
/* Write address of a word in the row to erase it */
/* Must be shifted right for 16-bit address, see Datasheet §20.8.8 Address */
adiv5_ap_mem_write(ap, SAMD20_NVMC_ADDRESS, SAMD20_NVM_USER_ROW_LOW >> 1);
/* Issue the erase command */
adiv5_ap_mem_write(ap, SAMD20_NVMC_CMD, SAMD20_CMD_KEY | SAMD20_CMD_ERASEAUXROW);
/* Poll for NVM Ready */
while ((adiv5_ap_mem_read(ap, SAMD20_NVMC_INTFLAG) & SAMD20_NVMC_READY) == 0)
if(target_check_error(t))
return -1;
/* Modify the high byte of the user row */
high = (high & 0x0000FFFF) | ((value << 16) & 0xFFFF0000);
/* Write back */
adiv5_ap_mem_write(ap, SAMD20_NVM_USER_ROW_LOW, low);
adiv5_ap_mem_write(ap, SAMD20_NVM_USER_ROW_HIGH, high);
/* Issue the page write command */
adiv5_ap_mem_write(ap, SAMD20_NVMC_CMD,
SAMD20_CMD_KEY | SAMD20_CMD_WRITEAUXPAGE);
return true;
}
static bool samd20_cmd_lock_flash(target *t)
{
return samd20_set_flashlock(t, 0x0000);
}
static bool samd20_cmd_unlock_flash(target *t)
{
return samd20_set_flashlock(t, 0xFFFF);
}
static bool samd20_cmd_read_userrow(target *t)
{
ADIv5_AP_t *ap = adiv5_target_ap(t);
gdb_outf("User Row: 0x%08x%08x\n",
adiv5_ap_mem_read(ap, SAMD20_NVM_USER_ROW_HIGH),
adiv5_ap_mem_read(ap, SAMD20_NVM_USER_ROW_LOW));
return true;
}
/**
* Reads the 128-bit serial number from the NVM
*/
static bool samd20_cmd_serial(target *t)
{
ADIv5_AP_t *ap = adiv5_target_ap(t);
gdb_outf("Serial Number: 0x");
for (uint32_t i = 0; i < 4; i++) {
gdb_outf("%08x", adiv5_ap_mem_read(ap, SAMD20_NVM_SERIAL(i)));
}
gdb_outf("\n");
return true;
}
/**
* Returns the size (in bytes) of the current SAM D20's flash memory.
*/
static uint32_t samd20_flash_size(target *t)
{
ADIv5_AP_t *ap = adiv5_target_ap(t);
/* Read the Device ID */
uint32_t did = adiv5_ap_mem_read(ap, SAMD20_DSU_DID);
/* Mask off the device select bits */
uint8_t devsel = did & SAMD20_DID_DEVSEL_MASK;
/* Shift the maximum flash size (256KB) down as appropriate */
return (0x40000 >> (devsel % 5));
}
/**
* Runs the Memory Built In Self Test (MBIST)
*/
static bool samd20_cmd_mbist(target *t)
{
ADIv5_AP_t *ap = adiv5_target_ap(t);
/* Write the memory parameters to the DSU */
adiv5_ap_mem_write(ap, SAMD20_DSU_ADDRESS, 0);
adiv5_ap_mem_write(ap, SAMD20_DSU_LENGTH, samd20_flash_size(t));
/* Clear the fail bit */
adiv5_ap_mem_write(ap, SAMD20_DSU_CTRLSTAT, SAMD20_STATUSA_FAIL);
/* Write the MBIST command */
adiv5_ap_mem_write(ap, SAMD20_DSU_CTRLSTAT, SAMD20_CTRL_MBIST);
/* Poll for DSU Ready */
uint32_t status;
while (((status = adiv5_ap_mem_read(ap, SAMD20_DSU_CTRLSTAT)) &
(SAMD20_STATUSA_DONE | SAMD20_STATUSA_PERR | SAMD20_STATUSA_FAIL)) == 0)
if(target_check_error(t))
return false;
/* Test the protection error bit in Status A */
if (status & SAMD20_STATUSA_PERR) {
gdb_outf("MBIST not run due to protection error.\n");
return true;
}
/* Test the fail bit in Status A */
if (status & SAMD20_STATUSA_FAIL) {
gdb_outf("MBIST Fail @ 0x%08x\n",
adiv5_ap_mem_read(ap, SAMD20_DSU_ADDRESS));
} else {
gdb_outf("MBIST Passed!\n");
}
return true;
}