mspdebug/drivers/rom_bsl.c

481 lines
10 KiB
C
Raw Normal View History

2014-04-17 03:58:16 +00:00
/* MSPDebug - debugging tool for the eZ430
* Copyright (C) 2009-2014 Daniel Beer
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <sys/stat.h>
#include <unistd.h>
#include "rom_bsl.h"
#include "util.h"
#include "output.h"
#include "bsllib.h"
#include "util/sport.h"
struct rom_bsl_device {
struct device base;
sport_t fd;
const char *seq;
uint8_t reply_buf[256];
int reply_len;
};
#define DATA_HDR 0x80
#define DATA_ACK 0x90
#define DATA_NAK 0xA0
static int rom_bsl_ack(struct rom_bsl_device *dev)
{
uint8_t reply;
if (sport_read_all(dev->fd, &reply, 1) < 0) {
pr_error("rom_bsl: failed to receive reply");
return -1;
}
if (reply == DATA_NAK) {
printc_err("rom_bsl: received NAK\n");
return -1;
}
if (reply != DATA_ACK) {
printc_err("rom_bsl: bad ack character: %x\n", reply);
return -1;
}
return 0;
}
static int rom_bsl_sync(struct rom_bsl_device *dev)
{
static const uint8_t c = DATA_HDR;
int tries = 2;
if (sport_flush(dev->fd) < 0) {
pr_error("rom_bsl: tcflush");
return -1;
}
while (tries--) {
if (sport_write_all(dev->fd, &c, 1) < 0) {
pr_error("rom_bsl: write error");
continue;
}
if (!rom_bsl_ack(dev))
return 0;
}
printc_err("rom_bsl: sync failed\n");
return -1;
}
static int send_command(struct rom_bsl_device *dev,
int code, uint16_t addr,
const uint8_t *data, int len)
{
uint8_t pktbuf[256];
uint8_t cklow = 0xff;
uint8_t ckhigh = 0xff;
int pktlen = data ? len + 4 : 4;
int i;
if (pktlen + 6 > sizeof(pktbuf)) {
printc_err("rom_bsl: payload too large: %d\n", len);
return -1;
}
pktbuf[0] = DATA_HDR;
pktbuf[1] = code;
pktbuf[2] = pktlen;
pktbuf[3] = pktlen;
pktbuf[4] = addr & 0xff;
pktbuf[5] = addr >> 8;
pktbuf[6] = len & 0xff;
pktbuf[7] = len >> 8;
if (data)
memcpy(pktbuf + 8, data, len);
for (i = 0; i < pktlen + 4; i += 2)
cklow ^= pktbuf[i];
for (i = 1; i < pktlen + 4; i += 2)
ckhigh ^= pktbuf[i];
pktbuf[pktlen + 4] = cklow;
pktbuf[pktlen + 5] = ckhigh;
#ifdef DEBUG_ROM_BSL
debug_hexdump("Send", pktbuf, pktlen + 6);
#endif
if (sport_write_all(dev->fd, pktbuf, pktlen + 6) < 0) {
pr_error("rom_bsl: write error");
return -1;
}
return 0;
}
static int verify_checksum(struct rom_bsl_device *dev)
{
uint8_t cklow = 0xff;
uint8_t ckhigh = 0xff;
int i;
for (i = 0; i < dev->reply_len; i += 2)
cklow ^= dev->reply_buf[i];
for (i = 1; i < dev->reply_len; i += 2)
ckhigh ^= dev->reply_buf[i];
if (cklow || ckhigh) {
printc_err("rom_bsl: checksum invalid (%02x %02x)\n",
cklow, ckhigh);
return -1;
}
return 0;
}
static int fetch_reply(struct rom_bsl_device *dev)
{
dev->reply_len = 0;
for (;;) {
int r = sport_read(dev->fd,
dev->reply_buf + dev->reply_len,
sizeof(dev->reply_buf) - dev->reply_len);
if (!r) {
printc_err("rom_bsl: read timeout\n");
return -1;
}
if (r < 0) {
pr_error("rom_bsl: read error");
return -1;
}
#ifdef DEBUG_ROM_BSL
debug_hexdump("Receive", dev->reply_buf + dev->reply_len, r);
#endif
dev->reply_len += r;
if (dev->reply_buf[0] == DATA_ACK) {
return 0;
} else if (dev->reply_buf[0] == DATA_HDR) {
if (dev->reply_len >= 6 &&
dev->reply_len == dev->reply_buf[2] + 6)
return verify_checksum(dev);
} else if (dev->reply_buf[0] == DATA_NAK) {
printc_err("rom_bsl: received NAK\n");
return -1;
} else {
printc_err("rom_bsl: unknown reply type: %02x\n",
dev->reply_buf[0]);
return -1;
}
if (dev->reply_len >= sizeof(dev->reply_buf)) {
printc_err("rom_bsl: reply buffer overflow\n");
return -1;
}
}
}
static int rom_bsl_xfer(struct rom_bsl_device *dev,
int command_code, uint16_t addr, const uint8_t *txdata,
int len)
{
if (rom_bsl_sync(dev) < 0 ||
send_command(dev, command_code, addr, txdata, len) < 0 ||
fetch_reply(dev) < 0) {
printc_err("rom_bsl: failed on command 0x%02x "
"(addr = 0x%04x, len = 0x%04x)\n",
command_code, addr, len);
return -1;
}
return 0;
}
#define CMD_MASS_ERASE 0x18
#define CMD_ERASE_SEGMENT 0x16
#define CMD_TX_DATA 0x14
#define CMD_RX_DATA 0x12
#define CMD_TX_VERSION 0x1e
#define CMD_RX_PASSWORD 0x10
static void rom_bsl_destroy(device_t dev_base)
{
struct rom_bsl_device *dev = (struct rom_bsl_device *)dev_base;
if (bsllib_seq_do(dev->fd, bsllib_seq_next(dev->seq)) < 0)
pr_error("warning: rom_bsl: exit sequence failed");
sport_close(dev->fd);
free(dev);
}
static int rom_bsl_ctl(device_t dev_base, device_ctl_t type)
{
(void)dev_base;
switch (type) {
case DEVICE_CTL_HALT:
/* Ignore halt requests */
return 0;
case DEVICE_CTL_RESET:
/* Ignore reset requests */
return 0;
default:
printc_err("rom_bsl: CPU control is not possible\n");
}
return -1;
}
static device_status_t rom_bsl_poll(device_t dev_base)
{
(void)dev_base;
return DEVICE_STATUS_HALTED;
}
static int rom_bsl_getregs(device_t dev_base, address_t *regs)
{
(void)dev_base;
(void)regs;
printc_err("rom_bsl: register fetch is not implemented\n");
return -1;
}
static int rom_bsl_setregs(device_t dev_base, const address_t *regs)
{
(void)dev_base;
(void)regs;
printc_err("rom_bsl: register store is not implemented\n");
return -1;
}
static int rom_bsl_writemem(device_t dev_base,
address_t addr, const uint8_t *mem, address_t len)
{
struct rom_bsl_device *dev = (struct rom_bsl_device *)dev_base;
if (addr >= 0x10000 || len > 0x10000 || addr + len > 0x10000) {
printc_err("rom_bsl: memory write out of range\n");
return -1;
}
while (len) {
int wlen = len > 100 ? 100 : len;
int r;
r = rom_bsl_xfer(dev, CMD_RX_DATA, addr, mem, wlen);
if (r < 0) {
printc_err("rom_bsl: failed to write to 0x%04x\n",
addr);
return -1;
}
mem += wlen;
len -= wlen;
addr += wlen;
}
return 0;
}
static int rom_bsl_readmem(device_t dev_base,
address_t addr, uint8_t *mem, address_t len)
{
struct rom_bsl_device *dev = (struct rom_bsl_device *)dev_base;
if (addr >= 0x10000 || len > 0x10000 || addr + len > 0x10000) {
printc_err("rom_bsl: memory read out of range\n");
return -1;
}
while (len) {
address_t count = len;
if (count > 128)
count = 128;
if (rom_bsl_xfer(dev, CMD_TX_DATA, addr, NULL, count) < 0) {
printc_err("rom_bsl: failed to read memory\n");
return -1;
}
if (count > dev->reply_buf[2])
count = dev->reply_buf[2];
memcpy(mem, dev->reply_buf + 4, count);
mem += count;
len -= count;
addr += count;
}
return 0;
}
static int rom_bsl_erase(device_t dev_base, device_erase_type_t type,
address_t addr)
{
struct rom_bsl_device *dev = (struct rom_bsl_device *)dev_base;
(void)addr;
switch (type) {
case DEVICE_ERASE_MAIN:
return rom_bsl_xfer(dev, CMD_ERASE_SEGMENT,
0xfffe, NULL, 0xa504);
case DEVICE_ERASE_SEGMENT:
return rom_bsl_xfer(dev, CMD_ERASE_SEGMENT,
addr, NULL, 0xa502);
case DEVICE_ERASE_ALL:
return rom_bsl_xfer(dev, CMD_MASS_ERASE,
0xfffe, NULL, 0xa506);
}
return 0;
}
static int unlock_device(struct rom_bsl_device *dev)
{
const static uint8_t password[32] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
};
printc_dbg("Performing mass erase...\n");
if (rom_bsl_xfer(dev, CMD_MASS_ERASE, 0xfffe, NULL, 0xa506) < 0) {
printc_err("rom_bsl: initial mass erase failed\n");
return -1;
}
printc_dbg("Sending password...\n");
if (rom_bsl_xfer(dev, CMD_RX_PASSWORD, 0,
password, sizeof(password)) < 0) {
printc_err("rom_bsl: RX password failed\n");
return -1;
}
return 0;
}
static device_t rom_bsl_open(const struct device_args *args)
{
struct rom_bsl_device *dev;
if (!(args->flags & DEVICE_FLAG_TTY)) {
printc_err("rom_bsl: raw USB access is not supported");
return NULL;
}
dev = malloc(sizeof(*dev));
if (!dev) {
pr_error("rom_bsl: can't allocate memory");
return NULL;
}
memset(dev, 0, sizeof(*dev));
dev->base.type = &device_rom_bsl;
dev->fd = sport_open(args->path, 9600, SPORT_EVEN_PARITY);
if (SPORT_ISERR(dev->fd)) {
pr_error("sport_open");
free(dev);
return NULL;
}
dev->seq = args->bsl_entry_seq;
if (!dev->seq)
dev->seq = "DR,r,R,r,d,R:DR,r";
2014-12-14 20:06:30 +00:00
if ( args->bsl_gpio_used )
{
if (bsllib_seq_do_gpio(args->bsl_gpio_rts, args->bsl_gpio_dtr, dev->seq) < 0) {
pr_error("rom_bsl: entry sequence failed");
goto fail;
}
}
else
{
if (bsllib_seq_do(dev->fd, dev->seq) < 0) {
pr_error("rom_bsl: entry sequence failed");
goto fail;
}
2014-04-17 03:58:16 +00:00
}
delay_ms(500);
/* Show BSL version */
if (rom_bsl_xfer(dev, CMD_TX_VERSION, 0, NULL, 0) < 0)
printc_err("warning: rom_bsl: failed to read version\n");
else if (dev->reply_len < 19)
printc_err("warning: rom_bsl: short reply\n");
else
printc_dbg("BSL version is %x.%02x\n",
dev->reply_buf[15],
dev->reply_buf[16]);
if (unlock_device(dev) < 0) {
printc_err("rom_bsl: failed to unlock\n");
goto fail;
}
return (device_t)dev;
fail:
sport_close(dev->fd);
free(dev);
return NULL;
}
const struct device_class device_rom_bsl = {
.name = "rom-bsl",
.help = "ROM bootstrap loader",
.open = rom_bsl_open,
.destroy = rom_bsl_destroy,
.readmem = rom_bsl_readmem,
.writemem = rom_bsl_writemem,
.erase = rom_bsl_erase,
.getregs = rom_bsl_getregs,
.setregs = rom_bsl_setregs,
.ctl = rom_bsl_ctl,
.poll = rom_bsl_poll
};