mspdebug/drivers/device.c

467 lines
9.8 KiB
C

/* MSPDebug - debugging tool for MSP430 MCUs
* Copyright (C) 2009, 2010 Daniel Beer
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <string.h>
#include "output.h"
#include "device.h"
device_t device_default;
static int addbrk(device_t dev, address_t addr, device_bptype_t type)
{
int i;
int which = -1;
struct device_breakpoint *bp;
for (i = 0; i < dev->max_breakpoints; i++) {
bp = &dev->breakpoints[i];
if (bp->flags & DEVICE_BP_ENABLED) {
if (bp->addr == addr && bp->type == type)
return i;
} else if (which < 0) {
which = i;
}
}
if (which < 0)
return -1;
bp = &dev->breakpoints[which];
bp->flags = DEVICE_BP_ENABLED | DEVICE_BP_DIRTY;
bp->addr = addr;
bp->type = type;
return which;
}
static void delbrk(device_t dev, address_t addr, device_bptype_t type)
{
int i;
for (i = 0; i < dev->max_breakpoints; i++) {
struct device_breakpoint *bp = &dev->breakpoints[i];
if ((bp->flags & DEVICE_BP_ENABLED) &&
bp->addr == addr && bp->type == type) {
bp->flags = DEVICE_BP_DIRTY;
bp->addr = 0;
}
}
}
int device_setbrk(device_t dev, int which, int enabled, address_t addr,
device_bptype_t type)
{
if (which < 0) {
if (enabled)
return addbrk(dev, addr, type);
delbrk(dev, addr, type);
} else {
struct device_breakpoint *bp = &dev->breakpoints[which];
int new_flags = enabled ? DEVICE_BP_ENABLED : 0;
if (!enabled)
addr = 0;
if (bp->addr != addr ||
(bp->flags & DEVICE_BP_ENABLED) != new_flags) {
bp->flags = new_flags | DEVICE_BP_DIRTY;
bp->addr = addr;
bp->type = type;
}
}
return 0;
}
static uint8_t tlv_data[1024];
int tlv_read(device_t dev)
{
if (dev->type->readmem(dev, 0x1a00, tlv_data, 8) < 0)
return -1;
uint8_t info_len = tlv_data[0];
if (info_len < 1 || info_len > 8)
return -1;
int tlv_size = 4 * (1 << info_len);
if (dev->type->readmem(dev, 0x1a00+8, tlv_data+8, tlv_size-8) < 0)
return -1;
return 0;
}
int tlv_find(const uint8_t type, uint8_t * const size, uint8_t ** const ptr)
{
const int tlv_size = 4 * (1 << tlv_data[0]);
int i = 8;
*ptr = NULL;
*size = 0;
while (i + 3 < tlv_size) {
uint8_t tag = tlv_data[i++];
uint8_t len = tlv_data[i++];
if (tag == 0xff)
break;
if (tag == type) {
*ptr = tlv_data + i;
*size = len;
break;
}
i += len;
}
return *ptr != NULL;
}
static void show_device_type(device_t dev)
{
printc("Device: %s", dev->chip->name);
if (device_is_fram(dev))
printc(" [FRAM]");
printc("\n");
}
int device_probe_id(device_t dev, const char *force_id)
{
/* skip probe if driver already did it */
if (dev->chip) {
show_device_type(dev);
return 0;
}
/* use forced id if present */
if (force_id) {
dev->chip = chipinfo_find_by_name(force_id);
if (!dev->chip) {
printc_err("unknown chip: %s\n", force_id);
return -1;
}
printc("Device: %s (forced)\n", dev->chip->name);
return 0;
}
/* proceed with identification */
uint8_t data[16];
if (dev->type->readmem(dev, 0xff0, data, sizeof(data)) < 0) {
printc_err("device_probe_id: read failed\n");
return -1;
}
struct chipinfo_id id;
memset(&id, 0, sizeof(id));
if (data[0] == 0x80) {
if (tlv_read(dev) < 0) {
printc_err("device_probe_id: tlv_read failed\n");
return -1;
}
dev->dev_id[0] = tlv_data[4];
dev->dev_id[1] = tlv_data[5];
dev->dev_id[2] = tlv_data[6];
id.ver_id = r16le(tlv_data + 4);
id.revision = tlv_data[6];
id.config = tlv_data[7];
id.fab = 0x55;
id.self = 0x5555;
id.fuses = 0x55;
/* Search TLV for sub-ID */
uint8_t len;
uint8_t *p;
if (tlv_find(0x14, &len, &p)) {
if (len >= 2)
id.ver_sub_id = r16le(p);
}
} else {
dev->dev_id[0] = data[0];
dev->dev_id[1] = data[1];
dev->dev_id[2] = data[13];
id.ver_id = r16le(data);
id.ver_sub_id = 0;
id.revision = data[2];
id.fab = data[3];
id.self = r16le(data + 8);
id.config = data[13] & 0x7f;
if(dev->type->getconfigfuses != NULL) {
id.fuses = dev->type->getconfigfuses(dev);
}
}
printc_dbg("Chip ID data:\n");
printc_dbg(" ver_id: %04x\n", id.ver_id);
printc_dbg(" ver_sub_id: %04x\n", id.ver_sub_id);
printc_dbg(" revision: %02x\n", id.revision);
printc_dbg(" fab: %02x\n", id.fab);
printc_dbg(" self: %04x\n", id.self);
printc_dbg(" config: %02x\n", id.config);
printc_dbg(" fuses: %02x\n", id.fuses);
//printc_dbg(" activation_key: %08x\n", id.activation_key);
dev->chip = chipinfo_find_by_id(&id);
if (!dev->chip) {
printc_err("warning: unknown chip\n");
return 0;
}
show_device_type(dev);
return 0;
}
/* Is there a more reliable way of doing this? */
int device_is_fram(device_t dev)
{
return dev->chip && (dev->chip->features & CHIPINFO_FEATURE_FRAM);
}
int device_erase(device_erase_type_t et, address_t addr)
{
if (device_is_fram(device_default)) {
printc_err("warning: not attempting erase of FRAM device\n");
return 0;
}
return device_default->type->erase(device_default, et, addr);
}
static const struct chipinfo default_chip = {
.name = "DefaultChip",
.bits = 20,
.memory = {
{
.name = "DefaultFlash",
.type = CHIPINFO_MEMTYPE_FLASH,
.bits = 20,
.mapped = 1,
.size = 0xff000,
.offset = 0x01000,
.seg_size = 0,
.bank_size = 0,
.banks = 1,
},
{
.name = "DefaultRam",
.type = CHIPINFO_MEMTYPE_RAM,
.bits = 20,
.mapped = 1,
.size = 0x01000,
.offset = 0x00000,
.seg_size = 0,
.bank_size = 0,
.banks = 1,
},
{0}
},
};
/* Given an address range, specified by a start and a size (in bytes),
* return a size which is trimmed so as to not overrun a region boundary
* in the chip's memory map.
*
* The single region occupied is optionally returned in m_ret. If the
* range doesn't start in a valid region, it's trimmed to the start of
* the next valid region, and m_ret is NULL.
*/
address_t check_range(const struct chipinfo *chip,
address_t addr, address_t size,
const struct chipinfo_memory **m_ret)
{
if (!chip) {
chip = &default_chip;
}
const struct chipinfo_memory *m =
chipinfo_find_mem_by_addr(chip, addr);
if (m) {
if (m->offset > addr) {
address_t n = m->offset - addr;
if (size > n)
size = n;
m = NULL;
} else if (addr + size > m->offset + m->size) {
size = m->offset + m->size - addr;
}
}
*m_ret = m;
return size;
}
/* Read bytes from device taking care of memory types.
* Function read_words is only called for existing memory ranges and
* with a word aligned address.
* Non-existing memory locations read as 0x55.
* returns 0 on success, -1 on failure
*/
int readmem(device_t dev, address_t addr,
uint8_t *mem, address_t len,
int (*read_words)(device_t dev,
const struct chipinfo_memory *m,
address_t addr, address_t len,
uint8_t *data)
)
{
const struct chipinfo_memory *m;
if (!len)
return 0;
/* Handle unaligned start */
if (addr & 1) {
uint8_t data[2];
check_range(dev->chip, addr - 1, 2, &m);
if (!m)
data[1] = 0x55;
else if (read_words(dev, m, addr - 1, 2, data) < 0)
return -1;
mem[0] = data[1];
addr++;
mem++;
len--;
}
/* Read aligned blocks */
while (len >= 2) {
int rlen = check_range(dev->chip, addr, len & ~1, &m);
if (!m)
memset(mem, 0x55, rlen);
else {
rlen = read_words(dev, m, addr, rlen, mem);
if (rlen < 0)
return -1;
}
addr += rlen;
mem += rlen;
len -= rlen;
}
/* Handle unaligned end */
if (len) {
uint8_t data[2];
check_range(dev->chip, addr, 2, &m);
if (!m)
data[0] = 0x55;
else if (read_words(dev, m, addr, 2, data) < 0)
return -1;
mem[0] = data[0];
}
return 0;
}
/* Write bytes to device taking care of memory types.
* Functions write_words and read_words are only called for existing memory ranges and
* with a word aligned address and length.
* Writes to non-existing memory locations fail.
* returns 0 on success, -1 on failure
*/
int writemem(device_t dev, address_t addr,
const uint8_t *mem, address_t len,
int (*write_words)(device_t dev,
const struct chipinfo_memory *m,
address_t addr, address_t len,
const uint8_t *data),
int (*read_words)(device_t dev,
const struct chipinfo_memory *m,
address_t addr, address_t len,
uint8_t *data)
)
{
const struct chipinfo_memory *m;
if (!len)
return 0;
/* Handle unaligned start */
if (addr & 1) {
uint8_t data[2];
check_range(dev->chip, addr - 1, 2, &m);
if (!m)
goto fail; // fail on unmapped regions
if (read_words(dev, m, addr - 1, 2, data) < 0)
return -1;
data[1] = mem[0];
if (write_words(dev, m, addr - 1, 2, data) < 0)
return -1;
addr++;
mem++;
len--;
}
while (len >= 2) {
int wlen = check_range(dev->chip, addr, len & ~1, &m);
if (!m)
goto fail; // fail on unmapped regions
wlen = write_words(dev, m, addr, wlen, mem);
if (wlen < 0)
return -1;
addr += wlen;
mem += wlen;
len -= wlen;
}
/* Handle unaligned end */
if (len) {
uint8_t data[2];
check_range(dev->chip, addr, 2, &m);
if (!m)
goto fail; // fail on unmapped regions
if (read_words(dev, m, addr, 2, data) < 0)
return -1;
data[0] = mem[0];
if (write_words(dev, m, addr, 2, data) < 0)
return -1;
}
return 0;
fail:
printc_err("writemem failed at 0x%x\n", addr);
return -1;
}