mspdebug/drivers/fet_core.c

990 lines
23 KiB
C

/* MSPDebug - debugging tool for the eZ430
* Copyright (C) 2009-2012 Daniel Beer
* Copyright (C) 2012 Stanimir Bonev
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* Various constants and tables come from uif430, written by Robert
* Kavaler (kavaler@diva.com). This is available under the same license
* as this program, from www.relavak.com.
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <assert.h>
#include <unistd.h>
#include "util.h"
#include "fet.h"
#include "fet_core.h"
#include "fet_error.h"
#include "fet_proto.h"
#include "fet_db.h"
#include "output.h"
#include "opdb.h"
#include "ctrlc.h"
#include "fet_olimex_db.h"
#include "devicelist.h"
struct fet_device {
struct device base;
int version;
int fet_flags;
int poll_enable;
struct fet_proto proto;
};
/**********************************************************************
* FET command codes.
*
* These come from uif430 by Robert Kavaler (kavaler@diva.com).
* www.relavak.com
*/
#define C_INITIALIZE 0x01
#define C_CLOSE 0x02
#define C_IDENTIFY 0x03
#define C_DEVICE 0x04
#define C_CONFIGURE 0x05
#define C_VCC 0x06
#define C_RESET 0x07
#define C_READREGISTERS 0x08
#define C_WRITEREGISTERS 0x09
#define C_READREGISTER 0x0a
#define C_WRITEREGISTER 0x0b
#define C_ERASE 0x0c
#define C_READMEMORY 0x0d
#define C_WRITEMEMORY 0x0e
#define C_FASTFLASHER 0x0f
#define C_BREAKPOINT 0x10
#define C_RUN 0x11
#define C_STATE 0x12
#define C_SECURE 0x13
#define C_VERIFYMEMORY 0x14
#define C_FASTVERIFYMEMORY 0x15
#define C_ERASECHECK 0x16
#define C_EEMOPEN 0x17
#define C_EEMREADREGISTER 0x18
#define C_EEMREADREGISTERTEST 0x19
#define C_EEMWRITEREGISTER 0x1a
#define C_EEMCLOSE 0x1b
#define C_ERRORNUMBER 0x1c
#define C_GETCURVCCT 0x1d
#define C_GETEXTVOLTAGE 0x1e
#define C_FETSELFTEST 0x1f
#define C_FETSETSIGNALS 0x20
#define C_FETRESET 0x21
#define C_READI2C 0x22
#define C_WRITEI2C 0x23
#define C_ENTERBOOTLOADER 0x24
#define C_IDENT1 0x28
#define C_IDENT2 0x29
#define C_IDENT3 0x2b
#define C_CMM_PARAM 0x36
#define C_CMM_CTRL 0x37
#define C_CMM_READ 0x38
/* Constants for parameters of various FET commands */
#define FET_CONFIG_VERIFICATION 0
#define FET_CONFIG_EMULATION 1
#define FET_CONFIG_CLKCTRL 2
#define FET_CONFIG_MCLKCTRL 3
#define FET_CONFIG_FLASH_TESET 4
#define FET_CONFIG_FLASH_LOCK 5
#define FET_CONFIG_PROTOCOL 8
#define FET_RUN_FREE 1
#define FET_RUN_STEP 2
#define FET_RUN_BREAKPOINT 3
#define FET_RESET_PUC 0x01
#define FET_RESET_RST 0x02
#define FET_RESET_VCC 0x04
#define FET_RESET_ALL 0x07
#define FET_ERASE_SEGMENT 0
#define FET_ERASE_MAIN 1
#define FET_ERASE_ALL 2
#define FET_POLL_RUNNING 0x01
#define FET_POLL_BREAKPOINT 0x02
/**********************************************************************
* MSP430 high-level control functions
*/
static void show_dev_info(const char *name, const struct fet_device *dev)
{
printc("Device: %s\n", name);
printc_dbg("Number of breakpoints: %d\n", dev->base.max_breakpoints);
}
static int identify_old(struct fet_device *dev)
{
char idtext[64];
if (fet_proto_xfer(&dev->proto, C_IDENTIFY, NULL, 0, 2, 70, 0) < 0)
return -1;
if (dev->proto.datalen < 0x26) {
printc_err("fet: missing info\n");
return -1;
}
memcpy(idtext, dev->proto.data + 4, 32);
idtext[32] = 0;
dev->base.max_breakpoints = LE_WORD(dev->proto.data, 0x2a);
show_dev_info(idtext, dev);
return 0;
}
static int identify_new(struct fet_device *dev, const char *force_id)
{
const struct fet_db_record *r;
if (fet_proto_xfer(&dev->proto, C_IDENT1, NULL, 0, 2, 0, 0) < 0) {
printc_err("fet: command C_IDENT1 failed\n");
return -1;
}
if (dev->proto.datalen < 2) {
printc_err("fet: missing info\n");
return -1;
}
printc_dbg("Device ID: 0x%02x%02x\n",
dev->proto.data[0], dev->proto.data[1]);
if (force_id)
r = fet_db_find_by_name(force_id);
else
r = fet_db_find_by_msg28(dev->proto.data,
dev->proto.datalen);
if (!r) {
printc_err("fet: unknown device\n");
debug_hexdump("msg28_data:", dev->proto.data,
dev->proto.datalen);
return -1;
}
dev->base.max_breakpoints = r->msg29_data[0x14];
printc_dbg(" Code start address: 0x%x\n",
LE_WORD(r->msg29_data, 0));
/*
* The value at 0x02 seems to contain a "virtual code end
* address". So this value seems to be useful only for
* calculating the total ROM size.
*
* For example, as for the msp430f6736 with 128kb ROM, the ROM
* is split into two areas: A "near" ROM, and a "far ROM".
*/
const uint32_t codeSize =
LE_LONG(r->msg29_data, 0x02)
- LE_WORD(r->msg29_data, 0)
+ 1;
printc_dbg(" Code size : %u byte = %u kb\n",
codeSize,
codeSize / 1024);
printc_dbg(" RAM start address: 0x%x\n",
LE_WORD(r->msg29_data, 0x0c));
printc_dbg(" RAM end address: 0x%x\n",
LE_WORD(r->msg29_data, 0x0e));
const uint16_t ramSize =
LE_WORD(r->msg29_data, 0x0e)
- LE_WORD(r->msg29_data, 0x0c)
+ 1;
printc_dbg(" RAM size : %u byte = %u kb\n",
ramSize,
ramSize / 1024);
show_dev_info(r->name, dev);
if (fet_proto_xfer(&dev->proto, C_IDENT3,
r->msg2b_data, r->msg2b_len, 0) < 0)
printc_err("fet: warning: message C_IDENT3 failed\n");
if (fet_proto_xfer(&dev->proto, C_IDENT2,
r->msg29_data, FET_DB_MSG29_LEN,
3, r->msg29_params[0], r->msg29_params[1],
r->msg29_params[2]) < 0) {
printc_err("fet: message C_IDENT2 failed\n");
return -1;
}
return 0;
}
static int identify_olimex(struct fet_device *dev, const char *force_id)
{
const struct fet_olimex_db_record *r;
int db_indx;
devicetype_t set_id = DT_UNKNOWN_DEVICE;
devicetype_t dev_id = DT_UNKNOWN_DEVICE;
uint8_t jtag_id;
printc_dbg("Using Olimex identification procedure\n");
if (force_id) {
db_indx = fet_olimex_db_find_by_name(force_id);
if (db_indx < 0) {
printc_err("fet: no such device: %s\n", force_id);
return -1;
}
dev_id = set_id = fet_olimex_db_index_to_type(db_indx);
}
/* first try */
if (fet_proto_xfer(&dev->proto, C_IDENT1, NULL, 0, 3,
set_id, set_id, 0) < 0 &&
(4 != dev->proto.error)) /* No device error */
{
printc_err("fet: command C_IDENT1 failed\n");
return -1;
}
if (dev->proto.datalen < 19) {
printc_err("fet: missing info\n");
return -1;
}
jtag_id = dev->proto.data[18];
/* find device in data base */
if (DT_UNKNOWN_DEVICE == dev_id) {
db_indx = fet_olimex_db_identify(dev->proto.data);
dev_id = fet_olimex_db_index_to_type(db_indx);
}
if ((DT_UNKNOWN_DEVICE == dev_id && 0x91 == jtag_id) ||
(4 == dev->proto.error)) {
/* second try with magic pattern */
if (fet_proto_xfer(&dev->proto, C_IDENT1, NULL, 0, 3,
set_id, dev_id, 0) < 0) {
printc_err("fet: command C_IDENT1 with "
"magic patern failed\n");
return -1;
}
db_indx = fet_olimex_db_identify(dev->proto.data);
dev_id = fet_olimex_db_index_to_type(db_indx);
}
printc_dbg("Device ID: 0x%02x%02x\n",
dev->proto.data[0], dev->proto.data[1]);
if (DT_UNKNOWN_DEVICE == dev_id) {
printc_err("fet: can't find device in DB\n");
return -1;
}
r = fet_db_get_record(dev_id);
dev->base.max_breakpoints = r->msg29_data[0x14];
printc_dbg(" Code start address: 0x%x\n",
LE_WORD(r->msg29_data, 0));
/*
* The value at 0x02 seems to contain a "virtual code end
* address". So this value seems to be useful only for
* calculating the total ROM size.
*
* For example, as for the msp430f6736 with 128kb ROM, the ROM
* is split into two areas: A "near" ROM, and a "far ROM".
*/
const uint32_t codeSize =
LE_LONG(r->msg29_data, 0x02)
- LE_WORD(r->msg29_data, 0)
+ 1;
printc_dbg(" Code size : %u byte = %u kb\n",
codeSize,
codeSize / 1024);
printc_dbg(" RAM start address: 0x%x\n",
LE_WORD(r->msg29_data, 0x0c));
printc_dbg(" RAM end address: 0x%x\n",
LE_WORD(r->msg29_data, 0x0e));
const uint16_t ramSize =
LE_WORD(r->msg29_data, 0x0e)
- LE_WORD(r->msg29_data, 0x0c)
+ 1;
printc_dbg(" RAM size : %u byte = %u kb\n",
ramSize, ramSize / 1024);
show_dev_info(r->name, dev);
if (fet_proto_xfer(&dev->proto, C_IDENT3,
r->msg2b_data, r->msg2b_len, 0) < 0)
printc_err("fet: warning: message C_IDENT3 failed\n");
if (fet_proto_xfer(&dev->proto, C_IDENT2,
r->msg29_data, FET_DB_MSG29_LEN,
3, r->msg29_params[0], r->msg29_params[1],
r->msg29_params[2]) < 0) {
printc_err("fet: message C_IDENT2 failed\n");
return -1;
}
return 0;
}
static int is_new_olimex(const struct fet_device *dev)
{
if ((&device_olimex_iso_mk2 == dev->base.type) &&
(20000004 <= dev->version))
return 1;
if (((&device_olimex == dev->base.type) ||
(&device_olimex_v1 == dev->base.type) ||
(&device_olimex_iso == dev->base.type)) &&
(10004003 <= dev->version))
return 1;
return 0;
}
static int do_identify(struct fet_device *dev, const char *force_id)
{
if (is_new_olimex(dev))
return identify_olimex(dev, force_id);
if (dev->fet_flags & FET_IDENTIFY_NEW)
return identify_new(dev, force_id);
if (dev->version < 20300000)
return identify_old(dev);
return identify_new(dev, force_id);
}
static void power_init(struct fet_device *dev)
{
if (fet_proto_xfer(&dev->proto, C_CMM_PARAM, NULL, 0, 0) < 0) {
printc_err("warning: device does not support power "
"profiling\n");
return;
}
if (dev->proto.argv[0] <= 0 || dev->proto.argv[0] <= 0) {
printc_err("Bad parameters returned by C_CMM_PARAM: "
"bufsize = %d bytes, %d us/sample\n",
dev->proto.argv[1], dev->proto.argv[0]);
return;
}
printc("Power profiling enabled: bufsize = %d bytes, %d us/sample\n",
dev->proto.argv[1], dev->proto.argv[0]);
dev->base.power_buf = powerbuf_new(POWERBUF_DEFAULT_SAMPLES,
dev->proto.argv[0]);
if (!dev->base.power_buf) {
printc_err("Failed to allocate memory for power profile\n");
return;
}
}
static int power_start(struct fet_device *dev)
{
if (!dev->base.power_buf)
return 0;
if (fet_proto_xfer(&dev->proto, C_CMM_CTRL, NULL, 0, 1, 1) < 0) {
printc_err("fet: failed to start power profiling, "
"disabling\n");
powerbuf_free(dev->base.power_buf);
dev->base.power_buf = NULL;
return -1;
}
powerbuf_begin_session(dev->base.power_buf, time(NULL));
dev->poll_enable = 1;
return 0;
}
static int power_end(struct fet_device *dev)
{
if (!dev->base.power_buf)
return 0;
powerbuf_end_session(dev->base.power_buf);
dev->poll_enable = 0;
if (fet_proto_xfer(&dev->proto, C_CMM_CTRL, NULL, 0, 1, 1) < 0) {
printc_err("fet: failed to end power profiling\n");
return -1;
}
return 0;
}
static int power_poll(struct fet_device *dev)
{
address_t mab;
address_t mab_samples[1024];
unsigned int cur_samples[1024];
unsigned int count = 0;
int i;
if (!dev->base.power_buf || !dev->poll_enable)
return 0;
if (fet_proto_xfer(&dev->proto, C_CMM_READ, NULL, 0, 0) < 0) {
printc_err("fet: failed to fetch power data, disabling\n");
power_end(dev);
powerbuf_free(dev->base.power_buf);
dev->base.power_buf = NULL;
dev->poll_enable = 0;
return -1;
}
mab = powerbuf_last_mab(dev->base.power_buf);
for (i = 0; i + 3 < dev->proto.datalen; i += 4) {
uint32_t s = LE_LONG(dev->proto.data, i);
if (s & 0x80000000) {
mab = s & 0x7fffffff;
} else if (count + 1 < ARRAY_LEN(cur_samples)) {
cur_samples[count] = s;
mab_samples[count] = mab;
count++;
}
}
powerbuf_add_samples(dev->base.power_buf, count,
cur_samples, mab_samples);
return 0;
}
static int do_run(struct fet_device *dev, int type)
{
if (fet_proto_xfer(&dev->proto, C_RUN, NULL, 0, 2, type, 0) < 0) {
printc_err("fet: failed to restart CPU\n");
return -1;
}
return 0;
}
int fet_erase(device_t dev_base, device_erase_type_t type, address_t addr)
{
struct fet_device *dev = (struct fet_device *)dev_base;
int fet_erase_type = FET_ERASE_MAIN;
if (fet_proto_xfer(&dev->proto,
C_CONFIGURE, NULL, 0,
2, FET_CONFIG_CLKCTRL, 0x26) < 0) {
printc_err("fet: config (1) failed\n");
return -1;
}
if (fet_proto_xfer(&dev->proto,
C_CONFIGURE, NULL, 0,
2, FET_CONFIG_FLASH_LOCK, 0) < 0) {
printc_err("fet: config (2) failed\n");
return -1;
}
switch (type) {
case DEVICE_ERASE_MAIN:
fet_erase_type = FET_ERASE_MAIN;
addr = 0xfffe;
break;
case DEVICE_ERASE_SEGMENT:
fet_erase_type = FET_ERASE_SEGMENT;
break;
case DEVICE_ERASE_ALL:
fet_erase_type = FET_ERASE_ALL;
addr = 0xfffe;
break;
default:
printc_err("fet: unsupported erase type\n");
return -1;
}
if (fet_proto_xfer(&dev->proto, C_ERASE, NULL, 0,
3, fet_erase_type, addr, 0) < 0) {
printc_err("fet: erase command failed\n");
return -1;
}
return 0;
}
device_status_t fet_poll(device_t dev_base)
{
struct fet_device *dev = (struct fet_device *)dev_base;
if (fet_proto_xfer(&dev->proto, C_STATE, NULL, 0, 1, 0) < 0) {
printc_err("fet: polling failed\n");
power_end(dev);
return DEVICE_STATUS_ERROR;
}
if (dev->base.power_buf)
power_poll(dev);
else
delay_ms(50);
if (!(dev->proto.argv[0] & FET_POLL_RUNNING)) {
power_end(dev);
return DEVICE_STATUS_HALTED;
}
if (ctrlc_check())
return DEVICE_STATUS_INTR;
return DEVICE_STATUS_RUNNING;
}
static int refresh_bps(struct fet_device *dev)
{
int i;
int ret = 0;
for (i = 0; i < dev->base.max_breakpoints; i++) {
struct device_breakpoint *bp = &dev->base.breakpoints[i];
if ((bp->flags & DEVICE_BP_DIRTY) &&
bp->type == DEVICE_BPTYPE_BREAK) {
uint16_t addr = bp->addr;
if (!(bp->flags & DEVICE_BP_ENABLED))
addr = 0;
if (fet_proto_xfer(&dev->proto, C_BREAKPOINT, NULL, 0,
2, i, addr) < 0) {
printc_err("fet: failed to refresh "
"breakpoint #%d\n", i);
ret = -1;
} else {
bp->flags &= ~DEVICE_BP_DIRTY;
}
}
}
return ret;
}
int fet_ctl(device_t dev_base, device_ctl_t action)
{
struct fet_device *dev = (struct fet_device *)dev_base;
switch (action) {
case DEVICE_CTL_RESET:
if (fet_proto_xfer(&dev->proto, C_RESET, NULL, 0,
3, FET_RESET_ALL, 0, 0) < 0) {
printc_err("fet: reset failed\n");
return -1;
}
break;
case DEVICE_CTL_RUN:
if (refresh_bps(dev) < 0)
printc_err("warning: fet: failed to refresh "
"breakpoints\n");
power_start(dev);
if (do_run(dev, FET_RUN_BREAKPOINT) < 0) {
power_end(dev);
return -1;
}
return 0;
case DEVICE_CTL_HALT:
power_end(dev);
if (fet_proto_xfer(&dev->proto, C_STATE, NULL, 0, 1, 1) < 0) {
printc_err("fet: failed to halt CPU\n");
return -1;
}
break;
case DEVICE_CTL_STEP:
if (do_run(dev, FET_RUN_STEP) < 0)
return -1;
for (;;) {
device_status_t status = fet_poll(dev_base);
if (status == DEVICE_STATUS_ERROR ||
status == DEVICE_STATUS_INTR)
return -1;
if (status == DEVICE_STATUS_HALTED)
break;
}
break;
}
return 0;
}
void fet_destroy(device_t dev_base)
{
struct fet_device *dev = (struct fet_device *)dev_base;
/* The second argument to C_RESET is a boolean which specifies
* whether the chip should run or not. The final argument is
* also a boolean. Setting it non-zero is required to get the
* RST pin working on the G2231, but it must be zero on the
* FR5739, or else the value of the reset vector gets set to
* 0xffff at the start of the next JTAG session.
*/
if (fet_proto_xfer(&dev->proto, C_RESET, NULL, 0, 3, FET_RESET_ALL, 1,
!device_is_fram(dev_base)) < 0)
printc_err("fet: final reset failed\n");
if (fet_proto_xfer(&dev->proto, C_CLOSE, NULL, 0, 1, 0) < 0)
printc_err("fet: close command failed\n");
if (dev->base.power_buf)
powerbuf_free(dev->base.power_buf);
dev->proto.transport->ops->destroy(dev->proto.transport);
free(dev);
}
static int read_byte(struct fet_device *dev, address_t addr, uint8_t *out)
{
address_t base = addr & ~1;
if (fet_proto_xfer(&dev->proto, C_READMEMORY, NULL, 0,
2, base, 2) < 0) {
printc_err("fet: failed to read byte from 0x%04x\n", addr);
return -1;
}
*out = dev->proto.data[addr & 1];
return 0;
}
static int write_byte(struct fet_device *dev, address_t addr, uint8_t value)
{
uint8_t buf[2];
address_t base = addr & ~1;
if (fet_proto_xfer(&dev->proto, C_READMEMORY, NULL, 0, 2, base, 2) < 0) {
printc_err("fet: failed to read byte from 0x%04x\n", addr);
return -1;
}
buf[0] = dev->proto.data[0];
buf[1] = dev->proto.data[1];
buf[addr & 1] = value;
if (fet_proto_xfer(&dev->proto, C_WRITEMEMORY, buf, 2, 1, base) < 0) {
printc_err("fet: failed to write byte from 0x%04x\n", addr);
return -1;
}
return 0;
}
static int get_adjusted_block_size(void)
{
int block_size = opdb_get_numeric("fet_block_size") & ~1;
if (block_size < 2)
block_size = 2;
if (block_size > FET_PROTO_MAX_BLOCK)
block_size = FET_PROTO_MAX_BLOCK;
return block_size;
}
int fet_readmem(device_t dev_base, address_t addr, uint8_t *buffer,
address_t count)
{
struct fet_device *dev = (struct fet_device *)dev_base;
int block_size = get_adjusted_block_size();
if (addr & 1) {
if (read_byte(dev, addr, buffer) < 0)
return -1;
addr++;
buffer++;
count--;
}
while (count > 1) {
int plen = count > block_size ? block_size : count;
plen &= ~0x1;
if (fet_proto_xfer(&dev->proto, C_READMEMORY, NULL, 0,
2, addr, plen) < 0) {
printc_err("fet: failed to read "
"from 0x%04x\n", addr);
return -1;
}
if (dev->proto.datalen < plen) {
printc_err("fet: short data: "
"%d bytes\n", dev->proto.datalen);
return -1;
}
memcpy(buffer, dev->proto.data, plen);
buffer += plen;
count -= plen;
addr += plen;
}
if (count && read_byte(dev, addr, buffer) < 0)
return -1;
return 0;
}
int fet_writemem(device_t dev_base, address_t addr,
const uint8_t *buffer, address_t count)
{
struct fet_device *dev = (struct fet_device *)dev_base;
int block_size = get_adjusted_block_size();
if (addr & 1) {
if (write_byte(dev, addr, *buffer) < 0)
return -1;
addr++;
buffer++;
count--;
}
while (count > 1) {
int plen = count > block_size ? block_size : count;
int ret;
plen &= ~0x1;
ret = fet_proto_xfer(&dev->proto,
C_WRITEMEMORY, buffer, plen, 1, addr);
if (ret < 0) {
printc_err("fet: failed to write to 0x%04x\n",
addr);
return -1;
}
buffer += plen;
count -= plen;
addr += plen;
}
if (count && write_byte(dev, addr, *buffer) < 0)
return -1;
return 0;
}
int fet_getregs(device_t dev_base, address_t *regs)
{
struct fet_device *dev = (struct fet_device *)dev_base;
int i;
if (fet_proto_xfer(&dev->proto, C_READREGISTERS, NULL, 0, 0) < 0)
return -1;
if (dev->proto.datalen < DEVICE_NUM_REGS * 4) {
printc_err("fet: short reply (%d bytes)\n",
dev->proto.datalen);
return -1;
}
for (i = 0; i < DEVICE_NUM_REGS; i++)
regs[i] = LE_LONG(dev->proto.data, i * 4);
return 0;
}
int fet_setregs(device_t dev_base, const address_t *regs)
{
struct fet_device *dev = (struct fet_device *)dev_base;
uint8_t buf[DEVICE_NUM_REGS * 4];;
int i;
int ret;
memset(buf, 0, sizeof(buf));
for (i = 0; i < DEVICE_NUM_REGS; i++) {
buf[i * 4] = regs[i] & 0xff;
buf[i * 4 + 1] = (regs[i] >> 8) & 0xff;
buf[i * 4 + 2] = (regs[i] >> 16) & 0xff;
buf[i * 4 + 3] = regs[i] >> 24;
}
ret = fet_proto_xfer(&dev->proto, C_WRITEREGISTERS,
buf, sizeof(buf), 1, 0xffff);
if (ret < 0) {
printc_err("fet: context set failed\n");
return -1;
}
return 0;
}
static int do_configure(struct fet_device *dev,
const struct device_args *args)
{
if (!(args->flags & DEVICE_FLAG_JTAG)) {
if (!fet_proto_xfer(&dev->proto, C_CONFIGURE, NULL, 0,
2, FET_CONFIG_PROTOCOL, 1)) {
printc_dbg("Configured for Spy-Bi-Wire\n");
return 0;
}
printc_err("fet: Spy-Bi-Wire configuration failed\n");
return -1;
}
if (!fet_proto_xfer(&dev->proto, C_CONFIGURE, NULL, 0,
2, FET_CONFIG_PROTOCOL, 2)) {
printc_dbg("Configured for JTAG (2)\n");
return 0;
}
printc_err("fet: warning: JTAG configuration failed -- "
"retrying\n");
if (!fet_proto_xfer(&dev->proto, C_CONFIGURE, NULL, 0,
2, FET_CONFIG_PROTOCOL, 0)) {
printc_dbg("Configured for JTAG (0)\n");
return 0;
}
printc_err("fet: JTAG configuration failed\n");
return -1;
}
int try_open(struct fet_device *dev, const struct device_args *args,
int send_reset)
{
transport_t transport = dev->proto.transport;
if (dev->proto.proto_flags & FET_PROTO_NOLEAD_SEND) {
printc("Resetting Olimex command processor...\n");
transport->ops->send(transport, (const uint8_t *)"\x7e", 1);
delay_ms(5);
transport->ops->send(transport, (const uint8_t *)"\x7e", 1);
delay_ms(5);
}
printc_dbg("Initializing FET...\n");
if (fet_proto_xfer(&dev->proto, C_INITIALIZE, NULL, 0, 0) < 0) {
printc_err("fet: open failed\n");
return -1;
}
dev->version = dev->proto.argv[0];
printc_dbg("FET protocol version is %d\n", dev->version);
if (fet_proto_xfer(&dev->proto, 0x27, NULL, 0, 1, 4) < 0) {
printc_err("fet: init failed\n");
return -1;
}
/* set VCC */
if (fet_proto_xfer(&dev->proto, C_VCC, NULL, 0,
1, args->vcc_mv) < 0)
printc_err("warning: fet: set VCC failed\n");
else
printc_dbg("Set Vcc: %d mV\n", args->vcc_mv);
if (do_configure(dev, args) < 0)
return -1;
if (send_reset || args->flags & DEVICE_FLAG_FORCE_RESET) {
printc_dbg("Sending reset...\n");
if (fet_proto_xfer(&dev->proto, C_RESET, NULL, 0,
3, FET_RESET_ALL, 0, 0) < 0)
printc_err("warning: fet: reset failed\n");
}
/* Identify the chip */
if (do_identify(dev, args->forced_chip_id) < 0) {
printc_err("fet: identify failed\n");
return -1;
}
return 0;
}
device_t fet_open(const struct device_args *args,
int proto_flags, transport_t transport,
int fet_flags,
const struct device_class *type)
{
struct fet_device *dev = malloc(sizeof(*dev));
int i;
if (!dev) {
pr_error("fet: failed to allocate memory");
return NULL;
}
memset(dev, 0, sizeof(*dev));
fet_proto_init(&dev->proto, transport, proto_flags);
dev->base.type = type;
dev->fet_flags = fet_flags;
if (try_open(dev, args, fet_flags & FET_FORCE_RESET) < 0) {
delay_ms(500);
printc("Trying again...\n");
if (try_open(dev, args, !is_new_olimex(dev)) < 0)
goto fail;
}
/* Make sure breakpoints get reset on the first run */
if (dev->base.max_breakpoints > DEVICE_MAX_BREAKPOINTS)
dev->base.max_breakpoints = DEVICE_MAX_BREAKPOINTS;
for (i = 0; i < dev->base.max_breakpoints; i++)
dev->base.breakpoints[i].flags = DEVICE_BP_DIRTY;
/* Initialize power profiling */
power_init(dev);
return (device_t)dev;
fail:
transport->ops->destroy(transport);
free(dev);
return NULL;
}