mspdebug/util/btree.c

784 lines
18 KiB
C

/* MSPDebug - debugging tool for MSP430 MCUs
* Copyright (C) 2009, 2010 Daniel Beer
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "btree.h"
#include "output.h"
#include "util.h"
#define MAX_HEIGHT 16
/* Btree pages consist of the following: a page header (struct btree_page),
* followed by a block of memory consisting of:
*
* For a leaf node:
* An array of N keys, then an array of N data.
*
* For a non-leaf node:
* An array of N keys, then an array of N struct btree_page *.
*
* Where N is the branch factor.
*/
struct btree_page {
int height;
int num_children;
struct btree *owner;
const struct btree_def *def;
};
#define PAGE_KEY(p, i) \
(((char *)(p)) + sizeof(struct btree_page) + \
(i) * (p)->def->key_size)
#define PAGE_DATA(p, i) \
(((char *)(p)) + sizeof(struct btree_page) + \
(p)->def->branches * (p)->def->key_size + \
(i) * (p)->def->data_size)
#define PAGE_PTR(p, i) \
((struct btree_page **) \
(((char *)(p)) + sizeof(struct btree_page) + \
(p)->def->branches * (p)->def->key_size + \
(i) * sizeof(struct btree_page *))) \
struct btree {
const struct btree_def *def;
struct btree_page *root;
struct btree_page *path[MAX_HEIGHT];
int slot[MAX_HEIGHT];
};
/************************************************************************
* Debugging
*/
#ifdef DEBUG_BTREE
static void check_page(struct btree_page *p,
const void *lbound, const void *ubound,
int height)
{
const struct btree_def *def = p->def;
int i;
assert (p);
assert (p->height == height);
if (p != p->owner->root) {
assert (p->num_children >= def->branches / 2);
assert (p->num_children <= def->branches);
}
for (i = 0; i < p->num_children; i++) {
const void *key = PAGE_KEY(p, i);
const void *next_key = ubound;
if (i + 1 < p->num_children)
next_key = PAGE_KEY(p, i + 1);
assert (def->compare(key, lbound) >= 0);
if (next_key) {
assert (def->compare(key, next_key) < 0);
}
if (ubound) {
assert (def->compare(key, ubound) < 0);
}
if (p->height)
check_page(*PAGE_PTR(p, i), key, next_key, height - 1);
}
}
static void check_btree(btree_t bt)
{
assert (bt->def);
if (bt->root->height) {
assert (bt->root->num_children >= 2);
}
check_page(bt->root, bt->def->zero, NULL, bt->root->height);
}
#else
#define check_btree(bt)
#endif
/************************************************************************
* B+Tree auxiliary functions
*/
static void destroy_page(struct btree_page *p)
{
if (!p)
return;
if (p->height) {
int i;
for (i = 0; i < p->num_children; i++)
destroy_page(*PAGE_PTR(p, i));
}
free(p);
}
static struct btree_page *allocate_page(btree_t bt, int height)
{
const struct btree_def *def = bt->def;
struct btree_page *p;
int size = sizeof(*p) + def->key_size * def->branches;
if (height)
size += sizeof(struct btree_page *) * def->branches;
else
size += sizeof(def->data_size) * def->branches;
p = malloc(size);
if (!p) {
printc_err("btree: couldn't allocate page: %s\n",
last_error());
return NULL;
}
memset(p, 0, size);
p->def = bt->def;
p->owner = bt;
p->height = height;
return p;
}
static void split_page(struct btree_page *op, struct btree_page *np)
{
const struct btree_def *def = op->def;
btree_t bt = op->owner;
const int halfsize = def->branches / 2;
assert (op->num_children == def->branches);
memcpy(PAGE_KEY(np, 0), PAGE_KEY(op, halfsize),
halfsize * def->key_size);
if (op->height)
memcpy(PAGE_PTR(np, 0), PAGE_PTR(op, halfsize),
halfsize * sizeof(struct btree_page *));
else
memcpy(PAGE_DATA(np, 0), PAGE_DATA(op, halfsize),
halfsize * def->data_size);
op->num_children = halfsize;
np->num_children = halfsize;
/* Fix up the cursor if we split an active page */
if (bt->slot[0] >= 0 && bt->path[op->height] == op &&
bt->slot[op->height] > op->num_children) {
bt->slot[op->height] -= op->num_children;
bt->path[op->height] = np;
}
}
static void insert_data(struct btree_page *p, int s,
const void *key, const void *data)
{
const struct btree_def *def = p->def;
btree_t bt = p->owner;
int r = p->num_children - s;
assert (!p->height);
assert (p->num_children < def->branches);
assert (s >= 0 && s <= p->num_children);
memmove(PAGE_KEY(p, s + 1), PAGE_KEY(p, s),
r * def->key_size);
memmove(PAGE_DATA(p, s + 1), PAGE_DATA(p, s),
r * def->data_size);
memcpy(PAGE_KEY(p, s), key, def->key_size);
memcpy(PAGE_DATA(p, s), data, def->data_size);
p->num_children++;
/* Fix up the cursor if we inserted before it, or if we're inserting
* a pointer to the cursor data itself (as in a borrow).
*/
if (bt->slot[0] >= 0) {
if (data == PAGE_DATA(bt->path[0], bt->slot[0])) {
bt->path[0] = p;
bt->slot[0] = s;
} else if (bt->path[0] == p && s <= bt->slot[0]) {
bt->slot[0]++;
}
}
}
static void insert_ptr(struct btree_page *p, int s,
const void *key, struct btree_page *ptr)
{
const struct btree_def *def = p->def;
btree_t bt = p->owner;
int r = p->num_children - s;
assert (p->height);
assert (p->num_children < def->branches);
assert (s >= 0 && s <= p->num_children);
memmove(PAGE_KEY(p, s + 1), PAGE_KEY(p, s),
r * def->key_size);
memmove(PAGE_PTR(p, s + 1), PAGE_PTR(p, s),
r * sizeof(struct btree_page *));
memcpy(PAGE_KEY(p, s), key, def->key_size);
*PAGE_PTR(p, s) = ptr;
p->num_children++;
/* Fix up the cursor if we inserted before it, or if we just inserted
* the pointer for the active path (as in a split or borrow).
*/
if (bt->slot[0] >= 0) {
if (ptr == bt->path[p->height - 1]) {
bt->path[p->height] = p;
bt->slot[p->height] = s;
} else if (bt->path[p->height] == p &&
s <= bt->slot[p->height]) {
bt->slot[p->height]++;
}
}
}
static void delete_item(struct btree_page *p, int s)
{
const struct btree_def *def = p->def;
btree_t bt = p->owner;
int r = p->num_children - s - 1;
assert (s >= 0 && s < p->num_children);
memmove(PAGE_KEY(p, s), PAGE_KEY(p, s + 1),
r * def->key_size);
if (p->height)
memmove(PAGE_PTR(p, s), PAGE_PTR(p, s + 1),
r * sizeof(struct btree_page *));
else
memmove(PAGE_DATA(p, s), PAGE_DATA(p, s + 1),
r * def->data_size);
p->num_children--;
/* Fix up the cursor if we deleted before it */
if (bt->slot[0] >= 0 && bt->path[p->height] == p &&
s <= bt->slot[p->height])
bt->slot[p->height]--;
}
static void move_item(struct btree_page *from, int from_pos,
struct btree_page *to, int to_pos)
{
if (from->height)
insert_ptr(to, to_pos, PAGE_KEY(from, from_pos),
*PAGE_PTR(from, from_pos));
else
insert_data(to, to_pos, PAGE_KEY(from, from_pos),
PAGE_DATA(from, from_pos));
delete_item(from, from_pos);
}
static void merge_pages(struct btree_page *lower,
struct btree_page *higher)
{
const struct btree_def *def = lower->def;
btree_t bt = lower->owner;
assert (lower->num_children + higher->num_children < def->branches);
memcpy(PAGE_KEY(lower, lower->num_children),
PAGE_KEY(higher, 0),
higher->num_children * def->key_size);
if (lower->height)
memcpy(PAGE_PTR(lower, lower->num_children),
PAGE_PTR(higher, 0),
higher->num_children * sizeof(struct btree_page *));
else
memcpy(PAGE_DATA(lower, lower->num_children),
PAGE_DATA(higher, 0),
higher->num_children * def->data_size);
lower->num_children += higher->num_children;
/* Fix up the cursor if we subsumed an active page */
if (bt->slot[0] >= 0) {
if (bt->path[higher->height] == higher) {
bt->path[higher->height] = lower;
bt->slot[higher->height] += lower->num_children;
}
}
}
static int find_key_le(const struct btree_page *p, const void *key)
{
const struct btree_def *def = p->def;
int i;
for (i = 0; i < p->num_children; i++)
if (def->compare(key, PAGE_KEY(p, i)) < 0)
return i - 1;
return p->num_children - 1;
}
static int trace_path(btree_t bt, const void *key,
struct btree_page **path, int *slot)
{
const struct btree_def *def = bt->def;
struct btree_page *p = bt->root;
int h;
for (h = p->height; h >= 0; h--) {
int s = find_key_le(p, key);
path[h] = p;
slot[h] = s;
if (h) {
assert (s >= 0);
p = *PAGE_PTR(p, s);
} else if (s >= 0 && !def->compare(key, PAGE_KEY(p, s))) {
return 1;
}
}
return 0;
}
static void cursor_first(btree_t bt)
{
int h;
struct btree_page *p = bt->root;
if (!bt->root->num_children) {
bt->slot[0] = -1;
return;
}
for (h = bt->root->height; h >= 0; h--) {
assert (p->num_children > 0);
bt->path[h] = p;
bt->slot[h] = 0;
if (h)
p = *PAGE_PTR(p, 0);
}
}
static void cursor_next(btree_t bt)
{
int h;
if (bt->slot[0] < 0)
return;
/* Ascend until we find a suitable sibling */
for (h = 0; h <= bt->root->height; h++) {
struct btree_page *p = bt->path[h];
if (bt->slot[h] + 1 < p->num_children) {
bt->slot[h]++;
while (h > 0) {
p = *PAGE_PTR(p, bt->slot[h]);
h--;
bt->slot[h] = 0;
bt->path[h] = p;
}
return;
}
}
/* Exhausted all levels */
bt->slot[0] = -1;
}
/************************************************************************
* Public interface
*/
btree_t btree_alloc(const struct btree_def *def)
{
btree_t bt;
if (def->branches < 2 || (def->branches & 1)) {
printc_err("btree: invalid branch count: %d\n",
def->branches);
return NULL;
}
bt = malloc(sizeof(*bt));
if (!bt) {
printc_err("btree: couldn't allocate tree: %s\n",
last_error());
return NULL;
}
memset(bt, 0, sizeof(*bt));
bt->def = def;
bt->slot[0] = -1;
bt->root = allocate_page(bt, 0);
if (!bt->root) {
printc_err("btree: couldn't allocate root node: %s\n",
last_error());
free(bt);
return NULL;
}
return bt;
}
void btree_free(btree_t bt)
{
check_btree(bt);
destroy_page(bt->root);
free(bt);
}
void btree_clear(btree_t bt)
{
struct btree_page *p;
struct btree_page *path_up = 0;
check_btree(bt);
/* The cursor will have nothing to point to after this. */
bt->slot[0] = -1;
/* First, find the last leaf node, which we can re-use as an
* empty root.
*/
p = bt->root;
while (p->height) {
path_up = p;
p = *PAGE_PTR(p, p->num_children - 1);
}
/* Unlink it from the tree and then destroy everything else. */
if (path_up) {
path_up->num_children--;
destroy_page(bt->root);
}
/* Clear it out and make it the new root */
p->num_children = 0;
bt->root = p;
}
int btree_put(btree_t bt, const void *key, const void *data)
{
const struct btree_def *def = bt->def;
struct btree_page *new_root = NULL;
struct btree_page *path_new[MAX_HEIGHT] = {0};
struct btree_page *path_old[MAX_HEIGHT] = {0};
int slot_old[MAX_HEIGHT] = {0};
int h;
check_btree(bt);
/* Special case: cursor overwrite */
if (!key) {
if (bt->slot[0] < 0) {
printc_err("btree: put at invalid cursor\n");
return -1;
}
memcpy(PAGE_DATA(bt->path[0], bt->slot[0]), data,
def->data_size);
return 1;
}
/* Find a path down the tree that leads to the page which should
* contain this datum (though the page might be too big to hold it).
*/
if (trace_path(bt, key, path_old, slot_old)) {
/* Special case: overwrite existing item */
memcpy(PAGE_DATA(path_old[0], slot_old[0]), data,
def->data_size);
return 1;
}
/* Trace from the leaf up. If the leaf is at its maximum size, it will
* need to split, and cause a pointer to be added in the parent page
* of the same node (which may in turn cause it to split).
*/
for (h = 0; h <= bt->root->height; h++) {
if (path_old[h]->num_children < def->branches)
break;
path_new[h] = allocate_page(bt, h);
if (!path_new[h])
goto fail;
}
/* If the split reaches the top (i.e. the root splits), then we need
* to allocate a new root node.
*/
if (h > bt->root->height) {
if (h >= MAX_HEIGHT) {
printc_err("btree: maximum height exceeded\n");
goto fail;
}
new_root = allocate_page(bt, h);
if (!new_root)
goto fail;
}
/* Trace up to one page above the split. At each page that needs
* splitting, copy the top half of keys into the new page. Also,
* insert a key into one of the pages at all pages from the leaf
* to the page above the top of the split.
*/
for (h = 0; h <= bt->root->height; h++) {
int s = slot_old[h] + 1;
struct btree_page *p = path_old[h];
/* If there's a split at this level, copy the top half of
* the keys from the old page to the new one. Check to see
* if the position we were going to insert into is in the
* old page or the new one.
*/
if (path_new[h]) {
split_page(path_old[h], path_new[h]);
if (s > p->num_children) {
s -= p->num_children;
p = path_new[h];
}
}
/* Insert the key in the appropriate page */
if (h)
insert_ptr(p, s, PAGE_KEY(path_new[h - 1], 0),
path_new[h - 1]);
else
insert_data(p, s, key, data);
/* If there was no split at this level, there's nothing to
* insert higher up, and we're all done.
*/
if (!path_new[h])
return 0;
}
/* If we made it this far, the split reached the top of the tree, and
* we need to grow it using the extra page we allocated.
*/
assert (new_root);
if (bt->slot[0] >= 0) {
/* Fix up the cursor, if active */
bt->slot[new_root->height] =
bt->path[bt->root->height] == new_root ? 1 : 0;
bt->path[new_root->height] = new_root;
}
memcpy(PAGE_KEY(new_root, 0), def->zero, def->key_size);
*PAGE_PTR(new_root, 0) = path_old[h - 1];
memcpy(PAGE_KEY(new_root, 1), PAGE_KEY(path_new[h - 1], 0),
def->key_size);
*PAGE_PTR(new_root, 1) = path_new[h - 1];
new_root->num_children = 2;
bt->root = new_root;
return 0;
fail:
for (h = 0; h <= bt->root->height; h++)
if (path_new[h])
free(path_new[h]);
return -1;
}
int btree_delete(btree_t bt, const void *key)
{
const struct btree_def *def = bt->def;
const int halfsize = def->branches / 2;
struct btree_page *path[MAX_HEIGHT] = {0};
int slot[MAX_HEIGHT] = {0};
int h;
check_btree(bt);
/* Trace a path to the item to be deleted */
if (!key) {
if (bt->slot[0] < 0)
return 1;
memcpy(path, bt->path, sizeof(path));
memcpy(slot, bt->slot, sizeof(slot));
} else if (!trace_path(bt, key, path, slot)) {
return 1;
}
/* Select the next item if we're deleting at the cursor */
if (bt->slot[0] == slot[0] && bt->path[0] == path[0])
cursor_next(bt);
/* Delete from the leaf node. If it's still full enough, then we don't
* need to do anything else.
*/
delete_item(path[0], slot[0]);
if (path[0]->num_children >= halfsize)
return 0;
/* Trace back up the tree, fixing underfull nodes. If we can fix by
* borrowing, do it and we're done. Otherwise, we need to fix by
* merging, which may result in another underfull node, and we need
* to continue.
*/
for (h = 1; h <= bt->root->height; h++) {
struct btree_page *p = path[h];
struct btree_page *c = path[h - 1];
int s = slot[h];
if (s > 0) {
/* Borrow/merge from lower page */
struct btree_page *d = *PAGE_PTR(p, s - 1);
if (d->num_children > halfsize) {
move_item(d, d->num_children - 1, c, 0);
memcpy(PAGE_KEY(p, s), PAGE_KEY(c, 0),
def->key_size);
return 0;
}
merge_pages(d, c);
delete_item(p, s);
free(c);
} else {
/* Borrow/merge from higher page */
struct btree_page *d = *PAGE_PTR(p, s + 1);
if (d->num_children > halfsize) {
move_item(d, 0, c, c->num_children);
memcpy(PAGE_KEY(p, s + 1),
PAGE_KEY(d, 0),
def->key_size);
return 0;
}
merge_pages(c, d);
delete_item(p, s + 1);
free(d);
}
if (p->num_children >= halfsize)
return 0;
}
/* If the root contains only a single pointer to another page,
* shrink the tree. This does not affect the cursor.
*/
if (bt->root->height && bt->root->num_children == 1) {
struct btree_page *old = bt->root;
bt->root = *PAGE_PTR(old, 0);
free(old);
}
return 0;
}
int btree_get(btree_t bt, const void *key, void *data)
{
const struct btree_def *def = bt->def;
struct btree_page *p = bt->root;
int h;
check_btree(bt);
if (!key)
return btree_select(bt, NULL, BTREE_READ, NULL, data);
for (h = bt->root->height; h >= 0; h--) {
int s = find_key_le(p, key);
if (h) {
assert (s >= 0 && s < p->num_children);
p = *PAGE_PTR(p, s);
} else if (s >= 0 && !def->compare(key, PAGE_KEY(p, s))) {
memcpy(data, PAGE_DATA(p, s), def->data_size);
return 0;
}
}
return 1;
}
int btree_select(btree_t bt, const void *key, btree_selmode_t mode,
void *key_ret, void *data_ret)
{
const struct btree_def *def = bt->def;
check_btree(bt);
switch (mode) {
case BTREE_CLEAR:
bt->slot[0] = -1;
break;
case BTREE_READ:
break;
case BTREE_EXACT:
case BTREE_LE:
if (!trace_path(bt, key, bt->path, bt->slot) &&
mode == BTREE_EXACT)
bt->slot[0] = -1;
break;
case BTREE_FIRST:
cursor_first(bt);
break;
case BTREE_NEXT:
cursor_next(bt);
break;
}
/* Return the data at the cursor */
if (bt->slot[0] >= 0) {
if (key_ret)
memcpy(key_ret,
PAGE_KEY(bt->path[0], bt->slot[0]),
def->key_size);
if (data_ret)
memcpy(data_ret,
PAGE_DATA(bt->path[0], bt->slot[0]),
def->data_size);
return 0;
}
return 1;
}