mspdebug/fet.c

922 lines
22 KiB
C

/* MSPDebug - debugging tool for the eZ430
* Copyright (C) 2009, 2010 Daniel Beer
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* Various constants and tables come from uif430, written by Robert
* Kavaler (kavaler@diva.com). This is available under the same license
* as this program, from www.relavak.com.
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <assert.h>
#include <unistd.h>
#include "util.h"
#include "fet.h"
#include "fet_error.h"
#include "fet_db.h"
#include "output.h"
#define MAX_PARAMS 16
struct fet_device {
struct device base;
transport_t transport;
int proto_flags;
int version;
/* Device-specific information */
uint16_t code_start;
uint8_t fet_buf[65538];
int fet_len;
/* Recieved packet is parsed into this struct */
struct {
int command_code;
int state;
int argc;
uint32_t argv[MAX_PARAMS];
uint8_t *data;
int datalen;
} fet_reply;
};
/**********************************************************************
* FET command codes.
*
* These come from uif430 by Robert Kavaler (kavaler@diva.com).
* www.relavak.com
*/
#define C_INITIALIZE 0x01
#define C_CLOSE 0x02
#define C_IDENTIFY 0x03
#define C_DEVICE 0x04
#define C_CONFIGURE 0x05
#define C_VCC 0x06
#define C_RESET 0x07
#define C_READREGISTERS 0x08
#define C_WRITEREGISTERS 0x09
#define C_READREGISTER 0x0a
#define C_WRITEREGISTER 0x0b
#define C_ERASE 0x0c
#define C_READMEMORY 0x0d
#define C_WRITEMEMORY 0x0e
#define C_FASTFLASHER 0x0f
#define C_BREAKPOINT 0x10
#define C_RUN 0x11
#define C_STATE 0x12
#define C_SECURE 0x13
#define C_VERIFYMEMORY 0x14
#define C_FASTVERIFYMEMORY 0x15
#define C_ERASECHECK 0x16
#define C_EEMOPEN 0x17
#define C_EEMREADREGISTER 0x18
#define C_EEMREADREGISTERTEST 0x19
#define C_EEMWRITEREGISTER 0x1a
#define C_EEMCLOSE 0x1b
#define C_ERRORNUMBER 0x1c
#define C_GETCURVCCT 0x1d
#define C_GETEXTVOLTAGE 0x1e
#define C_FETSELFTEST 0x1f
#define C_FETSETSIGNALS 0x20
#define C_FETRESET 0x21
#define C_READI2C 0x22
#define C_WRITEI2C 0x23
#define C_ENTERBOOTLOADER 0x24
#define C_IDENT1 0x28
#define C_IDENT2 0x29
#define C_IDENT3 0x2b
/* Constants for parameters of various FET commands */
#define FET_CONFIG_VERIFICATION 0
#define FET_CONFIG_EMULATION 1
#define FET_CONFIG_CLKCTRL 2
#define FET_CONFIG_MCLKCTRL 3
#define FET_CONFIG_FLASH_TESET 4
#define FET_CONFIG_FLASH_LOCK 5
#define FET_CONFIG_PROTOCOL 8
#define FET_RUN_FREE 1
#define FET_RUN_STEP 2
#define FET_RUN_BREAKPOINT 3
#define FET_RESET_PUC 0x01
#define FET_RESET_RST 0x02
#define FET_RESET_VCC 0x04
#define FET_RESET_ALL 0x07
#define FET_ERASE_SEGMENT 0
#define FET_ERASE_MAIN 1
#define FET_ERASE_ALL 2
#define FET_POLL_RUNNING 0x01
#define FET_POLL_BREAKPOINT 0x02
/*********************************************************************
* Checksum calculation
*
* This code table is also derived from uif430.
*/
static const uint16_t fcstab[256] = {
0x0000, 0x1189, 0x2312, 0x329b, 0x4624, 0x57ad, 0x6536, 0x74bf,
0x8c48, 0x9dc1, 0xaf5a, 0xbed3, 0xca6c, 0xdbe5, 0xe97e, 0xf8f7,
0x1081, 0x0108, 0x3393, 0x221a, 0x56a5, 0x472c, 0x75b7, 0x643e,
0x9cc9, 0x8d40, 0xbfdb, 0xae52, 0xdaed, 0xcb64, 0xf9ff, 0xe876,
0x2102, 0x308b, 0x0210, 0x1399, 0x6726, 0x76af, 0x4434, 0x55bd,
0xad4a, 0xbcc3, 0x8e58, 0x9fd1, 0xeb6e, 0xfae7, 0xc87c, 0xd9f5,
0x3183, 0x200a, 0x1291, 0x0318, 0x77a7, 0x662e, 0x54b5, 0x453c,
0xbdcb, 0xac42, 0x9ed9, 0x8f50, 0xfbef, 0xea66, 0xd8fd, 0xc974,
0x4204, 0x538d, 0x6116, 0x709f, 0x0420, 0x15a9, 0x2732, 0x36bb,
0xce4c, 0xdfc5, 0xed5e, 0xfcd7, 0x8868, 0x99e1, 0xab7a, 0xbaf3,
0x5285, 0x430c, 0x7197, 0x601e, 0x14a1, 0x0528, 0x37b3, 0x263a,
0xdecd, 0xcf44, 0xfddf, 0xec56, 0x98e9, 0x8960, 0xbbfb, 0xaa72,
0x6306, 0x728f, 0x4014, 0x519d, 0x2522, 0x34ab, 0x0630, 0x17b9,
0xef4e, 0xfec7, 0xcc5c, 0xddd5, 0xa96a, 0xb8e3, 0x8a78, 0x9bf1,
0x7387, 0x620e, 0x5095, 0x411c, 0x35a3, 0x242a, 0x16b1, 0x0738,
0xffcf, 0xee46, 0xdcdd, 0xcd54, 0xb9eb, 0xa862, 0x9af9, 0x8b70,
0x8408, 0x9581, 0xa71a, 0xb693, 0xc22c, 0xd3a5, 0xe13e, 0xf0b7,
0x0840, 0x19c9, 0x2b52, 0x3adb, 0x4e64, 0x5fed, 0x6d76, 0x7cff,
0x9489, 0x8500, 0xb79b, 0xa612, 0xd2ad, 0xc324, 0xf1bf, 0xe036,
0x18c1, 0x0948, 0x3bd3, 0x2a5a, 0x5ee5, 0x4f6c, 0x7df7, 0x6c7e,
0xa50a, 0xb483, 0x8618, 0x9791, 0xe32e, 0xf2a7, 0xc03c, 0xd1b5,
0x2942, 0x38cb, 0x0a50, 0x1bd9, 0x6f66, 0x7eef, 0x4c74, 0x5dfd,
0xb58b, 0xa402, 0x9699, 0x8710, 0xf3af, 0xe226, 0xd0bd, 0xc134,
0x39c3, 0x284a, 0x1ad1, 0x0b58, 0x7fe7, 0x6e6e, 0x5cf5, 0x4d7c,
0xc60c, 0xd785, 0xe51e, 0xf497, 0x8028, 0x91a1, 0xa33a, 0xb2b3,
0x4a44, 0x5bcd, 0x6956, 0x78df, 0x0c60, 0x1de9, 0x2f72, 0x3efb,
0xd68d, 0xc704, 0xf59f, 0xe416, 0x90a9, 0x8120, 0xb3bb, 0xa232,
0x5ac5, 0x4b4c, 0x79d7, 0x685e, 0x1ce1, 0x0d68, 0x3ff3, 0x2e7a,
0xe70e, 0xf687, 0xc41c, 0xd595, 0xa12a, 0xb0a3, 0x8238, 0x93b1,
0x6b46, 0x7acf, 0x4854, 0x59dd, 0x2d62, 0x3ceb, 0x0e70, 0x1ff9,
0xf78f, 0xe606, 0xd49d, 0xc514, 0xb1ab, 0xa022, 0x92b9, 0x8330,
0x7bc7, 0x6a4e, 0x58d5, 0x495c, 0x3de3, 0x2c6a, 0x1ef1, 0x0f78
};
static uint16_t calc_checksum(uint8_t *cp, int len)
{
uint16_t fcs = 0xffff;
while (len--) {
fcs = (fcs >> 8) ^ fcstab[(fcs ^ *cp++) & 0xff];
}
return fcs ^ 0xffff;
}
/*********************************************************************
* FET packet transfer. This level of the interface deals in packets
* send to/from the device.
*/
/* This is a type of data transfer which appears to be unique to
* the RF2500. Blocks of data are sent to an internal buffer. Each
* block is prefixed with a buffer offset and a payload length.
*
* No checksums are included.
*/
static int send_rf2500_data(struct fet_device *dev,
const uint8_t *data, int len)
{
int offset = 0;
while (len) {
uint8_t pbuf[63];
int plen = len > 59 ? 59 : len;
pbuf[0] = 0x83;
pbuf[1] = offset & 0xff;
pbuf[2] = offset >> 8;
pbuf[3] = plen;
memcpy(pbuf + 4, data, plen);
if (dev->transport->send(dev->transport, pbuf, plen + 4) < 0)
return -1;
data += plen;
len -= plen;
offset += plen;
}
return 0;
}
#define PTYPE_ACK 0
#define PTYPE_CMD 1
#define PTYPE_PARAM 2
#define PTYPE_DATA 3
#define PTYPE_MIXED 4
#define PTYPE_NAK 5
#define PTYPE_FLASH_ACK 6
static int parse_packet(struct fet_device *dev, int plen)
{
uint16_t c = calc_checksum(dev->fet_buf + 2, plen - 2);
uint16_t r = LE_WORD(dev->fet_buf, plen);
int i = 2;
int type;
int error;
if (c != r) {
printc_err("fet: checksum error (calc %04x,"
" recv %04x)\n", c, r);
return -1;
}
if (plen < 6)
goto too_short;
dev->fet_reply.command_code = dev->fet_buf[i++];
type = dev->fet_buf[i++];
dev->fet_reply.state = dev->fet_buf[i++];
error = dev->fet_buf[i++];
if (error) {
printc_err("fet: FET returned error code %d (%s)\n",
error, fet_error(error));
return -1;
}
if (type == PTYPE_NAK) {
printc_err("fet: FET returned NAK\n");
return -1;
}
/* Parse packet parameters */
if (type == PTYPE_PARAM || type == PTYPE_MIXED) {
int j;
if (i + 2 > plen)
goto too_short;
dev->fet_reply.argc = LE_WORD(dev->fet_buf, i);
i += 2;
if (dev->fet_reply.argc >= MAX_PARAMS) {
printc_err("fet: too many params: %d\n",
dev->fet_reply.argc);
return -1;
}
for (j = 0; j < dev->fet_reply.argc; j++) {
if (i + 4 > plen)
goto too_short;
dev->fet_reply.argv[j] = LE_LONG(dev->fet_buf, i);
i += 4;
}
} else {
dev->fet_reply.argc = 0;
}
/* Extract a pointer to the data */
if (type == PTYPE_DATA || type == PTYPE_MIXED) {
if (i + 4 > plen)
goto too_short;
dev->fet_reply.datalen = LE_LONG(dev->fet_buf, i);
i += 4;
if (i + dev->fet_reply.datalen > plen)
goto too_short;
dev->fet_reply.data = dev->fet_buf + i;
} else {
dev->fet_reply.data = NULL;
dev->fet_reply.datalen = 0;
}
return 0;
too_short:
printc_err("fet: too short (%d bytes)\n",
plen);
return -1;
}
/* Receive a packet from the FET. The usual format is:
* <length (2 bytes)> <data> <checksum>
*
* The length is that of the data + checksum. Olimex JTAG adapters follow
* all packets with a trailing 0x7e byte, which must be discarded.
*/
static int recv_packet(struct fet_device *dev)
{
int pkt_extra = (dev->proto_flags & FET_PROTO_OLIMEX) ? 3 : 2;
int plen = LE_WORD(dev->fet_buf, 0);
/* If there's a packet still here from last time, get rid of it */
if (dev->fet_len >= plen + pkt_extra) {
memmove(dev->fet_buf, dev->fet_buf + plen + pkt_extra,
dev->fet_len - plen - pkt_extra);
dev->fet_len -= plen + pkt_extra;
}
/* Keep adding data to the buffer until we have a complete packet */
for (;;) {
int len;
plen = LE_WORD(dev->fet_buf, 0);
if (dev->fet_len >= plen + pkt_extra)
return parse_packet(dev, plen);
len = dev->transport->recv(dev->transport,
dev->fet_buf + dev->fet_len,
sizeof(dev->fet_buf) -
dev->fet_len);
if (len < 0)
return -1;
dev->fet_len += len;
}
return -1;
}
static int send_command(struct fet_device *dev, int command_code,
const uint32_t *params, int nparams,
const uint8_t *extra, int exlen)
{
uint8_t datapkt[256];
int len = 0;
uint8_t buf[512];
uint16_t cksum;
int i = 0;
int j;
assert (len + exlen + 2 <= sizeof(datapkt));
/* Command code and packet type */
datapkt[len++] = command_code;
datapkt[len++] = ((nparams > 0) ? 1 : 0) + ((exlen > 0) ? 2 : 0) + 1;
/* Optional parameters */
if (nparams > 0) {
datapkt[len++] = nparams & 0xff;
datapkt[len++] = nparams >> 8;
for (j = 0; j < nparams; j++) {
uint32_t p = params[j];
datapkt[len++] = p & 0xff;
p >>= 8;
datapkt[len++] = p & 0xff;
p >>= 8;
datapkt[len++] = p & 0xff;
p >>= 8;
datapkt[len++] = p & 0xff;
}
}
/* Extra data */
if (extra) {
int x = exlen;
datapkt[len++] = x & 0xff;
x >>= 8;
datapkt[len++] = x & 0xff;
x >>= 8;
datapkt[len++] = x & 0xff;
x >>= 8;
datapkt[len++] = x & 0xff;
memcpy(datapkt + len, extra, exlen);
len += exlen;
}
/* Checksum */
cksum = calc_checksum(datapkt, len);
datapkt[len++] = cksum & 0xff;
datapkt[len++] = cksum >> 8;
/* Copy into buf, escaping special characters and adding
* delimeters.
*/
if (!(dev->proto_flags & FET_PROTO_OLIMEX))
buf[i++] = 0x7e;
for (j = 0; j < len; j++) {
char c = datapkt[j];
if (c == 0x7e || c == 0x7d) {
buf[i++] = 0x7d;
c ^= 0x20;
}
buf[i++] = c;
}
buf[i++] = 0x7e;
assert (i < sizeof(buf));
return dev->transport->send(dev->transport, buf, i);
}
static int xfer(struct fet_device *dev,
int command_code, const uint8_t *data, int datalen,
int nparams, ...)
{
uint32_t params[MAX_PARAMS];
int i;
va_list ap;
assert (nparams <= MAX_PARAMS);
va_start(ap, nparams);
for (i = 0; i < nparams; i++)
params[i] = va_arg(ap, uint32_t);
va_end(ap);
if (data && (dev->proto_flags & FET_PROTO_RF2500)) {
assert (nparams + 1 <= MAX_PARAMS);
params[nparams++] = datalen;
if (send_rf2500_data(dev, data, datalen) < 0)
return -1;
if (send_command(dev, command_code, params, nparams,
NULL, 0) < 0)
return -1;
} else if (send_command(dev, command_code, params, nparams,
data, datalen) < 0)
return -1;
if (recv_packet(dev) < 0)
return -1;
if (dev->fet_reply.command_code != command_code) {
printc_err("fet: reply type mismatch\n");
return -1;
}
return 0;
}
/**********************************************************************
* MSP430 high-level control functions
*/
static void show_dev_info(const char *name, const struct fet_device *dev)
{
printc("Device: %s\n", name);
printc_dbg("Code memory starts at 0x%04x\n", dev->code_start);
printc_dbg("Number of breakpoints: %d\n", dev->base.max_breakpoints);
}
static int identify_old(struct fet_device *dev)
{
char idtext[64];
if (xfer(dev, C_IDENTIFY, NULL, 0, 2, 70, 0) < 0)
return -1;
if (dev->fet_reply.datalen < 0x26) {
printc_err("fet: missing info\n");
return -1;
}
memcpy(idtext, dev->fet_reply.data + 4, 32);
idtext[32] = 0;
dev->code_start = LE_WORD(dev->fet_reply.data, 0x24);
dev->base.max_breakpoints = LE_WORD(dev->fet_reply.data, 0x2a);
show_dev_info(idtext, dev);
return 0;
}
static int identify_new(struct fet_device *dev, const char *force_id)
{
const struct fet_db_record *r;
if (xfer(dev, C_IDENT1, NULL, 0, 2, 0, 0) < 0) {
printc_err("fet: command C_IDENT1 failed\n");
return -1;
}
if (dev->fet_reply.datalen < 2) {
printc_err("fet: missing info\n");
return -1;
}
printc_dbg("Device ID: 0x%02x%02x\n",
dev->fet_reply.data[0], dev->fet_reply.data[1]);
if (force_id)
r = fet_db_find_by_name(force_id);
else
r = fet_db_find_by_msg28(dev->fet_reply.data,
dev->fet_reply.datalen);
if (!r) {
printc_err("fet: unknown device\n");
debug_hexdump("msg28_data:", dev->fet_reply.data,
dev->fet_reply.datalen);
return -1;
}
dev->code_start = LE_WORD(r->msg29_data, 0);
dev->base.max_breakpoints = LE_WORD(r->msg29_data, 0x14);
show_dev_info(r->name, dev);
if (xfer(dev, C_IDENT3, r->msg2b_data, r->msg2b_len, 0) < 0)
printc_err("fet: warning: message C_IDENT3 failed\n");
if (xfer(dev, C_IDENT2, r->msg29_data, FET_DB_MSG29_LEN,
3, r->msg29_params[0], r->msg29_params[1],
r->msg29_params[2]) < 0) {
printc_err("fet: message C_IDENT2 failed\n");
return -1;
}
return 0;
}
static int do_identify(struct fet_device *dev, const char *force_id)
{
if (dev->proto_flags & FET_PROTO_OLIMEX)
return identify_new(dev, force_id);
if (dev->version < 20300000)
return identify_old(dev);
return identify_new(dev, force_id);
}
static int do_run(struct fet_device *dev, int type)
{
if (xfer(dev, C_RUN, NULL, 0, 2, type, 0) < 0) {
printc_err("fet: failed to restart CPU\n");
return -1;
}
return 0;
}
static int do_erase(struct fet_device *dev)
{
if (xfer(dev, C_RESET, NULL, 0, 3, FET_RESET_ALL, 0, 0) < 0) {
printc_err("fet: reset before erase failed\n");
return -1;
}
if (xfer(dev, C_CONFIGURE, NULL, 0, 2, FET_CONFIG_CLKCTRL, 0x26) < 0) {
printc_err("fet: config (1) failed\n");
return -1;
}
if (xfer(dev, C_CONFIGURE, NULL, 0, 2, FET_CONFIG_FLASH_LOCK, 0) < 0) {
printc_err("fet: config (2) failed\n");
return -1;
}
if (xfer(dev, C_ERASE, NULL, 0, 3, FET_ERASE_MAIN,
dev->code_start, 0) < 0) {
printc_err("fet: erase command failed\n");
return -1;
}
return 0;
}
static device_status_t fet_poll(device_t dev_base)
{
struct fet_device *dev = (struct fet_device *)dev_base;
if (usleep(50000) < 0)
return DEVICE_STATUS_INTR;
if (xfer(dev, C_STATE, NULL, 0, 1, 0) < 0) {
printc_err("fet: polling failed\n");
return DEVICE_STATUS_ERROR;
}
if (!(dev->fet_reply.argv[0] & FET_POLL_RUNNING))
return DEVICE_STATUS_HALTED;
return DEVICE_STATUS_RUNNING;
}
static int refresh_bps(struct fet_device *dev)
{
int i;
int ret = 0;
for (i = 0; i < dev->base.max_breakpoints; i++) {
struct device_breakpoint *bp = &dev->base.breakpoints[i];
if (bp->flags & DEVICE_BP_DIRTY) {
uint16_t addr = bp->addr;
if (!(bp->flags & DEVICE_BP_ENABLED))
addr = 0;
if (xfer(dev, C_BREAKPOINT, NULL, 0, 2, i, addr) < 0) {
printc_err("fet: failed to refresh "
"breakpoint #%d\n", i);
ret = -1;
} else {
bp->flags &= ~DEVICE_BP_DIRTY;
}
}
}
return ret;
}
static int fet_ctl(device_t dev_base, device_ctl_t action)
{
struct fet_device *dev = (struct fet_device *)dev_base;
switch (action) {
case DEVICE_CTL_RESET:
if (xfer(dev, C_RESET, NULL, 0, 3, FET_RESET_ALL, 0, 0) < 0) {
printc_err("fet: reset failed\n");
return -1;
}
break;
case DEVICE_CTL_RUN:
if (refresh_bps(dev) < 0)
printc_err("warning: fet: failed to refresh "
"breakpoints\n");
return do_run(dev, FET_RUN_BREAKPOINT);
case DEVICE_CTL_HALT:
if (xfer(dev, C_STATE, NULL, 0, 1, 1) < 0) {
printc_err("fet: failed to halt CPU\n");
return -1;
}
break;
case DEVICE_CTL_STEP:
if (do_run(dev, FET_RUN_STEP) < 0)
return -1;
for (;;) {
device_status_t status = fet_poll(dev_base);
if (status == DEVICE_STATUS_ERROR ||
status == DEVICE_STATUS_INTR)
return -1;
if (status == DEVICE_STATUS_HALTED)
break;
}
break;
case DEVICE_CTL_ERASE:
return do_erase(dev);
}
return 0;
}
static void fet_destroy(device_t dev_base)
{
struct fet_device *dev = (struct fet_device *)dev_base;
if (xfer(dev, C_RUN, NULL, 0, 2, FET_RUN_FREE, 1) < 0)
printc_err("fet: failed to restart CPU\n");
if (xfer(dev, C_CLOSE, NULL, 0, 1, 0) < 0)
printc_err("fet: close command failed\n");
dev->transport->destroy(dev->transport);
free(dev);
}
int fet_readmem(device_t dev_base, address_t addr, uint8_t *buffer,
address_t count)
{
struct fet_device *dev = (struct fet_device *)dev_base;
while (count) {
int plen = count > 128 ? 128 : count;
if (xfer(dev, C_READMEMORY, NULL, 0, 2, addr, plen) < 0) {
printc_err("fet: failed to read "
"from 0x%04x\n", addr);
return -1;
}
if (dev->fet_reply.datalen < plen) {
printc_err("fet: short data: "
"%d bytes\n", dev->fet_reply.datalen);
return -1;
}
memcpy(buffer, dev->fet_reply.data, plen);
buffer += plen;
count -= plen;
addr += plen;
}
return 0;
}
int fet_writemem(device_t dev_base, address_t addr,
const uint8_t *buffer, address_t count)
{
struct fet_device *dev = (struct fet_device *)dev_base;
while (count) {
int plen = count > 128 ? 128 : count;
int ret;
ret = xfer(dev, C_WRITEMEMORY, buffer, plen, 1, addr);
if (ret < 0) {
printc_err("fet: failed to write to 0x%04x\n",
addr);
return -1;
}
buffer += plen;
count -= plen;
addr += plen;
}
return 0;
}
static int fet_getregs(device_t dev_base, address_t *regs)
{
struct fet_device *dev = (struct fet_device *)dev_base;
int i;
if (xfer(dev, C_READREGISTERS, NULL, 0, 0) < 0)
return -1;
if (dev->fet_reply.datalen < DEVICE_NUM_REGS * 4) {
printc_err("fet: short reply (%d bytes)\n",
dev->fet_reply.datalen);
return -1;
}
for (i = 0; i < DEVICE_NUM_REGS; i++)
regs[i] = LE_LONG(dev->fet_reply.data, i * 4);
return 0;
}
static int fet_setregs(device_t dev_base, const address_t *regs)
{
struct fet_device *dev = (struct fet_device *)dev_base;
uint8_t buf[DEVICE_NUM_REGS * 4];;
int i;
int ret;
memset(buf, 0, sizeof(buf));
for (i = 0; i < DEVICE_NUM_REGS; i++) {
buf[i * 4] = regs[i] & 0xff;
buf[i * 4 + 1] = (regs[i] >> 8) & 0xff;
buf[i * 4 + 2] = (regs[i] >> 16) & 0xff;
buf[i * 4 + 3] = regs[i] >> 24;
}
ret = xfer(dev, C_WRITEREGISTERS, buf, sizeof(buf), 1, 0xffff);
if (ret < 0) {
printc_err("fet: context set failed\n");
return -1;
}
return 0;
}
static int do_configure(struct fet_device *dev)
{
if (dev->proto_flags & FET_PROTO_SPYBIWIRE) {
if (!xfer(dev, C_CONFIGURE, NULL, 0,
2, FET_CONFIG_PROTOCOL, 1)) {
printc_dbg("Configured for Spy-Bi-Wire\n");
return 0;
}
printc_err("fet: Spy-Bi-Wire configuration failed\n");
return -1;
}
if (!xfer(dev, C_CONFIGURE, NULL, 0,
2, FET_CONFIG_PROTOCOL, 2)) {
printc_dbg("Configured for JTAG (2)\n");
return 0;
}
printc_err("fet: warning: JTAG configuration failed -- "
"retrying\n");
if (!xfer(dev, C_CONFIGURE, NULL, 0,
2, FET_CONFIG_PROTOCOL, 0)) {
printc_dbg("Configured for JTAG (0)\n");
return 0;
}
printc_err("fet: JTAG configuration failed\n");
return -1;
}
device_t fet_open(transport_t transport, int proto_flags, int vcc_mv,
const char *force_id)
{
struct fet_device *dev = malloc(sizeof(*dev));
int i;
if (!dev) {
pr_error("fet: failed to allocate memory");
return NULL;
}
memset(dev, 0, sizeof(*dev));
dev->base.destroy = fet_destroy;
dev->base.readmem = fet_readmem;
dev->base.writemem = fet_writemem;
dev->base.getregs = fet_getregs;
dev->base.setregs = fet_setregs;
dev->base.ctl = fet_ctl;
dev->base.poll = fet_poll;
dev->transport = transport;
dev->proto_flags = proto_flags;
if (proto_flags & FET_PROTO_OLIMEX) {
printc("Resetting Olimex command processor...\n");
transport->send(dev->transport, (const uint8_t *)"\x7e", 1);
usleep(5000);
transport->send(dev->transport, (const uint8_t *)"\x7e", 1);
usleep(5000);
}
printc_dbg("Initializing FET...\n");
if (xfer(dev, C_INITIALIZE, NULL, 0, 0) < 0) {
printc_err("fet: open failed\n");
goto fail;
}
dev->version = dev->fet_reply.argv[0];
printc_dbg("FET protocol version is %d\n", dev->version);
if (xfer(dev, 0x27, NULL, 0, 1, 4) < 0) {
printc_err("fet: init failed\n");
goto fail;
}
if (do_configure(dev) < 0)
goto fail;
/* Reset first, if requested */
if (!(proto_flags & FET_PROTO_NORESET)) {
printc_dbg("Sending initial reset...\n");
if (xfer(dev, C_RESET, NULL, 0, 3, FET_RESET_ALL, 0, 0) < 0)
printc_err("warning: fet: initial reset failed\n");
}
/* set VCC */
if (xfer(dev, C_VCC, NULL, 0, 1, vcc_mv) < 0)
printc_err("warning: fet: set VCC failed\n");
else
printc_dbg("Set Vcc: %d mV\n", vcc_mv);
/* Identify the chip */
if (do_identify(dev, force_id) < 0) {
printc_err("fet: identify failed\n");
goto fail;
}
/* Make sure breakpoints get reset on the first run */
if (dev->base.max_breakpoints > DEVICE_MAX_BREAKPOINTS)
dev->base.max_breakpoints = DEVICE_MAX_BREAKPOINTS;
for (i = 0; i < dev->base.max_breakpoints; i++)
dev->base.breakpoints[i].flags = DEVICE_BP_DIRTY;
return (device_t)dev;
fail:
free(dev);
return NULL;
}