blackmagic/src/target/cortexm.c

1988 lines
60 KiB
C

/*
* This file is part of the Black Magic Debug project.
*
* Copyright (C) 2012-2020 Black Sphere Technologies Ltd.
* Written by Gareth McMullin <gareth@blacksphere.co.nz>,
* Koen De Vleeschauwer and Uwe Bonnes
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/* This file implements debugging functionality specific to ARM
* the Cortex-M3 core. This should be generic to ARMv7-M as it is
* implemented according to the "ARMv7-M Architectue Reference Manual",
* ARM doc DDI0403C.
*
* Also supports Cortex-M0 / ARMv6-M
*/
#include "general.h"
#include "exception.h"
#include "adiv5.h"
#include "target.h"
#include "target_internal.h"
#include "target_probe.h"
#include "cortexm.h"
#include "gdb_reg.h"
#include "command.h"
#include "gdb_packet.h"
#include "semihosting.h"
#include "platform.h"
#include <string.h>
#include <assert.h>
#include <malloc.h>
#include <stdio.h>
#include <unistd.h>
#if PC_HOSTED == 1
/*
* pc-hosted semihosting does keyboard, file and screen i/o on the system
* where blackmagic_hosted runs, using linux system calls.
* semihosting in the probe does keyboard, file and screen i/o on the system
* where gdb runs, using gdb file i/o calls.
*/
#define TARGET_NULL ((target_addr_t)0)
#include <errno.h>
#include <time.h>
#include <sys/time.h>
#include <sys/stat.h>
#include <fcntl.h>
#endif
static const char cortexm_driver_str[] = "ARM Cortex-M";
static bool cortexm_vector_catch(target *t, int argc, char *argv[]);
#ifdef PLATFORM_HAS_USBUART
static bool cortexm_redirect_stdout(target *t, int argc, const char **argv);
#endif
const struct command_s cortexm_cmd_list[] = {
{"vector_catch", (cmd_handler)cortexm_vector_catch, "Catch exception vectors"},
#ifdef PLATFORM_HAS_USBUART
{"redirect_stdout", (cmd_handler)cortexm_redirect_stdout, "Redirect semihosting stdout to USB UART"},
#endif
{NULL, NULL, NULL},
};
/* target options recognised by the Cortex-M target */
#define TOPT_FLAVOUR_V6M (1U << 0U) /* if not set, target is assumed to be v7m */
#define TOPT_FLAVOUR_V7MF (1U << 1U) /* if set, floating-point enabled. */
static void cortexm_regs_read(target *t, void *data);
static void cortexm_regs_write(target *t, const void *data);
static uint32_t cortexm_pc_read(target *t);
static ssize_t cortexm_reg_read(target *t, int reg, void *data, size_t max);
static ssize_t cortexm_reg_write(target *t, int reg, const void *data, size_t max);
static void cortexm_reset(target *t);
static enum target_halt_reason cortexm_halt_poll(target *t, target_addr_t *watch);
static void cortexm_halt_resume(target *t, bool step);
static void cortexm_halt_request(target *t);
static int cortexm_fault_unwind(target *t);
static int cortexm_breakwatch_set(target *t, struct breakwatch *);
static int cortexm_breakwatch_clear(target *t, struct breakwatch *);
static target_addr_t cortexm_check_watch(target *t);
#define CORTEXM_MAX_WATCHPOINTS 4U /* architecture says up to 15, no implementation has > 4 */
#define CORTEXM_MAX_BREAKPOINTS 8U /* architecture says up to 127, no implementation has > 8 */
static int cortexm_hostio_request(target *t);
static uint32_t time0_sec = UINT32_MAX; /* sys_clock time origin */
struct cortexm_priv {
ADIv5_AP_t *ap;
bool stepping;
bool on_bkpt;
/* Watchpoint unit status */
bool hw_watchpoint[CORTEXM_MAX_WATCHPOINTS];
unsigned flash_patch_revision;
unsigned hw_watchpoint_max;
/* Breakpoint unit status */
bool hw_breakpoint[CORTEXM_MAX_BREAKPOINTS];
unsigned hw_breakpoint_max;
/* Copy of DEMCR for vector-catch */
uint32_t demcr;
/* Cache parameters */
bool has_cache;
uint32_t dcache_minline;
};
/* Register number tables */
static const uint32_t regnum_cortex_m[] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, /* standard r0-r15 */
0x10, /* xpsr */
0x11, /* msp */
0x12, /* psp */
0x14 /* special */
};
static const uint32_t regnum_cortex_mf[] = {
0x21, /* fpscr */
0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, /* s0-s7 */
0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f, /* s8-s15 */
0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, /* s16-s23 */
0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f, /* s24-s31 */
};
/**
* Fields for Cortex-M special purpose registers, used in the generation of GDB's target description XML.
* The general purpose registers r0-r12 and the vector floating point registers d0-d15 all follow a very
* regular format, so we only need to store fields for the special purpose registers.
* The arrays for each SPR field have the same order as each other, making each of them a pseudo
* 'associative array'.
*/
// Strings for the names of the Cortex-M's special purpose registers.
static const char *cortex_m_spr_names[] = {
"sp",
"lr",
"pc",
"xpsr",
"msp",
"psp",
"primask",
"basepri",
"faultmask",
"control",
};
// The "type" field for each Cortex-M special purpose register.
static const gdb_reg_type_e cortex_m_spr_types[] = {
GDB_TYPE_DATA_PTR, // sp
GDB_TYPE_CODE_PTR, // lr
GDB_TYPE_CODE_PTR, // pc
GDB_TYPE_UNSPECIFIED, // xpsr
GDB_TYPE_DATA_PTR, // msp
GDB_TYPE_DATA_PTR, // psp
GDB_TYPE_UNSPECIFIED, // primask
GDB_TYPE_UNSPECIFIED, // basepri
GDB_TYPE_UNSPECIFIED, // faultmask
GDB_TYPE_UNSPECIFIED, // control
};
static_assert(ARRAY_SIZE(cortex_m_spr_types) == ARRAY_SIZE(cortex_m_spr_names),
"SPR array length mismatch! SPR type array should have the same length as SPR name array."
);
// The "save-restore" field of each SPR.
static const gdb_reg_save_restore_e cortex_m_spr_save_restores[] = {
GDB_SAVE_RESTORE_UNSPECIFIED, // sp
GDB_SAVE_RESTORE_UNSPECIFIED, // lr
GDB_SAVE_RESTORE_UNSPECIFIED, // pc
GDB_SAVE_RESTORE_UNSPECIFIED, // xpsr
GDB_SAVE_RESTORE_NO, // msp
GDB_SAVE_RESTORE_NO, // psp
GDB_SAVE_RESTORE_NO, // primask
GDB_SAVE_RESTORE_NO, // basepri
GDB_SAVE_RESTORE_NO, // faultmask
GDB_SAVE_RESTORE_NO, // control
};
static_assert(ARRAY_SIZE(cortex_m_spr_save_restores) == ARRAY_SIZE(cortex_m_spr_names),
"SPR array length mismatch! SPR save-restore array should have the same length as SPR name array."
);
// The "bitsize" field of each SPR.
static const uint8_t cortex_m_spr_bitsizes[] = {
32, // sp
32, // lr
32, // pc
32, // xpsr
32, // msp
32, // psp
8, // primask
8, // basepri
8, // faultmask
8, // control
};
static_assert(ARRAY_SIZE(cortex_m_spr_bitsizes) == ARRAY_SIZE(cortex_m_spr_names),
"SPR array length mismatch! SPR bitsize array should have the same length as SPR name array."
);
// Creates the target description XML string for a Cortex-M. Like snprintf(), this function
// will write no more than max_len and returns the amount of bytes written. Or, if max_len is 0,
// then this function will return the amount of bytes that _would_ be necessary to create this
// string.
//
// This function is hand-optimized to decrease string duplication and thus code size, making it
// unforunately much less readable than the string literal it is equivalent to.
//
// The string it creates is XML-equivalent to the following:
/*
"<?xml version=\"1.0\"?>"
"<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
"<target>"
" <architecture>arm</architecture>"
" <feature name=\"org.gnu.gdb.arm.m-profile\">"
" <reg name=\"r0\" bitsize=\"32\"/>"
" <reg name=\"r1\" bitsize=\"32\"/>"
" <reg name=\"r2\" bitsize=\"32\"/>"
" <reg name=\"r3\" bitsize=\"32\"/>"
" <reg name=\"r4\" bitsize=\"32\"/>"
" <reg name=\"r5\" bitsize=\"32\"/>"
" <reg name=\"r6\" bitsize=\"32\"/>"
" <reg name=\"r7\" bitsize=\"32\"/>"
" <reg name=\"r8\" bitsize=\"32\"/>"
" <reg name=\"r9\" bitsize=\"32\"/>"
" <reg name=\"r10\" bitsize=\"32\"/>"
" <reg name=\"r11\" bitsize=\"32\"/>"
" <reg name=\"r12\" bitsize=\"32\"/>"
" <reg name=\"sp\" bitsize=\"32\" type=\"data_ptr\"/>"
" <reg name=\"lr\" bitsize=\"32\" type=\"code_ptr\"/>"
" <reg name=\"pc\" bitsize=\"32\" type=\"code_ptr\"/>"
" <reg name=\"xpsr\" bitsize=\"32\"/>"
" <reg name=\"msp\" bitsize=\"32\" save-restore=\"no\" type=\"data_ptr\"/>"
" <reg name=\"psp\" bitsize=\"32\" save-restore=\"no\" type=\"data_ptr\"/>"
" <reg name=\"primask\" bitsize=\"8\" save-restore=\"no\"/>"
" <reg name=\"basepri\" bitsize=\"8\" save-restore=\"no\"/>"
" <reg name=\"faultmask\" bitsize=\"8\" save-restore=\"no\"/>"
" <reg name=\"control\" bitsize=\"8\" save-restore=\"no\"/>"
" </feature>"
"</target>"
*/
static size_t create_tdesc_cortex_m(char *buffer, size_t max_len)
{
// Minor hack: technically snprintf returns an int for possibility of error, but in this case
// these functions are given static input that should not be able to fail -- and if it does,
// then there's nothing we can do about it, so we'll repatedly cast this variable to a size_t
// when calculating printsz (see below).
int total = 0;
// We can't just repeatedly pass max_len to snprintf, because we keep changing the start
// of buffer (effectively changing its size), so we have to repeatedly compute the size
// passed to snprintf by subtracting the current total from max_len.
// ...Unless max_len is 0, in which case that subtraction will result in an (underflowed)
// negative number. So we also have to repatedly check if max_len is 0 before performing
// that subtraction.
size_t printsz = max_len;
if (buffer != NULL)
memset(buffer, 0, max_len);
// Start with the "preamble", which is generic across ARM targets,
// ...save for one word, so we'll have to do the preamble in halves.
total += snprintf(buffer, printsz,
"%s target %s "
"<feature name=\"org.gnu.gdb.arm.m-profile\">",
gdb_arm_preamble_first,
gdb_arm_preamble_second
);
// Then the general purpose registers, which have names of r0 to r12,
// and all the same bitsize.
for (uint8_t i = 0; i <= 12; ++i) {
if (max_len != 0)
printsz = max_len - (size_t) total;
total += snprintf(buffer + total, printsz, "<reg name=\"r%u\" bitsize=\"32\"/>", i);
}
// Now for sp, lr, pc, xpsr, msp, psp, primask, basepri, faultmask, and control.
// These special purpose registers are a little more complicated.
// Some of them have different bitsizes, specified types, or specified save-restore values.
// We'll use the 'associative arrays' defined for those values.
for (size_t i = 0; i < ARRAY_SIZE(cortex_m_spr_names); ++i) {
if (max_len != 0)
printsz = max_len - (size_t) total;
gdb_reg_type_e type = cortex_m_spr_types[i];
gdb_reg_save_restore_e save_restore = cortex_m_spr_save_restores[i];
total += snprintf(buffer + total, printsz, "<reg name=\"%s\" bitsize=\"%u\"%s%s/>",
cortex_m_spr_names[i],
cortex_m_spr_bitsizes[i],
gdb_reg_save_restore_strings[save_restore],
gdb_reg_type_strings[type]
);
}
if (max_len != 0)
printsz = max_len - (size_t) total;
total += snprintf(buffer + total, printsz, "</feature></target>");
// Minor hack: technically snprintf returns an int for possibility of error, but in this case
// these functions are given static input that should not ever be able to fail -- and if it
// does, then there's nothing we can do about it, so we'll just discard the signedness
// of total when we return it.
return (size_t) total;
}
// Creates the target description XML string for a Cortex-MF. Like snprintf(), this function
// will write no more than max_len and returns the amount of bytes written. Or, if max_len is 0,
// then this function will return the amount of bytes that _would_ be necessary to create this
// string.
//
// This function is hand-optimized to decrease string duplication and thus code size, making it
// unforunately much less readable than the string literal it is equivalent to.
//
// The string it creates is XML-equivalent to the following:
/*
"<?xml version=\"1.0\"?>"
"<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
"<target>"
" <architecture>arm</architecture>"
" <feature name=\"org.gnu.gdb.arm.m-profile\">"
" <reg name=\"r0\" bitsize=\"32\"/>"
" <reg name=\"r1\" bitsize=\"32\"/>"
" <reg name=\"r2\" bitsize=\"32\"/>"
" <reg name=\"r3\" bitsize=\"32\"/>"
" <reg name=\"r4\" bitsize=\"32\"/>"
" <reg name=\"r5\" bitsize=\"32\"/>"
" <reg name=\"r6\" bitsize=\"32\"/>"
" <reg name=\"r7\" bitsize=\"32\"/>"
" <reg name=\"r8\" bitsize=\"32\"/>"
" <reg name=\"r9\" bitsize=\"32\"/>"
" <reg name=\"r10\" bitsize=\"32\"/>"
" <reg name=\"r11\" bitsize=\"32\"/>"
" <reg name=\"r12\" bitsize=\"32\"/>"
" <reg name=\"sp\" bitsize=\"32\" type=\"data_ptr\"/>"
" <reg name=\"lr\" bitsize=\"32\" type=\"code_ptr\"/>"
" <reg name=\"pc\" bitsize=\"32\" type=\"code_ptr\"/>"
" <reg name=\"xpsr\" bitsize=\"32\"/>"
" <reg name=\"msp\" bitsize=\"32\" save-restore=\"no\" type=\"data_ptr\"/>"
" <reg name=\"psp\" bitsize=\"32\" save-restore=\"no\" type=\"data_ptr\"/>"
" <reg name=\"primask\" bitsize=\"8\" save-restore=\"no\"/>"
" <reg name=\"basepri\" bitsize=\"8\" save-restore=\"no\"/>"
" <reg name=\"faultmask\" bitsize=\"8\" save-restore=\"no\"/>"
" <reg name=\"control\" bitsize=\"8\" save-restore=\"no\"/>"
" </feature>"
" <feature name=\"org.gnu.gdb.arm.vfp\">"
" <reg name=\"fpscr\" bitsize=\"32\"/>"
" <reg name=\"d0\" bitsize=\"64\" type=\"float\"/>"
" <reg name=\"d1\" bitsize=\"64\" type=\"float\"/>"
" <reg name=\"d2\" bitsize=\"64\" type=\"float\"/>"
" <reg name=\"d3\" bitsize=\"64\" type=\"float\"/>"
" <reg name=\"d4\" bitsize=\"64\" type=\"float\"/>"
" <reg name=\"d5\" bitsize=\"64\" type=\"float\"/>"
" <reg name=\"d6\" bitsize=\"64\" type=\"float\"/>"
" <reg name=\"d7\" bitsize=\"64\" type=\"float\"/>"
" <reg name=\"d8\" bitsize=\"64\" type=\"float\"/>"
" <reg name=\"d9\" bitsize=\"64\" type=\"float\"/>"
" <reg name=\"d10\" bitsize=\"64\" type=\"float\"/>"
" <reg name=\"d11\" bitsize=\"64\" type=\"float\"/>"
" <reg name=\"d12\" bitsize=\"64\" type=\"float\"/>"
" <reg name=\"d13\" bitsize=\"64\" type=\"float\"/>"
" <reg name=\"d14\" bitsize=\"64\" type=\"float\"/>"
" <reg name=\"d15\" bitsize=\"64\" type=\"float\"/>"
" </feature>"
"</target>"
*/
static size_t create_tdesc_cortex_mf(char *buffer, size_t max_len)
{
// Minor hack: technically snprintf returns an int for possibility of error, but in this case
// these functions are given static input that should not be able to fail -- and if it does,
// then there's not really anything we can do about it, so we repatedly cast this variable
// to a size_t when calculating printsz (see below). Likewise, create_tdesc_cortex_m()
// has static inputs and shouldn't ever return a value large enough for casting it to a
// signed int to change its value, and if it does, then again there's something wrong that
// we can't really do anything about.
int total = 0;
// The first part of the target description for the Cortex-MF is identical to the Cortex-M
// target description.
total = (int) create_tdesc_cortex_m(buffer, max_len);
// We can't just repeatedly pass max_len to snprintf, because we keep changing the start
// of buffer (effectively changing its size), so we have to repeatedly compute the size
// passed to snprintf by subtracting the current total from max_len.
// ...Unless max_len is 0, in which case that subtraction will result in an (underflowed)
// negative number. So we also have to repatedly check if max_len is 0 before perofmring
// that subtraction.
size_t printsz = max_len;
if (max_len != 0) {
// Minor hack: subtract the target closing tag, since we have a bit more to add.
total -= strlen("</target>");
printsz = max_len - (size_t) total;
}
total += snprintf(buffer + total, printsz,
"<feature name=\"org.gnu.gdb.arm.vfp\">"
"<reg name=\"fpscr\" bitsize=\"32\"/>"
);
// After fpscr, the rest of the vfp registers follow a regular format: d0-d15, bitsize 64, type float.
for (uint8_t i = 0; i <= 15; ++i) {
if (max_len != 0)
printsz = max_len - (size_t) total;
total += snprintf(buffer + total, printsz, "<reg name=\"d%u\" bitsize=\"64\" type=\"float\"/>", i);
}
if (max_len != 0)
printsz = max_len - (size_t) total;
total += snprintf(buffer + total, printsz, "</feature></target>");
// Minor hack: technically snprintf returns an int for possibility of error, but in this case
// these functions are given static input that should not ever be able to fail -- and if it
// does, then there's nothing we can do about it, so we'll just discard the signedness
// of total when we return it.
return (size_t) total;
}
ADIv5_AP_t *cortexm_ap(target *t)
{
return ((struct cortexm_priv *)t->priv)->ap;
}
static void cortexm_cache_clean(target *t, target_addr_t addr, size_t len, bool invalidate)
{
struct cortexm_priv *priv = t->priv;
if (!priv->has_cache || (priv->dcache_minline == 0))
return;
uint32_t cache_reg = invalidate ? CORTEXM_DCCIMVAC : CORTEXM_DCCMVAC;
size_t minline = priv->dcache_minline;
/* flush data cache for RAM regions that intersect requested region */
target_addr_t mem_end = addr + len; /* following code is NOP if wraparound */
/* requested region is [src, src_end) */
for (struct target_ram *r = t->ram; r; r = r->next) {
target_addr_t ram = r->start;
target_addr_t ram_end = r->start + r->length;
/* RAM region is [ram, ram_end) */
if (addr > ram)
ram = addr;
if (mem_end < ram_end)
ram_end = mem_end;
/* intersection is [ram, ram_end) */
for (ram &= ~(minline - 1); ram < ram_end; ram += minline)
adiv5_mem_write(cortexm_ap(t), cache_reg, &ram, 4);
}
}
static void cortexm_mem_read(target *t, void *dest, target_addr_t src, size_t len)
{
cortexm_cache_clean(t, src, len, false);
adiv5_mem_read(cortexm_ap(t), dest, src, len);
}
static void cortexm_mem_write(target *t, target_addr_t dest, const void *src, size_t len)
{
cortexm_cache_clean(t, dest, len, true);
adiv5_mem_write(cortexm_ap(t), dest, src, len);
}
static bool cortexm_check_error(target *t)
{
ADIv5_AP_t *ap = cortexm_ap(t);
return adiv5_dp_error(ap->dp) != 0;
}
static void cortexm_priv_free(void *priv)
{
adiv5_ap_unref(((struct cortexm_priv *)priv)->ap);
free(priv);
}
bool cortexm_probe(ADIv5_AP_t *ap)
{
target *t;
t = target_new();
if (!t)
return false;
adiv5_ap_ref(ap);
if (ap->dp->version >= 2 && ap->dp->target_designer_code != 0) {
/* Use TARGETID register to identify target */
t->designer_code = ap->dp->target_designer_code;
t->part_id = ap->dp->target_partno;
} else {
/* Use AP DESIGNER and AP PARTNO to identify target */
t->designer_code = ap->designer_code;
t->part_id = ap->partno;
}
struct cortexm_priv *priv = calloc(1, sizeof(*priv));
if (!priv) { /* calloc failed: heap exhaustion */
DEBUG_WARN("calloc: failed in %s\n", __func__);
return false;
}
t->priv = priv;
t->priv_free = cortexm_priv_free;
priv->ap = ap;
t->check_error = cortexm_check_error;
t->mem_read = cortexm_mem_read;
t->mem_write = cortexm_mem_write;
t->driver = cortexm_driver_str;
/* The CPUID register is defined in the ARMv7-M and ARMv8-M
* architecture manuals. The PARTNO field is implementation defined,
* that is, the actual values are found in the Technical Reference Manual
* for each Cortex-M core.
*/
t->cpuid = target_mem_read32(t, CORTEXM_CPUID);
uint32_t cpuid_partno = t->cpuid & CPUID_PARTNO_MASK;
switch (cpuid_partno) {
case CORTEX_M33:
t->core = "M33";
break;
case CORTEX_M23:
t->core = "M23";
break;
case CORTEX_M3:
t->core = "M3";
break;
case CORTEX_M4:
t->core = "M4";
break;
case CORTEX_M7:
t->core = "M7";
if (((t->cpuid & CPUID_REVISION_MASK) == 0) && (t->cpuid & CPUID_PATCH_MASK) < 2) {
DEBUG_WARN("Silicon bug: Single stepping will enter pending "
"exception handler with this M7 core revision!\n");
}
break;
case CORTEX_M0P:
t->core = "M0+";
break;
case CORTEX_M0:
t->core = "M0";
break;
default:
if (ap->designer_code != JEP106_MANUFACTURER_ATMEL) /* Protected Atmel device?*/
DEBUG_WARN("Unexpected CortexM CPUID partno %04" PRIx32 "\n", cpuid_partno);
}
DEBUG_INFO("CPUID 0x%08" PRIx32 " (%s var %" PRIx32 " rev %" PRIx32 ")\n", t->cpuid, t->core,
(t->cpuid & CPUID_REVISION_MASK) >> 20, t->cpuid & CPUID_PATCH_MASK);
t->attach = cortexm_attach;
t->detach = cortexm_detach;
/* Probe for FP extension. */
bool is_cortexmf = false;
uint32_t cpacr = target_mem_read32(t, CORTEXM_CPACR);
cpacr |= 0x00F00000; /* CP10 = 0b11, CP11 = 0b11 */
target_mem_write32(t, CORTEXM_CPACR, cpacr);
if (target_mem_read32(t, CORTEXM_CPACR) == cpacr)
is_cortexmf = true;
/* Should probe here to make sure it's Cortex-M3 */
t->regs_read = cortexm_regs_read;
t->regs_write = cortexm_regs_write;
t->reg_read = cortexm_reg_read;
t->reg_write = cortexm_reg_write;
t->reset = cortexm_reset;
t->halt_request = cortexm_halt_request;
t->halt_poll = cortexm_halt_poll;
t->halt_resume = cortexm_halt_resume;
t->regs_size = sizeof(regnum_cortex_m);
t->breakwatch_set = cortexm_breakwatch_set;
t->breakwatch_clear = cortexm_breakwatch_clear;
target_add_commands(t, cortexm_cmd_list, cortexm_driver_str);
if (is_cortexmf) {
t->target_options |= TOPT_FLAVOUR_V7MF;
t->regs_size += sizeof(regnum_cortex_mf);
}
/* Default vectors to catch */
priv->demcr = CORTEXM_DEMCR_TRCENA | CORTEXM_DEMCR_VC_HARDERR | CORTEXM_DEMCR_VC_CORERESET;
/* Check cache type */
uint32_t ctr = target_mem_read32(t, CORTEXM_CTR);
if ((ctr >> 29) == 4) {
priv->has_cache = true;
priv->dcache_minline = 4 << (ctr & 0xf);
} else {
target_check_error(t);
}
#if PC_HOSTED
#define STRINGIFY(x) #x
#define PROBE(x) \
do { \
DEBUG_INFO("Calling " STRINGIFY(x) "\n"); \
if ((x)(t)) \
return true; \
target_check_error(t); \
} while (0)
#else
#define PROBE(x) \
do { \
if ((x)(t)) \
return true; \
target_check_error(t); \
} while (0)
#endif
switch (t->designer_code) {
case JEP106_MANUFACTURER_FREESCALE:
PROBE(kinetis_probe);
if (t->part_id == 0x88c) {
t->driver = "MIMXRT10xx(no flash)";
target_halt_resume(t, 0);
}
break;
case JEP106_MANUFACTURER_GIGADEVICE:
PROBE(gd32f1_probe);
break;
case JEP106_MANUFACTURER_STM:
PROBE(stm32f1_probe);
PROBE(stm32f4_probe);
PROBE(stm32h7_probe);
PROBE(stm32l0_probe);
PROBE(stm32l4_probe);
PROBE(stm32g0_probe);
break;
case JEP106_MANUFACTURER_CYPRESS:
DEBUG_WARN("Unhandled Cypress device\n");
break;
case JEP106_MANUFACTURER_INFINEON:
DEBUG_WARN("Unhandled Infineon device\n");
break;
case JEP106_MANUFACTURER_NORDIC:
PROBE(nrf51_probe);
break;
case JEP106_MANUFACTURER_ATMEL:
PROBE(samx7x_probe);
PROBE(sam4l_probe);
PROBE(samd_probe);
PROBE(samx5x_probe);
break;
case JEP106_MANUFACTURER_ENERGY_MICRO:
PROBE(efm32_probe);
break;
case JEP106_MANUFACTURER_TEXAS:
PROBE(msp432_probe);
break;
case JEP106_MANUFACTURER_SPECULAR:
PROBE(lpc11xx_probe); /* LPC845 */
break;
case JEP106_MANUFACTURER_RASPBERRY:
PROBE(rp_probe);
break;
case JEP106_MANUFACTURER_ARM:
if (t->part_id == 0x4c0) { /* Cortex-M0+ ROM */
PROBE(lpc11xx_probe); /* LPC8 */
} else if (t->part_id == 0x4c3) { /* Cortex-M3 ROM */
PROBE(lmi_probe);
PROBE(ch32f1_probe);
PROBE(stm32f1_probe); /* Care for other STM32F1 clones (?) */
PROBE(lpc15xx_probe); /* Thanks to JojoS for testing */
} else if (t->part_id == 0x471) { /* Cortex-M0 ROM */
PROBE(lpc11xx_probe); /* LPC24C11 */
PROBE(lpc43xx_probe);
} else if (t->part_id == 0x4c4) { /* Cortex-M4 ROM */
PROBE(lmi_probe);
/* The LPC546xx and LPC43xx parts present with the same AP ROM Part
Number, so we need to probe both. Unfortunately, when probing for
the LPC43xx when the target is actually an LPC546xx, the memory
location checked is illegal for the LPC546xx and puts the chip into
Lockup, requiring a RST pulse to recover. Instead, make sure to
probe for the LPC546xx first, which experimentally doesn't harm
LPC43xx detection. */
PROBE(lpc546xx_probe);
PROBE(lpc43xx_probe);
PROBE(kinetis_probe); /* Older K-series */
PROBE(at32fxx_probe);
} else if (t->part_id == 0x4cb) { /* Cortex-M23 ROM */
PROBE(gd32f1_probe); /* GD32E23x uses GD32F1 peripherals */
}
break;
case ASCII_CODE_FLAG:
/*
* these devices enumerate an AP with an empty ascii code,
* and have no available designer code elsewhere
*/
PROBE(sam3x_probe);
PROBE(ke04_probe);
PROBE(lpc17xx_probe);
PROBE(lpc11xx_probe); /* LPC1343 */
break;
}
#if PC_HOSTED == 0
gdb_outf("Please report unknown device with Designer 0x%x Part ID 0x%x\n", t->designer_code, t->part_id);
#else
DEBUG_WARN("Please report unknown device with Designer 0x%x Part ID 0x%x\n", t->designer_code, t->part_id);
#endif
#undef PROBE
return true;
}
bool cortexm_attach(target *t)
{
bool is_cortexmf = (t->target_options & TOPT_FLAVOUR_V7MF) == TOPT_FLAVOUR_V7MF;
if (!t->tdesc) {
// Find the buffer size needed for the target description string we need to send to GDB,
// and then compute the string itself.
size_t size_needed;
if (!is_cortexmf) {
size_needed = create_tdesc_cortex_m(NULL, 0) + 1;
t->tdesc = malloc(size_needed);
create_tdesc_cortex_m(t->tdesc, size_needed);
} else {
size_needed = create_tdesc_cortex_mf(NULL, 0) + 1;
t->tdesc = malloc(size_needed);
create_tdesc_cortex_mf(t->tdesc, size_needed);
}
} else {
DEBUG_WARN("Cortex-M: target description already allocated before attach");
}
ADIv5_AP_t *ap = cortexm_ap(t);
ap->dp->fault = 1; /* Force switch to this multi-drop device*/
struct cortexm_priv *priv = t->priv;
/* Clear any pending fault condition */
target_check_error(t);
target_halt_request(t);
/* Request halt on reset */
target_mem_write32(t, CORTEXM_DEMCR, priv->demcr);
/* Reset DFSR flags */
target_mem_write32(t, CORTEXM_DFSR, CORTEXM_DFSR_RESETALL);
/* size the break/watchpoint units */
priv->hw_breakpoint_max = CORTEXM_MAX_BREAKPOINTS;
const uint32_t flash_break_cfg = target_mem_read32(t, CORTEXM_FPB_CTRL);
const uint32_t breakpoints = ((flash_break_cfg >> 4U) & 0xf);
if (breakpoints < priv->hw_breakpoint_max) /* only look at NUM_COMP1 */
priv->hw_breakpoint_max = breakpoints;
priv->flash_patch_revision = flash_break_cfg >> 28U;
priv->hw_watchpoint_max = CORTEXM_MAX_WATCHPOINTS;
const uint32_t watchpoints = target_mem_read32(t, CORTEXM_DWT_CTRL);
if ((watchpoints >> 28) < priv->hw_watchpoint_max)
priv->hw_watchpoint_max = watchpoints >> 28U;
/* Clear any stale breakpoints */
for (size_t i = 0; i < priv->hw_breakpoint_max; i++) {
target_mem_write32(t, CORTEXM_FPB_COMP(i), 0);
priv->hw_breakpoint[i] = 0;
}
/* Clear any stale watchpoints */
for (size_t i = 0; i < priv->hw_watchpoint_max; i++) {
target_mem_write32(t, CORTEXM_DWT_FUNC(i), 0);
priv->hw_watchpoint[i] = 0;
}
/* Flash Patch Control Register: set ENABLE */
target_mem_write32(t, CORTEXM_FPB_CTRL, CORTEXM_FPB_CTRL_KEY | CORTEXM_FPB_CTRL_ENABLE);
(void)target_mem_read32(t, CORTEXM_DHCSR);
if (target_mem_read32(t, CORTEXM_DHCSR) & CORTEXM_DHCSR_S_RESET_ST) {
platform_nrst_set_val(false);
platform_timeout timeout;
platform_timeout_set(&timeout, 1000);
while (1) {
const uint32_t reset_status = target_mem_read32(t, CORTEXM_DHCSR);
if (!(reset_status & CORTEXM_DHCSR_S_RESET_ST))
break;
if (platform_timeout_is_expired(&timeout)) {
DEBUG_WARN("Error releasing from reset\n");
return false;
}
}
}
return true;
}
void cortexm_detach(target *t)
{
struct cortexm_priv *priv = t->priv;
unsigned i;
if (t->tdesc) {
// Free the target description string that was allocated in cortexm_attach().
free(t->tdesc);
t->tdesc = NULL;
} else {
DEBUG_WARN("Cortex-M: target description already NULL before detach");
}
/* Clear any stale breakpoints */
for (i = 0; i < priv->hw_breakpoint_max; i++)
target_mem_write32(t, CORTEXM_FPB_COMP(i), 0);
/* Clear any stale watchpoints */
for (i = 0; i < priv->hw_watchpoint_max; i++)
target_mem_write32(t, CORTEXM_DWT_FUNC(i), 0);
/* Restort DEMCR*/
ADIv5_AP_t *ap = cortexm_ap(t);
target_mem_write32(t, CORTEXM_DEMCR, ap->ap_cortexm_demcr);
/* Disable debug */
target_mem_write32(t, CORTEXM_DHCSR, CORTEXM_DHCSR_DBGKEY);
}
enum {
DB_DHCSR,
DB_DCRSR,
DB_DCRDR,
DB_DEMCR
};
static void cortexm_regs_read(target *t, void *data)
{
uint32_t *regs = data;
ADIv5_AP_t *ap = cortexm_ap(t);
size_t i;
#if PC_HOSTED == 1
if ((ap->dp->ap_reg_read) && (ap->dp->ap_regs_read)) {
uint32_t base_regs[21];
ap->dp->ap_regs_read(ap, base_regs);
for (i = 0; i < sizeof(regnum_cortex_m) / 4; i++)
*regs++ = base_regs[regnum_cortex_m[i]];
if (t->target_options & TOPT_FLAVOUR_V7MF)
for (i = 0; i < sizeof(regnum_cortex_mf) / 4; i++)
*regs++ = ap->dp->ap_reg_read(ap, regnum_cortex_mf[i]);
} else
#endif
{
/* FIXME: Describe what's really going on here */
adiv5_ap_write(ap, ADIV5_AP_CSW, ap->csw | ADIV5_AP_CSW_SIZE_WORD);
/* Map the banked data registers (0x10-0x1c) to the
* debug registers DHCSR, DCRSR, DCRDR and DEMCR respectively */
adiv5_dp_low_access(ap->dp, ADIV5_LOW_WRITE, ADIV5_AP_TAR, CORTEXM_DHCSR);
/* Walk the regnum_cortex_m array, reading the registers it
* calls out. */
adiv5_ap_write(ap, ADIV5_AP_DB(DB_DCRSR), regnum_cortex_m[0]);
/* Required to switch banks */
*regs++ = adiv5_dp_read(ap->dp, ADIV5_AP_DB(DB_DCRDR));
for (i = 1; i < sizeof(regnum_cortex_m) / 4; i++) {
adiv5_dp_low_access(ap->dp, ADIV5_LOW_WRITE, ADIV5_AP_DB(DB_DCRSR), regnum_cortex_m[i]);
*regs++ = adiv5_dp_read(ap->dp, ADIV5_AP_DB(DB_DCRDR));
}
if (t->target_options & TOPT_FLAVOUR_V7MF)
for (i = 0; i < sizeof(regnum_cortex_mf) / 4; i++) {
adiv5_dp_low_access(ap->dp, ADIV5_LOW_WRITE, ADIV5_AP_DB(DB_DCRSR), regnum_cortex_mf[i]);
*regs++ = adiv5_dp_read(ap->dp, ADIV5_AP_DB(DB_DCRDR));
}
}
}
static void cortexm_regs_write(target *t, const void *data)
{
const uint32_t *regs = data;
ADIv5_AP_t *ap = cortexm_ap(t);
#if PC_HOSTED == 1
if (ap->dp->ap_reg_write) {
for (size_t z = 0; z < sizeof(regnum_cortex_m) / 4; z++) {
ap->dp->ap_reg_write(ap, regnum_cortex_m[z], *regs);
regs++;
}
if (t->target_options & TOPT_FLAVOUR_V7MF)
for (size_t z = 0; z < sizeof(regnum_cortex_mf) / 4; z++) {
ap->dp->ap_reg_write(ap, regnum_cortex_mf[z], *regs);
regs++;
}
} else
#endif
{
size_t i;
/* FIXME: Describe what's really going on here */
adiv5_ap_write(ap, ADIV5_AP_CSW, ap->csw | ADIV5_AP_CSW_SIZE_WORD);
/* Map the banked data registers (0x10-0x1c) to the
* debug registers DHCSR, DCRSR, DCRDR and DEMCR respectively */
adiv5_dp_low_access(ap->dp, ADIV5_LOW_WRITE, ADIV5_AP_TAR, CORTEXM_DHCSR);
/* Walk the regnum_cortex_m array, writing the registers it
* calls out. */
adiv5_ap_write(ap, ADIV5_AP_DB(DB_DCRDR), *regs++);
/* Required to switch banks */
adiv5_dp_low_access(ap->dp, ADIV5_LOW_WRITE, ADIV5_AP_DB(DB_DCRSR), 0x10000 | regnum_cortex_m[0]);
for (i = 1; i < sizeof(regnum_cortex_m) / 4; i++) {
adiv5_dp_low_access(ap->dp, ADIV5_LOW_WRITE, ADIV5_AP_DB(DB_DCRDR), *regs++);
adiv5_dp_low_access(ap->dp, ADIV5_LOW_WRITE, ADIV5_AP_DB(DB_DCRSR), 0x10000 | regnum_cortex_m[i]);
}
if (t->target_options & TOPT_FLAVOUR_V7MF)
for (i = 0; i < sizeof(regnum_cortex_mf) / 4; i++) {
adiv5_dp_low_access(ap->dp, ADIV5_LOW_WRITE, ADIV5_AP_DB(DB_DCRDR), *regs++);
adiv5_dp_low_access(ap->dp, ADIV5_LOW_WRITE, ADIV5_AP_DB(DB_DCRSR), 0x10000 | regnum_cortex_mf[i]);
}
}
}
int cortexm_mem_write_sized(target *t, target_addr_t dest, const void *src, size_t len, enum align align)
{
cortexm_cache_clean(t, dest, len, true);
adiv5_mem_write_sized(cortexm_ap(t), dest, src, len, align);
return target_check_error(t);
}
static int dcrsr_regnum(target *t, unsigned reg)
{
if (reg < sizeof(regnum_cortex_m) / 4U) {
return regnum_cortex_m[reg];
} else if ((t->target_options & TOPT_FLAVOUR_V7MF) &&
(reg < (sizeof(regnum_cortex_m) + sizeof(regnum_cortex_mf)) / 4)) {
return regnum_cortex_mf[reg - sizeof(regnum_cortex_m) / 4U];
} else {
return -1;
}
}
static ssize_t cortexm_reg_read(target *t, int reg, void *data, size_t max)
{
if (max < 4)
return -1;
uint32_t *r = data;
target_mem_write32(t, CORTEXM_DCRSR, dcrsr_regnum(t, reg));
*r = target_mem_read32(t, CORTEXM_DCRDR);
return 4;
}
static ssize_t cortexm_reg_write(target *t, int reg, const void *data, size_t max)
{
if (max < 4)
return -1;
const uint32_t *r = data;
target_mem_write32(t, CORTEXM_DCRDR, *r);
target_mem_write32(t, CORTEXM_DCRSR, CORTEXM_DCRSR_REGWnR | dcrsr_regnum(t, reg));
return 4;
}
static uint32_t cortexm_pc_read(target *t)
{
target_mem_write32(t, CORTEXM_DCRSR, 0x0F);
return target_mem_read32(t, CORTEXM_DCRDR);
}
static void cortexm_pc_write(target *t, const uint32_t val)
{
target_mem_write32(t, CORTEXM_DCRDR, val);
target_mem_write32(t, CORTEXM_DCRSR, CORTEXM_DCRSR_REGWnR | 0x0F);
}
/* The following three routines implement target halt/resume
* using the core debug registers in the NVIC. */
static void cortexm_reset(target *t)
{
/* Read DHCSR here to clear S_RESET_ST bit before reset */
target_mem_read32(t, CORTEXM_DHCSR);
platform_timeout reset_timeout;
if ((t->target_options & CORTEXM_TOPT_INHIBIT_NRST) == 0) {
platform_nrst_set_val(true);
platform_nrst_set_val(false);
/* Some NRF52840 users saw invalid SWD transaction with
* native/firmware without this delay.*/
platform_delay(10);
}
uint32_t dhcsr = target_mem_read32(t, CORTEXM_DHCSR);
if ((dhcsr & CORTEXM_DHCSR_S_RESET_ST) == 0) {
/* No reset seen yet, maybe as nRST is not connected, or device has
* CORTEXM_TOPT_INHIBIT_NRST set.
* Trigger reset by AIRCR.*/
target_mem_write32(t, CORTEXM_AIRCR, CORTEXM_AIRCR_VECTKEY | CORTEXM_AIRCR_SYSRESETREQ);
}
/* If target needs to do something extra (see Atmel SAM4L for example) */
if (t->extended_reset != NULL) {
t->extended_reset(t);
}
/* Wait for CORTEXM_DHCSR_S_RESET_ST to read 0, meaning reset released.*/
platform_timeout_set(&reset_timeout, 1000);
while ((target_mem_read32(t, CORTEXM_DHCSR) & CORTEXM_DHCSR_S_RESET_ST) &&
!platform_timeout_is_expired(&reset_timeout))
continue;
#if defined(PLATFORM_HAS_DEBUG)
if (platform_timeout_is_expired(&reset_timeout))
DEBUG_WARN("Reset seem to be stuck low!\n");
#endif
/* 10 ms delay to ensure that things such as the STM32 HSI clock
* have started up fully. */
platform_delay(10);
/* Reset DFSR flags */
target_mem_write32(t, CORTEXM_DFSR, CORTEXM_DFSR_RESETALL);
/* Make sure we ignore any initial DAP error */
target_check_error(t);
}
static void cortexm_halt_request(target *t)
{
volatile struct exception e;
TRY_CATCH (e, EXCEPTION_TIMEOUT) {
target_mem_write32(t, CORTEXM_DHCSR, CORTEXM_DHCSR_DBGKEY | CORTEXM_DHCSR_C_HALT | CORTEXM_DHCSR_C_DEBUGEN);
}
if (e.type) {
tc_printf(t, "Timeout sending interrupt, is target in WFI?\n");
}
}
static enum target_halt_reason cortexm_halt_poll(target *t, target_addr_t *watch)
{
struct cortexm_priv *priv = t->priv;
volatile uint32_t dhcsr = 0;
volatile struct exception e;
TRY_CATCH (e, EXCEPTION_ALL) {
/* If this times out because the target is in WFI then
* the target is still running. */
dhcsr = target_mem_read32(t, CORTEXM_DHCSR);
}
switch (e.type) {
case EXCEPTION_ERROR:
/* Oh crap, there's no recovery from this... */
target_list_free();
return TARGET_HALT_ERROR;
case EXCEPTION_TIMEOUT:
/* Timeout isn't a problem, target could be in WFI */
return TARGET_HALT_RUNNING;
}
if (!(dhcsr & CORTEXM_DHCSR_S_HALT))
return TARGET_HALT_RUNNING;
/* We've halted. Let's find out why. */
uint32_t dfsr = target_mem_read32(t, CORTEXM_DFSR);
target_mem_write32(t, CORTEXM_DFSR, dfsr); /* write back to reset */
if ((dfsr & CORTEXM_DFSR_VCATCH) && cortexm_fault_unwind(t))
return TARGET_HALT_FAULT;
/* Remember if we stopped on a breakpoint */
priv->on_bkpt = dfsr & (CORTEXM_DFSR_BKPT);
if (priv->on_bkpt) {
/* If we've hit a programmed breakpoint, check for semihosting
* call. */
uint32_t pc = cortexm_pc_read(t);
uint16_t bkpt_instr;
bkpt_instr = target_mem_read16(t, pc);
if (bkpt_instr == 0xbeabU) {
if (cortexm_hostio_request(t)) {
return TARGET_HALT_REQUEST;
} else {
target_halt_resume(t, priv->stepping);
return 0;
}
}
}
if (dfsr & CORTEXM_DFSR_DWTTRAP) {
if (watch != NULL)
*watch = cortexm_check_watch(t);
return TARGET_HALT_WATCHPOINT;
}
if (dfsr & CORTEXM_DFSR_BKPT)
return TARGET_HALT_BREAKPOINT;
if (dfsr & CORTEXM_DFSR_HALTED)
return priv->stepping ? TARGET_HALT_STEPPING : TARGET_HALT_REQUEST;
return TARGET_HALT_BREAKPOINT;
}
static void cortexm_halt_resume(target *t, bool step)
{
struct cortexm_priv *priv = t->priv;
uint32_t dhcsr = CORTEXM_DHCSR_DBGKEY | CORTEXM_DHCSR_C_DEBUGEN;
if (step)
dhcsr |= CORTEXM_DHCSR_C_STEP | CORTEXM_DHCSR_C_MASKINTS;
/* Disable interrupts while single stepping... */
if (step != priv->stepping) {
target_mem_write32(t, CORTEXM_DHCSR, dhcsr | CORTEXM_DHCSR_C_HALT);
priv->stepping = step;
}
if (priv->on_bkpt) {
uint32_t pc = cortexm_pc_read(t);
if ((target_mem_read16(t, pc) & 0xff00U) == 0xbe00U)
cortexm_pc_write(t, pc + 2);
}
if (priv->has_cache)
target_mem_write32(t, CORTEXM_ICIALLU, 0);
target_mem_write32(t, CORTEXM_DHCSR, dhcsr);
}
static int cortexm_fault_unwind(target *t)
{
uint32_t hfsr = target_mem_read32(t, CORTEXM_HFSR);
uint32_t cfsr = target_mem_read32(t, CORTEXM_CFSR);
target_mem_write32(t, CORTEXM_HFSR, hfsr); /* write back to reset */
target_mem_write32(t, CORTEXM_CFSR, cfsr); /* write back to reset */
/* We check for FORCED in the HardFault Status Register or
* for a configurable fault to avoid catching core resets */
if ((hfsr & CORTEXM_HFSR_FORCED) || cfsr) {
/* Unwind exception */
uint32_t regs[t->regs_size / 4];
uint32_t stack[8];
uint32_t retcode, framesize;
/* Read registers for post-exception stack pointer */
target_regs_read(t, regs);
/* save retcode currently in lr */
retcode = regs[REG_LR];
bool spsel = retcode & (1U << 2U);
bool fpca = !(retcode & (1U << 4U));
/* Read stack for pre-exception registers */
uint32_t sp = spsel ? regs[REG_PSP] : regs[REG_MSP];
target_mem_read(t, stack, sp, sizeof(stack));
if (target_check_error(t))
return 0;
regs[REG_LR] = stack[5]; /* restore LR to pre-exception state */
regs[REG_PC] = stack[6]; /* restore PC to pre-exception state */
/* adjust stack to pop exception state */
framesize = fpca ? 0x68U : 0x20U; /* check for basic vs. extended frame */
if (stack[7] & (1U << 9U)) /* check for stack alignment fixup */
framesize += 4U;
if (spsel) {
regs[REG_SPECIAL] |= 0x4000000U;
regs[REG_SP] = regs[REG_PSP] += framesize;
} else {
regs[REG_SP] = regs[REG_MSP] += framesize;
}
if (fpca)
regs[REG_SPECIAL] |= 0x2000000U;
/* FIXME: stack[7] contains xPSR when this is supported */
/* although, if we caught the exception it will be unchanged */
/* Reset exception state to allow resuming from restored
* state.
*/
target_mem_write32(t, CORTEXM_AIRCR, CORTEXM_AIRCR_VECTKEY | CORTEXM_AIRCR_VECTCLRACTIVE);
/* Write pre-exception registers back to core */
target_regs_write(t, regs);
return 1;
}
return 0;
}
int cortexm_run_stub(target *t, uint32_t loadaddr, uint32_t r0, uint32_t r1, uint32_t r2, uint32_t r3)
{
uint32_t regs[t->regs_size / 4U];
memset(regs, 0, sizeof(regs));
regs[0] = r0;
regs[1] = r1;
regs[2] = r2;
regs[3] = r3;
regs[15] = loadaddr;
regs[REG_XPSR] = CORTEXM_XPSR_THUMB;
regs[19] = 0;
cortexm_regs_write(t, regs);
if (target_check_error(t))
return -1;
/* Execute the stub */
enum target_halt_reason reason;
#if defined(PLATFORM_HAS_DEBUG)
uint32_t arm_regs_start[t->regs_size];
target_regs_read(t, arm_regs_start);
#endif
cortexm_halt_resume(t, 0);
platform_timeout timeout;
platform_timeout_set(&timeout, 5000);
do {
if (platform_timeout_is_expired(&timeout)) {
cortexm_halt_request(t);
#if defined(PLATFORM_HAS_DEBUG)
DEBUG_WARN("Stub hangs\n");
uint32_t arm_regs[t->regs_size];
target_regs_read(t, arm_regs);
for (size_t i = 0; i < 20; i++) {
DEBUG_WARN("%2d: %08" PRIx32 ", %08" PRIx32 "\n", i, arm_regs_start[i], arm_regs[i]);
}
#endif
return -3;
}
} while ((reason = cortexm_halt_poll(t, NULL)) == TARGET_HALT_RUNNING);
if (reason == TARGET_HALT_ERROR)
raise_exception(EXCEPTION_ERROR, "Target lost in stub");
if (reason != TARGET_HALT_BREAKPOINT) {
DEBUG_WARN(" Reasone %d\n", reason);
return -2;
}
uint32_t pc = cortexm_pc_read(t);
uint16_t bkpt_instr = target_mem_read16(t, pc);
if (bkpt_instr >> 8U != 0xbeU)
return -2;
return bkpt_instr & 0xffU;
}
/* The following routines implement hardware breakpoints and watchpoints.
* The Flash Patch and Breakpoint (FPB) and Data Watch and Trace (DWT)
* systems are used. */
static uint32_t dwt_mask(size_t len)
{
switch (len) {
case 1:
return CORTEXM_DWT_MASK_BYTE;
case 2:
return CORTEXM_DWT_MASK_HALFWORD;
case 4:
return CORTEXM_DWT_MASK_WORD;
default:
return -1;
}
}
static uint32_t dwt_func(target *t, enum target_breakwatch type)
{
uint32_t x = 0;
if ((t->target_options & TOPT_FLAVOUR_V6M) == 0)
x = CORTEXM_DWT_FUNC_DATAVSIZE_WORD;
switch (type) {
case TARGET_WATCH_WRITE:
return CORTEXM_DWT_FUNC_FUNC_WRITE | x;
case TARGET_WATCH_READ:
return CORTEXM_DWT_FUNC_FUNC_READ | x;
case TARGET_WATCH_ACCESS:
return CORTEXM_DWT_FUNC_FUNC_ACCESS | x;
default:
return -1;
}
}
static int cortexm_breakwatch_set(target *t, struct breakwatch *bw)
{
struct cortexm_priv *priv = t->priv;
size_t i;
uint32_t val = bw->addr;
switch (bw->type) {
case TARGET_BREAK_HARD:
if (priv->flash_patch_revision == 0) {
val &= 0x1ffffffcU;
val |= (bw->addr & 2U) ? 0x80000000U : 0x40000000U;
}
val |= 1U;
for (i = 0; i < priv->hw_breakpoint_max; i++)
if (!priv->hw_breakpoint[i])
break;
if (i == priv->hw_breakpoint_max)
return -1;
priv->hw_breakpoint[i] = true;
target_mem_write32(t, CORTEXM_FPB_COMP(i), val);
bw->reserved[0] = i;
return 0;
case TARGET_WATCH_WRITE:
case TARGET_WATCH_READ:
case TARGET_WATCH_ACCESS:
for (i = 0; i < priv->hw_watchpoint_max; i++)
if (!priv->hw_watchpoint[i])
break;
if (i == priv->hw_watchpoint_max)
return -1;
priv->hw_watchpoint[i] = true;
target_mem_write32(t, CORTEXM_DWT_COMP(i), val);
target_mem_write32(t, CORTEXM_DWT_MASK(i), dwt_mask(bw->size));
target_mem_write32(t, CORTEXM_DWT_FUNC(i), dwt_func(t, bw->type));
bw->reserved[0] = i;
return 0;
default:
return 1;
}
}
static int cortexm_breakwatch_clear(target *t, struct breakwatch *bw)
{
struct cortexm_priv *priv = t->priv;
unsigned i = bw->reserved[0];
switch (bw->type) {
case TARGET_BREAK_HARD:
priv->hw_breakpoint[i] = false;
target_mem_write32(t, CORTEXM_FPB_COMP(i), 0);
return 0;
case TARGET_WATCH_WRITE:
case TARGET_WATCH_READ:
case TARGET_WATCH_ACCESS:
priv->hw_watchpoint[i] = false;
target_mem_write32(t, CORTEXM_DWT_FUNC(i), 0);
return 0;
default:
return 1;
}
}
static target_addr_t cortexm_check_watch(target *t)
{
struct cortexm_priv *priv = t->priv;
unsigned i;
for (i = 0; i < priv->hw_watchpoint_max; i++)
/* if SET and MATCHED then break */
if (priv->hw_watchpoint[i] && (target_mem_read32(t, CORTEXM_DWT_FUNC(i)) & CORTEXM_DWT_FUNC_MATCHED))
break;
if (i == priv->hw_watchpoint_max)
return 0;
return target_mem_read32(t, CORTEXM_DWT_COMP(i));
}
static bool cortexm_vector_catch(target *t, int argc, char *argv[])
{
struct cortexm_priv *priv = t->priv;
static const char *vectors[] = {"reset", NULL, NULL, NULL, "mm", "nocp", "chk", "stat", "bus", "int", "hard"};
uint32_t tmp = 0;
unsigned i;
if (argc < 3) {
tc_printf(t, "usage: monitor vector_catch (enable|disable) "
"(hard|int|bus|stat|chk|nocp|mm|reset)\n");
} else {
for (int j = 0; j < argc; j++)
for (i = 0; i < sizeof(vectors) / sizeof(char *); i++) {
if (vectors[i] && !strcmp(vectors[i], argv[j]))
tmp |= 1 << i;
}
bool enable;
if (parse_enable_or_disable(argv[1], &enable)) {
if (enable) {
priv->demcr |= tmp;
} else {
priv->demcr &= ~tmp;
}
target_mem_write32(t, CORTEXM_DEMCR, priv->demcr);
}
}
tc_printf(t, "Catching vectors: ");
for (i = 0; i < sizeof(vectors) / sizeof(char *); i++) {
if (!vectors[i])
continue;
if (priv->demcr & (1 << i))
tc_printf(t, "%s ", vectors[i]);
}
tc_printf(t, "\n");
return true;
}
#ifdef PLATFORM_HAS_USBUART
static bool cortexm_redirect_stdout(target *t, int argc, const char **argv)
{
if (argc == 1)
gdb_outf("Semihosting stdout redirection: %s\n", t->stdout_redirected ? "enabled" : "disabled");
else
t->stdout_redirected = !strncmp(argv[1], "enable", strlen(argv[1]));
return true;
}
#endif
#if PC_HOSTED == 0
/* probe memory access functions */
static void probe_mem_read(target *t __attribute__((unused)), void *probe_dest, target_addr_t target_src, size_t len)
{
uint8_t *dst = (uint8_t *)probe_dest;
uint8_t *src = (uint8_t *)target_src;
DEBUG_INFO("probe_mem_read\n");
memcpy(dst, src, len);
}
static void probe_mem_write(
target *t __attribute__((unused)), target_addr_t target_dest, const void *probe_src, size_t len)
{
uint8_t *dst = (uint8_t *)target_dest;
uint8_t *src = (uint8_t *)probe_src;
DEBUG_INFO("probe_mem_write\n");
memcpy(dst, src, len);
}
#endif
static int cortexm_hostio_request(target *t)
{
uint32_t arm_regs[t->regs_size];
uint32_t params[4];
t->tc->interrupted = false;
target_regs_read(t, arm_regs);
uint32_t syscall = arm_regs[0];
if (syscall != SEMIHOSTING_SYS_EXIT)
target_mem_read(t, params, arm_regs[1], sizeof(params));
int32_t ret = 0;
DEBUG_INFO("syscall 0" PRIx32 "%" PRIx32 " (%" PRIx32 " %" PRIx32 " %" PRIx32 " %" PRIx32 ")\n", syscall, params[0],
params[1], params[2], params[3]);
switch (syscall) {
#if PC_HOSTED == 1
/* code that runs in pc-hosted process. use linux system calls. */
case SEMIHOSTING_SYS_OPEN: { /* open */
target_addr_t fnam_taddr = params[0];
uint32_t fnam_len = params[2];
ret = -1;
if (fnam_taddr == TARGET_NULL || fnam_len == 0)
break;
/* Translate stupid fopen modes to open flags.
* See DUI0471C, Table 8-3 */
static const uint32_t flags[] = {
O_RDONLY, /* r, rb */
O_RDWR, /* r+, r+b */
O_WRONLY | O_CREAT | O_TRUNC, /*w*/
O_RDWR | O_CREAT | O_TRUNC, /*w+*/
O_WRONLY | O_CREAT | O_APPEND, /*a*/
O_RDWR | O_CREAT | O_APPEND, /*a+*/
};
uint32_t pflag = flags[params[1] >> 1];
char filename[4];
target_mem_read(t, filename, fnam_taddr, sizeof(filename));
/* handle requests for console i/o */
if (!strcmp(filename, ":tt")) {
if (pflag == TARGET_O_RDONLY)
ret = STDIN_FILENO;
else if (pflag & TARGET_O_TRUNC)
ret = STDOUT_FILENO;
else
ret = STDERR_FILENO;
ret++;
break;
}
char *fnam = malloc(fnam_len + 1);
if (fnam == NULL)
break;
target_mem_read(t, fnam, fnam_taddr, fnam_len + 1);
if (target_check_error(t)) {
free(fnam);
break;
}
fnam[fnam_len] = '\0';
ret = open(fnam, pflag, 0644);
free(fnam);
if (ret != -1)
ret++;
break;
}
case SEMIHOSTING_SYS_CLOSE: /* close */
ret = close(params[0] - 1);
break;
case SEMIHOSTING_SYS_READ: { /* read */
ret = -1;
target_addr_t buf_taddr = params[1];
uint32_t buf_len = params[2];
if (buf_taddr == TARGET_NULL)
break;
if (buf_len == 0) {
ret = 0;
break;
}
uint8_t *buf = malloc(buf_len);
if (buf == NULL)
break;
ssize_t rc = read(params[0] - 1, buf, buf_len);
if (rc >= 0)
rc = buf_len - rc;
target_mem_write(t, buf_taddr, buf, buf_len);
free(buf);
if (target_check_error(t))
break;
ret = rc;
break;
}
case SEMIHOSTING_SYS_WRITE: { /* write */
ret = -1;
target_addr_t buf_taddr = params[1];
uint32_t buf_len = params[2];
if (buf_taddr == TARGET_NULL)
break;
if (buf_len == 0) {
ret = 0;
break;
}
uint8_t *buf = malloc(buf_len);
if (buf == NULL)
break;
target_mem_read(t, buf, buf_taddr, buf_len);
if (target_check_error(t)) {
free(buf);
break;
}
ret = write(params[0] - 1, buf, buf_len);
free(buf);
if (ret >= 0)
ret = buf_len - ret;
break;
}
case SEMIHOSTING_SYS_WRITEC: { /* writec */
ret = -1;
uint8_t ch;
target_addr_t ch_taddr = arm_regs[1];
if (ch_taddr == TARGET_NULL)
break;
ch = target_mem_read8(t, ch_taddr);
if (target_check_error(t))
break;
fputc(ch, stderr);
ret = 0;
break;
}
case SEMIHOSTING_SYS_WRITE0: { /* write0 */
ret = -1;
uint8_t ch;
target_addr_t str = arm_regs[1];
if (str == TARGET_NULL)
break;
while ((ch = target_mem_read8(t, str++)) != '\0') {
if (target_check_error(t))
break;
fputc(ch, stderr);
}
ret = 0;
break;
}
case SEMIHOSTING_SYS_ISTTY: /* isatty */
ret = isatty(params[0] - 1);
break;
case SEMIHOSTING_SYS_SEEK: { /* lseek */
off_t pos = params[1];
if (lseek(params[0] - 1, pos, SEEK_SET) == (off_t)pos)
ret = 0;
else
ret = -1;
break;
}
case SEMIHOSTING_SYS_RENAME: { /* rename */
ret = -1;
target_addr_t fnam1_taddr = params[0];
uint32_t fnam1_len = params[1];
if (fnam1_taddr == TARGET_NULL)
break;
if (fnam1_len == 0)
break;
target_addr_t fnam2_taddr = params[2];
uint32_t fnam2_len = params[3];
if (fnam2_taddr == TARGET_NULL)
break;
if (fnam2_len == 0)
break;
char *fnam1 = malloc(fnam1_len + 1);
if (fnam1 == NULL)
break;
target_mem_read(t, fnam1, fnam1_taddr, fnam1_len + 1);
if (target_check_error(t)) {
free(fnam1);
break;
}
fnam1[fnam1_len] = '\0';
char *fnam2 = malloc(fnam2_len + 1);
if (fnam2 == NULL) {
free(fnam1);
break;
}
target_mem_read(t, fnam2, fnam2_taddr, fnam2_len + 1);
if (target_check_error(t)) {
free(fnam1);
free(fnam2);
break;
}
fnam2[fnam2_len] = '\0';
ret = rename(fnam1, fnam2);
free(fnam1);
free(fnam2);
break;
}
case SEMIHOSTING_SYS_REMOVE: { /* unlink */
ret = -1;
target_addr_t fnam_taddr = params[0];
if (fnam_taddr == TARGET_NULL)
break;
uint32_t fnam_len = params[1];
if (fnam_len == 0)
break;
char *fnam = malloc(fnam_len + 1);
if (fnam == NULL)
break;
target_mem_read(t, fnam, fnam_taddr, fnam_len + 1);
if (target_check_error(t)) {
free(fnam);
break;
}
fnam[fnam_len] = '\0';
ret = remove(fnam);
free(fnam);
break;
}
case SEMIHOSTING_SYS_SYSTEM: { /* system */
ret = -1;
target_addr_t cmd_taddr = params[0];
if (cmd_taddr == TARGET_NULL)
break;
uint32_t cmd_len = params[1];
if (cmd_len == 0)
break;
char *cmd = malloc(cmd_len + 1);
if (cmd == NULL)
break;
target_mem_read(t, cmd, cmd_taddr, cmd_len + 1);
if (target_check_error(t)) {
free(cmd);
break;
}
cmd[cmd_len] = '\0';
ret = system(cmd);
free(cmd);
break;
}
case SEMIHOSTING_SYS_FLEN: { /* file length */
ret = -1;
struct stat stat_buf;
if (fstat(params[0] - 1, &stat_buf) != 0)
break;
if (stat_buf.st_size > INT32_MAX)
break;
ret = stat_buf.st_size;
break;
}
case SEMIHOSTING_SYS_CLOCK: { /* clock */
/* can't use clock() because that would give cpu time of pc-hosted process */
ret = -1;
struct timeval timeval_buf;
if (gettimeofday(&timeval_buf, NULL) != 0)
break;
uint32_t sec = timeval_buf.tv_sec;
uint64_t usec = timeval_buf.tv_usec;
if (time0_sec > sec)
time0_sec = sec;
sec -= time0_sec;
uint64_t csec64 = (sec * UINT64_C(1000000) + usec) / UINT64_C(10000);
uint32_t csec = csec64 & 0x7fffffff;
ret = csec;
break;
}
case SEMIHOSTING_SYS_TIME: /* time */
ret = time(NULL);
break;
case SEMIHOSTING_SYS_READC: /* readc */
ret = getchar();
break;
case SEMIHOSTING_SYS_ERRNO: /* errno */
ret = errno;
break;
#else
/* code that runs in probe. use gdb fileio calls. */
case SEMIHOSTING_SYS_OPEN: { /* open */
/* Translate stupid fopen modes to open flags.
* See DUI0471C, Table 8-3 */
static const uint32_t flags[] = {
TARGET_O_RDONLY, /* r, rb */
TARGET_O_RDWR, /* r+, r+b */
TARGET_O_WRONLY | TARGET_O_CREAT | TARGET_O_TRUNC, /*w*/
TARGET_O_RDWR | TARGET_O_CREAT | TARGET_O_TRUNC, /*w+*/
TARGET_O_WRONLY | TARGET_O_CREAT | TARGET_O_APPEND, /*a*/
TARGET_O_RDWR | TARGET_O_CREAT | TARGET_O_APPEND, /*a+*/
};
uint32_t pflag = flags[params[1] >> 1];
char filename[4];
target_mem_read(t, filename, params[0], sizeof(filename));
/* handle requests for console i/o */
if (!strcmp(filename, ":tt")) {
if (pflag == TARGET_O_RDONLY)
ret = STDIN_FILENO;
else if (pflag & TARGET_O_TRUNC)
ret = STDOUT_FILENO;
else
ret = STDERR_FILENO;
ret++;
break;
}
ret = tc_open(t, params[0], params[2] + 1, pflag, 0644);
if (ret != -1)
ret++;
break;
}
case SEMIHOSTING_SYS_CLOSE: /* close */
ret = tc_close(t, params[0] - 1);
break;
case SEMIHOSTING_SYS_READ: /* read */
ret = tc_read(t, params[0] - 1, params[1], params[2]);
if (ret >= 0)
ret = params[2] - ret;
break;
case SEMIHOSTING_SYS_WRITE: /* write */
ret = tc_write(t, params[0] - 1, params[1], params[2]);
if (ret >= 0)
ret = params[2] - ret;
break;
case SEMIHOSTING_SYS_WRITEC: /* writec */
ret = tc_write(t, STDERR_FILENO, arm_regs[1], 1);
break;
case SEMIHOSTING_SYS_WRITE0: { /* write0 */
ret = -1;
target_addr_t str_begin = arm_regs[1];
target_addr_t str_end = str_begin;
while (target_mem_read8(t, str_end) != 0) {
if (target_check_error(t))
break;
str_end++;
}
int len = str_end - str_begin;
if (len != 0) {
int rc = tc_write(t, STDERR_FILENO, str_begin, len);
if (rc != len)
break;
}
ret = 0;
break;
}
case SEMIHOSTING_SYS_ISTTY: /* isatty */
ret = tc_isatty(t, params[0] - 1);
break;
case SEMIHOSTING_SYS_SEEK: /* lseek */
if (tc_lseek(t, params[0] - 1, params[1], TARGET_SEEK_SET) == (long)params[1])
ret = 0;
else
ret = -1;
break;
case SEMIHOSTING_SYS_RENAME: /* rename */
ret = tc_rename(t, params[0], params[1] + 1, params[2], params[3] + 1);
break;
case SEMIHOSTING_SYS_REMOVE: /* unlink */
ret = tc_unlink(t, params[0], params[1] + 1);
break;
case SEMIHOSTING_SYS_SYSTEM: /* system */
/* before use first enable system calls with the following gdb command: 'set remote system-call-allowed 1' */
ret = tc_system(t, params[0], params[1] + 1);
break;
case SEMIHOSTING_SYS_FLEN: { /* file length */
ret = -1;
uint32_t fio_stat[16]; /* same size as fio_stat in gdb/include/gdb/fileio.h */
//DEBUG("SYS_FLEN fio_stat addr %p\n", fio_stat);
void (*saved_mem_read)(target * t, void *dest, target_addr_t src, size_t len);
void (*saved_mem_write)(target * t, target_addr_t dest, const void *src, size_t len);
saved_mem_read = t->mem_read;
saved_mem_write = t->mem_write;
t->mem_read = probe_mem_read;
t->mem_write = probe_mem_write;
int rc = tc_fstat(t, params[0] - 1, (target_addr_t)fio_stat); /* write fstat() result in fio_stat[] */
t->mem_read = saved_mem_read;
t->mem_write = saved_mem_write;
if (rc)
break; /* tc_fstat() failed */
uint32_t fst_size_msw = fio_stat[7]; /* most significant 32 bits of fst_size in fio_stat */
uint32_t fst_size_lsw = fio_stat[8]; /* least significant 32 bits of fst_size in fio_stat */
if (fst_size_msw != 0)
break; /* file size too large for int32_t return type */
ret = __builtin_bswap32(fst_size_lsw); /* convert from bigendian to target order */
if (ret < 0)
ret = -1; /* file size too large for int32_t return type */
break;
}
case SEMIHOSTING_SYS_CLOCK: /* clock */
case SEMIHOSTING_SYS_TIME: { /* time */
/* use same code for SYS_CLOCK and SYS_TIME, more compact */
ret = -1;
struct __attribute__((packed, aligned(4))) {
uint32_t ftv_sec;
uint64_t ftv_usec;
} fio_timeval;
//DEBUG("SYS_TIME fio_timeval addr %p\n", &fio_timeval);
void (*saved_mem_read)(target *t, void *dest, target_addr_t src, size_t len);
void (*saved_mem_write)(target *t, target_addr_t dest, const void *src, size_t len);
saved_mem_read = t->mem_read;
saved_mem_write = t->mem_write;
t->mem_read = probe_mem_read;
t->mem_write = probe_mem_write;
int rc = tc_gettimeofday(
t, (target_addr_t)&fio_timeval, (target_addr_t)NULL); /* write gettimeofday() result in fio_timeval[] */
t->mem_read = saved_mem_read;
t->mem_write = saved_mem_write;
if (rc)
break; /* tc_gettimeofday() failed */
uint32_t sec = __builtin_bswap32(fio_timeval.ftv_sec); /* convert from bigendian to target order */
uint64_t usec = __builtin_bswap64(fio_timeval.ftv_usec);
if (syscall == SEMIHOSTING_SYS_TIME) { /* SYS_TIME: time in seconds */
ret = sec;
} else { /* SYS_CLOCK: time in hundredths of seconds */
if (time0_sec > sec)
time0_sec = sec; /* set sys_clock time origin */
sec -= time0_sec;
uint64_t csec64 = (sec * UINT64_C(1000000) + usec) / UINT64_C(10000);
uint32_t csec = csec64 & 0x7fffffff;
ret = csec;
}
break;
}
case SEMIHOSTING_SYS_READC: { /* readc */
uint8_t ch = '?';
//DEBUG("SYS_READC ch addr %p\n", &ch);
void (*saved_mem_read)(target *t, void *dest, target_addr_t src, size_t len);
void (*saved_mem_write)(target *t, target_addr_t dest, const void *src, size_t len);
saved_mem_read = t->mem_read;
saved_mem_write = t->mem_write;
t->mem_read = probe_mem_read;
t->mem_write = probe_mem_write;
int rc = tc_read(t, STDIN_FILENO, (target_addr_t) &ch, 1); /* read a character in ch */
t->mem_read = saved_mem_read;
t->mem_write = saved_mem_write;
if (rc == 1)
ret = ch;
else
ret = -1;
break;
}
case SEMIHOSTING_SYS_ERRNO: /* Return last errno from GDB */
ret = t->tc->errno_;
break;
#endif
case SEMIHOSTING_SYS_EXIT: /* _exit() */
tc_printf(t, "_exit(0x%x)\n", arm_regs[1]);
target_halt_resume(t, 1);
break;
case SEMIHOSTING_SYS_EXIT_EXTENDED: /* _exit() */
tc_printf(t, "_exit(0x%x%08x)\n", params[1], params[0]); /* exit() with 64bit exit value */
target_halt_resume(t, 1);
break;
case SEMIHOSTING_SYS_GET_CMDLINE: { /* get_cmdline */
uint32_t retval[2];
ret = -1;
target_addr_t buf_ptr = params[0];
target_addr_t buf_len = params[1];
if (strlen(t->cmdline) + 1 > buf_len)
break;
if (target_mem_write(t, buf_ptr, t->cmdline, strlen(t->cmdline) + 1))
break;
retval[0] = buf_ptr;
retval[1] = strlen(t->cmdline) + 1;
if (target_mem_write(t, arm_regs[1], retval, sizeof(retval)))
break;
ret = 0;
break;
}
case SEMIHOSTING_SYS_ISERROR: { /* iserror */
int errorNo = params[0];
ret = errorNo == TARGET_EPERM || errorNo == TARGET_ENOENT || errorNo == TARGET_EINTR || errorNo == TARGET_EIO ||
errorNo == TARGET_EBADF || errorNo == TARGET_EACCES || errorNo == TARGET_EFAULT ||
errorNo == TARGET_EBUSY || errorNo == TARGET_EEXIST || errorNo == TARGET_ENODEV ||
errorNo == TARGET_ENOTDIR || errorNo == TARGET_EISDIR || errorNo == TARGET_EINVAL ||
errorNo == TARGET_ENFILE || errorNo == TARGET_EMFILE || errorNo == TARGET_EFBIG ||
errorNo == TARGET_ENOSPC || errorNo == TARGET_ESPIPE || errorNo == TARGET_EROFS ||
errorNo == TARGET_ENOSYS || errorNo == TARGET_ENAMETOOLONG || errorNo == TARGET_EUNKNOWN;
break;
}
case SEMIHOSTING_SYS_HEAPINFO: /* heapinfo */
target_mem_write(t, arm_regs[1], &t->heapinfo, sizeof(t->heapinfo)); /* See newlib/libc/sys/arm/crt0.S */
break;
case SEMIHOSTING_SYS_TMPNAM: { /* tmpnam */
/* Given a target identifier between 0 and 255, returns a temporary name */
target_addr_t buf_ptr = params[0];
int target_id = params[1];
int buf_size = params[2];
char fnam[] = "tempXX.tmp";
ret = -1;
if (buf_ptr == 0)
break;
if (buf_size <= 0)
break;
if ((target_id < 0) || (target_id > 255))
break; /* target id out of range */
fnam[5] = 'A' + (target_id & 0xF); /* create filename */
fnam[4] = 'A' + (target_id >> 4 & 0xF);
if (strlen(fnam) + 1 > (uint32_t)buf_size)
break; /* target buffer too small */
if (target_mem_write(t, buf_ptr, fnam, strlen(fnam) + 1))
break; /* copy filename to target */
ret = 0;
break;
}
// not implemented yet:
case SEMIHOSTING_SYS_ELAPSED: /* elapsed */
case SEMIHOSTING_SYS_TICKFREQ: /* tickfreq */
ret = -1;
break;
}
arm_regs[0] = ret;
target_regs_write(t, arm_regs);
return t->tc->interrupted;
}