Rewrite output filtering.

The old code was messy and difficult to understand. This implementation
better separates ANSI parsing from output and is easier to modify.
This commit is contained in:
Daniel Beer 2012-10-09 11:58:27 +13:00
parent d462ab8c3f
commit c7e05fd9fc
1 changed files with 175 additions and 84 deletions

View File

@ -21,110 +21,201 @@
#include <stdarg.h> #include <stdarg.h>
#include <string.h> #include <string.h>
#ifdef __Windows__
#include <windows.h>
#endif
#include "opdb.h" #include "opdb.h"
#include "output.h" #include "output.h"
#include "util.h" #include "util.h"
struct outbuf {
char buf[4096];
int len;
int in_code;
int ansi_cur;
int ansi_num;
int ansi_next;
};
static struct outbuf stdout_buf;
static struct outbuf stderr_buf;
static capture_func_t capture_func; static capture_func_t capture_func;
static void *capture_data; static void *capture_data;
static void process_ansi_part(struct outbuf *out) #define LINEBUF_SIZE 4096
struct linebuf {
/* Line buffer */
char buf[LINEBUF_SIZE];
int len;
/* Does the buffer contain a trailing incomplete ANSI code? */
int ansi_mode;
};
/* Return the lower three bits of n, reversed */
static int rev_bits(int n)
{ {
if (!out->ansi_num) { const int a = (n & 1) << 2;
out->ansi_next = 7; const int b = (n & 2);
} else if (out->ansi_num == 1) { const int c = (n & 4) >> 2;
out->ansi_next |= 0x8;
} else if (out->ansi_num >= 30) {
const int attr = out->ansi_num % 10;
const int col = ((attr & 1) << 2) |
(attr & 2) |
((attr & 4) >> 2);
if (out->ansi_num >= 40) return a | b | c;
out->ansi_next = (out->ansi_next & 0x0f) |
(col << 4);
else
out->ansi_next = (out->ansi_next & 0xf0) | col;
}
out->ansi_num = 0;
} }
static int write_text(struct outbuf *out, const char *buf, FILE *fout) /* Take a Windows color code and an ANSI colour-change code component
* and return the resulting Windows color code.
*/
static int ansi_apply(int old_state, int code)
{ {
int want_color = opdb_get_boolean("color"); /* 0: reset */
if (code == 0)
return 7;
/* 1: bold */
if (code == 1)
return old_state | 0x8;
/* 30-37: foreground colour */
if (code >= 30 && code <= 37)
return (old_state & 0xf8) | rev_bits(code - 30);
/* 40-47: background colour */
if (code >= 40 && code <= 47)
return (old_state & 0x0f) | (rev_bits(code - 40) << 4);
return old_state;
}
/* Parse an ANSI code and compute the next Windows console colour code.
* Returns the number of bytes consumed.
*/
static int parse_ansi(const char *text, int *ansi_state)
{
int next_state = *ansi_state;
int code = 0;
int len = 0; int len = 0;
if (!out->ansi_cur) /* Parse the ANSI code and see how long it is */
out->ansi_cur = 7; while (text[len]) {
char c = text[len++];
while (*buf) { if (isdigit(c)) {
if (*buf == 27) { code = code * 10 + c - '0';
out->in_code = 1;
out->ansi_num = 0;
out->ansi_next = out->ansi_cur;
}
if (!out->in_code)
len++;
if (*buf == '\n') {
fputc('\n', fout);
fflush(fout);
out->buf[out->len] = 0;
if (capture_func)
capture_func(capture_data, out->buf);
out->len = 0;
} else if (out->in_code) {
if (isdigit(*buf)) {
out->ansi_num =
out->ansi_num * 10 + *buf - '0';
} else if (*buf == ';') {
process_ansi_part(out);
} else if (isalpha(*buf)) {
process_ansi_part(out);
out->in_code = 0;
if (*buf == 'm')
out->ansi_cur = out->ansi_next;
#ifdef __Windows__
if (want_color && *buf == 'm') {
fflush(fout);
SetConsoleTextAttribute(GetStdHandle
(STD_OUTPUT_HANDLE), out->ansi_cur);
}
#endif
}
#ifndef __Windows__
if (want_color)
fputc(*buf, fout);
#endif
} else { } else {
if (out->len + 1 < sizeof(out->buf)) next_state = ansi_apply(next_state, code);
out->buf[out->len++] = *buf; code = 0;
fputc(*buf, fout);
} }
buf++; if (isalpha(c))
break;
} }
*ansi_state = next_state;
return len;
}
/* Parse printable characters, up to either the end of the line or the
* next ANSI code. Returns the number of bytes consumed.
*/
static int parse_text(const char *text)
{
int len = 0;
while (text[len] && text[len] != 0x1b)
len++;
return len; return len;
} }
/* Print an ANSI code, or change the console text colour. */
static void emit_ansi(const char *code, int len, int ansi_state, FILE *out)
{
#ifdef __Windows__
fflush(out);
SetConsoleTextAttribute(GetStdHandle(STD_OUTPUT_HANDLE), ansi_state);
#else
fwrite(code, 1, len, out);
#endif
}
/* Process and print a single line of text. The given line of text must
* be nul-terminated with no line-ending characters. Embedded ANSI
* sequences are handled appropriately.
*/
static void handle_line(const char *text, FILE *out)
{
const int want_color = opdb_get_boolean("color");
char cap_buf[LINEBUF_SIZE];
int cap_len = 0;
int ansi_state = 7;
while (*text) {
int r;
if (*text == 0x1b) {
r = parse_ansi(text, &ansi_state);
if (want_color)
emit_ansi(text, r, ansi_state, out);
} else {
r = parse_text(text);
memcpy(cap_buf + cap_len, text, r);
cap_len += r;
fwrite(text, 1, r, out);
}
text += r;
}
/* Reset colours if necessary */
if (want_color && (ansi_state != 7))
emit_ansi("\x1b[0m", 4, 7, out);
fputc('\n', out);
fflush(out);
/* Invoke output capture callback */
cap_buf[cap_len] = 0;
if (capture_func)
capture_func(capture_data, cap_buf);
}
/* Push a chunk of text, possibly with embedded ANSI sequences, into a
* buffer. The text is reassembled into lines, and each line is
* processed/printed once completely assembled.
*
* The number of printable (non-ANSI, non-newline) characters in the
* chunk of text is returned. The buffer keeps track of whether or not
* we're currently within an ANSI code, so pushing code fragments works
* correctly.
*/
static int write_text(struct linebuf *ob, const char *text, FILE *out)
{
int count = 0;
/* Separate the text into lines and count the number of
* printing characters.
*/
while (*text) {
if (*text == '\n') {
ob->buf[ob->len] = 0;
ob->len = 0;
ob->ansi_mode = 0;
handle_line(ob->buf, out);
} else {
if (*text == 0x1b)
ob->ansi_mode = 1;
if (ob->len + 1 < sizeof(ob->buf))
ob->buf[ob->len++] = *text;
if (!ob->ansi_mode)
count++;
if (isalpha(*text))
ob->ansi_mode = 0;
}
text++;
}
return count;
}
static struct linebuf lb_normal;
static struct linebuf lb_debug;
static struct linebuf lb_error;
int printc(const char *fmt, ...) int printc(const char *fmt, ...)
{ {
char buf[4096]; char buf[4096];
@ -134,7 +225,7 @@ int printc(const char *fmt, ...)
vsnprintf(buf, sizeof(buf), fmt, ap); vsnprintf(buf, sizeof(buf), fmt, ap);
va_end(ap); va_end(ap);
return write_text(&stdout_buf, buf, stdout); return write_text(&lb_normal, buf, stdout);
} }
int printc_dbg(const char *fmt, ...) int printc_dbg(const char *fmt, ...)
@ -149,7 +240,7 @@ int printc_dbg(const char *fmt, ...)
vsnprintf(buf, sizeof(buf), fmt, ap); vsnprintf(buf, sizeof(buf), fmt, ap);
va_end(ap); va_end(ap);
return write_text(&stdout_buf, buf, stdout); return write_text(&lb_debug, buf, stdout);
} }
int printc_err(const char *fmt, ...) int printc_err(const char *fmt, ...)
@ -161,7 +252,7 @@ int printc_err(const char *fmt, ...)
vsnprintf(buf, sizeof(buf), fmt, ap); vsnprintf(buf, sizeof(buf), fmt, ap);
va_end(ap); va_end(ap);
return write_text(&stderr_buf, buf, stderr); return write_text(&lb_error, buf, stderr);
} }
void pr_error(const char *prefix) void pr_error(const char *prefix)