mspdebug/fet.c

606 lines
13 KiB
C

/* MSPDebug - debugging tool for the eZ430
* Copyright (C) 2009 Daniel Beer
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <unistd.h>
#include "fet.h"
static const struct fet_transport *fet_transport;
/*********************************************************************
* Checksum calculation
*/
static u_int16_t code_left[65536];
/* Initialise the code table. The code table is a function which takes
* us from one checksum position code to the next.
*/
static void init_codes(void)
{
int i;
for (i = 0; i < 65536; i++) {
u_int16_t right = i << 1;
if (i & 0x8000)
right ^= 0x0811;
code_left[right] = i;
}
}
/* Calculate the checksum over the given payload and return it. This checksum
* needs to be stored in little-endian format at the end of the payload.
*/
static u_int16_t calc_checksum(const char *data, int len)
{
int i;
u_int16_t cksum = 0xffff;
u_int16_t code = 0x8408;
for (i = len * 8; i; i--)
cksum = code_left[cksum];
for (i = len - 1; i >= 0; i--) {
int j;
u_int8_t c = data[i];
for (j = 0; j < 8; j++) {
if (c & 0x80)
cksum ^= code;
code = code_left[code];
c <<= 1;
}
}
return cksum ^ 0xffff;
}
/*********************************************************************
* FET packet transfer. This level of the interface deals in packets
* send to/from the device.
*/
/* This is a type of data transfer which appears to be unique to
* the RF2500. Blocks of data are sent to an internal buffer. Each
* block is prefixed with a buffer offset and a payload length.
*
* No checksums are included.
*/
static int fet_send_data(const char *data, int len)
{
int offset = 0;
assert (fet_transport != NULL);
while (len) {
char pbuf[63];
int plen = len > 59 ? 59 : len;
pbuf[0] = 0x83;
pbuf[1] = offset & 0xff;
pbuf[2] = offset >> 8;
pbuf[3] = plen;
memcpy(pbuf + 4, data, plen);
if (fet_transport->send(pbuf, plen + 4) < 0)
return -1;
data += plen;
len -= plen;
offset += plen;
}
return 0;
}
static char fet_buf[65538];
static int fet_len;
#define BUFFER_BYTE(b, x) ((int)((u_int8_t *)(b))[x])
#define BUFFER_WORD(b, x) ((BUFFER_BYTE(b, x + 1) << 8) | BUFFER_BYTE(b, x))
static const char *fet_recv_packet(int *pktlen)
{
int plen = BUFFER_WORD(fet_buf, 0);
assert (fet_transport != NULL);
/* If there's a packet still here from last time, get rid of it */
if (fet_len >= plen + 2) {
memmove(fet_buf, fet_buf + plen + 2, fet_len - plen - 2);
fet_len -= plen + 2;
}
/* Keep adding data to the buffer until we have a complete packet */
for (;;) {
int len;
plen = BUFFER_WORD(fet_buf, 0);
if (fet_len >= plen + 2) {
u_int16_t c = calc_checksum(fet_buf + 2, plen - 2);
u_int16_t r = BUFFER_WORD(fet_buf, plen);
if (pktlen)
*pktlen = plen - 2;
if (c != r) {
fprintf(stderr, "fet_fecv_packet: checksum "
"error (calc %04x, recv %04x)\n",
c, r);
return NULL;
}
return fet_buf + 2;
}
len = fet_transport->recv(fet_buf + fet_len,
sizeof(fet_buf) - fet_len);
if (len < 0)
return NULL;
fet_len += len;
}
return NULL;
}
static int fet_send_command(const char *data, int len)
{
char datapkt[256];
char buf[256];
u_int16_t cksum = calc_checksum(data, len);
int i = 0;
int j;
assert (len + 4 <= sizeof(buf));
assert (len + 2 <= sizeof(datapkt));
assert (fet_transport != NULL);
memcpy(datapkt, data, len);
datapkt[len++] = cksum & 0xff;
datapkt[len++] = cksum >> 8;
buf[i++] = 0x7e;
for (j = 0; j < len; j++) {
char c = datapkt[j];
if (c == 0x7e || c == 0x7d) {
buf[i++] = 0x7d;
c ^= 0x20;
}
buf[i++] = c;
}
buf[i++] = 0x7e;
assert (i < sizeof(buf));
return fet_transport->send(buf, i);
}
static const char *fet_send_recv(const char *data, int len, int *recvlen)
{
const char *buf;
if (fet_send_command(data, len) < 0)
return NULL;
buf = fet_recv_packet(recvlen);
if (!buf)
return NULL;
if (data[0] != buf[0]) {
fprintf(stderr, "fet_send_recv: reply type mismatch\n");
return NULL;
}
return buf;
}
/**********************************************************************
* MSP430 high-level control functions
*/
int fet_open(const struct fet_transport *tr, int proto_flags, int vcc_mv)
{
static char config[12] = {
0x05, 0x02, 0x02, 0x00, 0x08, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00
};
static char vcc[8] = {
0x06, 0x02, 0x01, 0x00, 0xff, 0xff, 0x00, 0x00
};
fet_transport = tr;
init_codes();
/* open */
if (!fet_send_recv("\x01\x01", 2, NULL)) {
fprintf(stderr, "fet_startup: open failed\n");
return -1;
}
/* init */
if (!fet_send_recv("\x27\x02\x01\x00\x04\x00\x00\x00\x00", 8, NULL)) {
fprintf(stderr, "fet_startup: init failed\n");
return -1;
}
/* configure: Spy-Bi-Wire or JTAG */
config[8] = (proto_flags & FET_PROTO_SPYBIWIRE) ? 1 : 0;
if (!fet_send_recv(config, 12, NULL)) {
fprintf(stderr, "fet_startup: configure failed\n");
return -1;
}
/* I don't know what this is. It's RF2500-specific. It may have
* something to do with flash -- 0x1d is sent before an erase.
*/
if (!fet_send_recv("\x1e\x01", 2, NULL)) {
fprintf(stderr, "fet_startup: command 0x1e failed\n");
return -1;
}
/* set VCC */
vcc[4] = vcc_mv & 0xff;
vcc[5] = vcc_mv >> 8;
if (!fet_send_recv(vcc, 8, NULL)) {
fprintf(stderr, "fet_startup: set VCC failed\n");
return -1;
}
/* I don't know what this is, but it appears to halt the MSP. Without
* it, memory reads return garbage. This is RF2500-specific.
*/
if (!fet_send_recv("\x28\x02\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00",
12, NULL)) {
fprintf(stderr, "fet_startup: command 0x28 failed\n");
return -1;
}
/* Who knows what this is. Without it, register reads don't work.
* This is RF2500-specific.
*/
{
static char data[] = {
0x00, 0x80, 0xff, 0xff, 0x00, 0x00, 0x00, 0x10,
0xff, 0x10, 0x40, 0x00, 0x00, 0x02, 0xff, 0x05,
0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x01, 0x00,
0x01, 0x00, 0xd7, 0x60, 0x00, 0x00, 0x00, 0x00,
0x08, 0x07, 0x10, 0x0e, 0xc4, 0x09, 0x70, 0x17,
0x58, 0x1b, 0x01, 0x00, 0x03, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00,
0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x33, 0x0f, 0x1f, 0x0f,
0xff, 0xff,
};
if (fet_send_data(data, sizeof(data)) < 0 ||
!fet_send_recv("\x29\x02\x04\x00\x00\x00\x00\x00"
"\x39\x00\x00\x00\x31\x00\x00\x00"
"\x4a\x00\x00\x00", 20, NULL)) {
fprintf(stderr, "fet_startup: command 0x29 failed\n");
return -1;
}
}
printf("FET initialized: %s (VCC = %d mV)\n",
(proto_flags & FET_PROTO_SPYBIWIRE) ?
"Spy-Bi-Wire" : "JTAG", vcc_mv);
return 0;
}
int fet_reset(int flags)
{
static char reset[] = {
0x07, 0x02, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
reset[4] = flags & FET_RESET_ALL;
if (flags & FET_RESET_HALT) {
reset[8] = 0;
reset[12] = 0;
} else {
reset[8] = 1;
reset[12] = 1;
}
if (!fet_send_recv(reset, 16, NULL)) {
fprintf(stderr, "fet_reset: reset failed\n");
return -1;
}
return 0;
}
int fet_close(void)
{
if (!fet_send_recv("\x02\x02\x01\x00", 4, NULL)) {
fprintf(stderr, "fet_shutdown: close command failed\n");
return -1;
}
fet_transport->close();
fet_transport = NULL;
return 0;
}
int fet_get_context(u_int16_t *regs)
{
int len;
int i;
const char *buf;
buf = fet_send_recv("\x08\x01", 2, &len);
if (len < 72) {
fprintf(stderr, "fet_get_context: short reply (%d bytes)\n",
len);
return -1;
}
for (i = 0; i < FET_NUM_REGS; i++)
regs[i] = BUFFER_WORD(buf, i * 4 + 8);
return 0;
}
int fet_set_context(u_int16_t *regs)
{
char buf[FET_NUM_REGS * 4];
int i;
memset(buf, 0, sizeof(buf));
for (i = 0; i < FET_NUM_REGS; i++) {
buf[i * 4] = regs[i] & 0xff;
buf[i * 4 + 1] = regs[i] >> 8;
}
if (fet_send_data(buf, sizeof(buf)) < 0 ||
!fet_send_recv("\x09\x02\x02\x00\xff\xff\x00\x00"
"\x40\x00\x00\x00", 12, NULL)) {
fprintf(stderr, "fet_set_context: context set failed\n");
return -1;
}
return 0;
}
int fet_read_mem(u_int16_t addr, char *buffer, int count)
{
while (count) {
int plen = count > 128 ? 128 : count;
const char *buf;
int len;
static char readmem[] = {
0x0d, 0x02, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00
};
readmem[4] = addr & 0xff;
readmem[5] = addr >> 8;
readmem[8] = plen;
buf = fet_send_recv(readmem, 12, &len);
if (!buf) {
fprintf(stderr, "fet_read_mem: failed to read "
"from 0x%04x\n", addr);
return -1;
}
if (len < plen + 8) {
fprintf(stderr, "fet_read_mem: short read "
"(%d bytes)\n", len);
return -1;
}
memcpy(buffer, buf + 8, plen);
buffer += plen;
count -= plen;
addr += plen;
}
return 0;
}
int fet_write_mem(u_int16_t addr, char *buffer, int count)
{
while (count) {
int plen = count > 128 ? 128 : count;
static char writemem[] = {
0x0e, 0x02, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00
};
writemem[4] = addr & 0xff;
writemem[5] = addr >> 8;
writemem[8] = plen;
if (fet_send_data(buffer, plen) < 0 ||
!fet_send_recv(writemem, 12, NULL)) {
fprintf(stderr, "fet_write_mem: failed to write "
"to 0x%04x\n", addr);
return -1;
}
buffer += plen;
count -= plen;
addr += plen;
}
return 0;
}
int fet_erase(int type, u_int16_t addr)
{
static char erase[] = {
0x0c, 0x02, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
switch (type) {
case FET_ERASE_MAIN:
erase[4] = 1;
erase[8] = 0xe0;
erase[9] = 0xff;
erase[12] = 2;
break;
case FET_ERASE_ADDR:
erase[8] = addr & 0xff;
erase[9] = addr >> 8;
erase[12] = 2;
break;
case FET_ERASE_INFO:
erase[9] = 0x10;
erase[13] = 1;
break;
case FET_ERASE_ALL:
default:
erase[4] = 2;
erase[9] = 0x10;
erase[13] = 0x01;
break;
}
if (!fet_send_recv("\x1d\x01", 2, NULL)) {
fprintf(stderr, "fet_erase: command 1d failed\n");
return -1;
}
if (!fet_send_recv("\x05\x02\x02\x00\x02\x00\x00\x00\x26\x00\x00\x00",
12, NULL)) {
fprintf(stderr, "fet_erase: config (1) failed\n");
return -1;
}
if (!fet_send_recv("\x05\x02\x02\x00\x05\x00\x00\x00\x00\x00\x00\x00",
12, NULL)) {
fprintf(stderr, "fet_erase: config (2) failed\n");
return -1;
}
if (!fet_send_recv(erase, 16, NULL)) {
fprintf(stderr, "fet_erase: erase command failed\n");
return -1;
}
return 0;
}
int fet_poll(void)
{
const char *reply;
int len;
/* Without this delay, breakpoints can get lost. */
if (usleep(500000) < 0)
return -1;
reply = fet_send_recv("\x12\x02\x01\x00\x00\x00\x00\x00", 8, &len);
if (!reply) {
fprintf(stderr, "fet_poll: polling failed\n");
return -1;
}
return reply[6];
}
int fet_step(void)
{
if (!fet_send_recv("\x11\x02\x02\x00\x02\x00\x00\x00\x00\x00\x00\x00",
12, NULL)) {
fprintf(stderr, "fet_step: failed to single-step\n");
return -1;
}
return 0;
}
int fet_run(void)
{
if (!fet_send_recv("\x11\x02\x02\x00\x03\x00\x00\x00\x00\x00\x00\x00",
12, NULL)) {
fprintf(stderr, "fet_run: run failed\n");
return -1;
}
return 0;
}
int fet_stop(void)
{
if (!fet_send_recv("\x12\x02\x01\x00\x01\x00\x00\x00", 8, NULL)) {
fprintf(stderr, "fet_stop: stop failed\n");
return -1;
}
return 0;
}
int fet_break(int enable, u_int16_t addr)
{
static char buf[] = {
0x06, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
0x08, 0x00, 0x00, 0x00, 0x14, 0x80, 0x00, 0x00,
0x0a, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x0c, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff,
0x0e, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00,
0x16, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x80, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00,
0x98, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00
};
if (enable) {
buf[12] = addr & 0xff;
buf[13] = addr >> 8;
buf[30] = 0xff;
buf[31] = 0xff;
buf[36] = 2;
buf[52] = 3;
} else {
buf[12] = 0;
buf[13] = 0;
buf[30] = 0;
buf[31] = 0;
buf[36] = 0;
buf[52] = 1;
}
if (fet_send_data(buf, sizeof(buf)) < 0 ||
!fet_send_recv("\x2a\x02\x04\x00\x08\x00\x00\x00\xb0\x00\x00\x00"
"\x00\x00\x00\x00\x40\x00\x00\x00", 20, NULL)) {
fprintf(stderr, "fet_break: set breakpoint failed\n");
return -1;
}
return 0;
}