1243 lines
30 KiB
C
1243 lines
30 KiB
C
/* MSPDebug - debugging tool for the eZ430
|
|
* Copyright (C) 2009, 2010 Daniel Beer
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
* Various constants and tables come from uif430, written by Robert
|
|
* Kavaler (kavaler@diva.com). This is available under the same license
|
|
* as this program, from www.relavak.com.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <stdarg.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <unistd.h>
|
|
|
|
#include "util.h"
|
|
#include "fet.h"
|
|
#include "fet_error.h"
|
|
#include "fet_db.h"
|
|
#include "output.h"
|
|
#include "opdb.h"
|
|
|
|
#include "uif.h"
|
|
#include "olimex.h"
|
|
#include "olimex_iso.h"
|
|
#include "rf2500.h"
|
|
#include "ti3410.h"
|
|
|
|
/* Send data in separate packets, as in the RF2500 */
|
|
#define FET_PROTO_SEPARATE_DATA 0x01
|
|
|
|
/* Received packets have an extra trailing byte */
|
|
#define FET_PROTO_EXTRA_RECV 0x02
|
|
|
|
/* Command packets have no leading \x7e */
|
|
#define FET_PROTO_NOLEAD_SEND 0x04
|
|
|
|
/* The new identify method should always be used */
|
|
#define FET_PROTO_IDENTIFY_NEW 0x08
|
|
|
|
/* A reset on startup should always be performed */
|
|
#define FET_PROTO_FORCE_RESET 0x10
|
|
|
|
#define MAX_PARAMS 16
|
|
#define MAX_BLOCK_SIZE 4096
|
|
|
|
struct fet_device {
|
|
struct device base;
|
|
|
|
transport_t transport;
|
|
int flags;
|
|
int version;
|
|
|
|
/* Device-specific information */
|
|
address_t code_start;
|
|
|
|
uint8_t fet_buf[65538];
|
|
int fet_len;
|
|
|
|
/* Recieved packet is parsed into this struct */
|
|
struct {
|
|
int command_code;
|
|
int state;
|
|
|
|
int argc;
|
|
uint32_t argv[MAX_PARAMS];
|
|
|
|
uint8_t *data;
|
|
int datalen;
|
|
} fet_reply;
|
|
};
|
|
|
|
/**********************************************************************
|
|
* FET command codes.
|
|
*
|
|
* These come from uif430 by Robert Kavaler (kavaler@diva.com).
|
|
* www.relavak.com
|
|
*/
|
|
|
|
#define C_INITIALIZE 0x01
|
|
#define C_CLOSE 0x02
|
|
#define C_IDENTIFY 0x03
|
|
#define C_DEVICE 0x04
|
|
#define C_CONFIGURE 0x05
|
|
#define C_VCC 0x06
|
|
#define C_RESET 0x07
|
|
#define C_READREGISTERS 0x08
|
|
#define C_WRITEREGISTERS 0x09
|
|
#define C_READREGISTER 0x0a
|
|
#define C_WRITEREGISTER 0x0b
|
|
#define C_ERASE 0x0c
|
|
#define C_READMEMORY 0x0d
|
|
#define C_WRITEMEMORY 0x0e
|
|
#define C_FASTFLASHER 0x0f
|
|
#define C_BREAKPOINT 0x10
|
|
#define C_RUN 0x11
|
|
#define C_STATE 0x12
|
|
#define C_SECURE 0x13
|
|
#define C_VERIFYMEMORY 0x14
|
|
#define C_FASTVERIFYMEMORY 0x15
|
|
#define C_ERASECHECK 0x16
|
|
#define C_EEMOPEN 0x17
|
|
#define C_EEMREADREGISTER 0x18
|
|
#define C_EEMREADREGISTERTEST 0x19
|
|
#define C_EEMWRITEREGISTER 0x1a
|
|
#define C_EEMCLOSE 0x1b
|
|
#define C_ERRORNUMBER 0x1c
|
|
#define C_GETCURVCCT 0x1d
|
|
#define C_GETEXTVOLTAGE 0x1e
|
|
#define C_FETSELFTEST 0x1f
|
|
#define C_FETSETSIGNALS 0x20
|
|
#define C_FETRESET 0x21
|
|
#define C_READI2C 0x22
|
|
#define C_WRITEI2C 0x23
|
|
#define C_ENTERBOOTLOADER 0x24
|
|
|
|
#define C_IDENT1 0x28
|
|
#define C_IDENT2 0x29
|
|
#define C_IDENT3 0x2b
|
|
|
|
/* Constants for parameters of various FET commands */
|
|
#define FET_CONFIG_VERIFICATION 0
|
|
#define FET_CONFIG_EMULATION 1
|
|
#define FET_CONFIG_CLKCTRL 2
|
|
#define FET_CONFIG_MCLKCTRL 3
|
|
#define FET_CONFIG_FLASH_TESET 4
|
|
#define FET_CONFIG_FLASH_LOCK 5
|
|
#define FET_CONFIG_PROTOCOL 8
|
|
|
|
#define FET_RUN_FREE 1
|
|
#define FET_RUN_STEP 2
|
|
#define FET_RUN_BREAKPOINT 3
|
|
|
|
#define FET_RESET_PUC 0x01
|
|
#define FET_RESET_RST 0x02
|
|
#define FET_RESET_VCC 0x04
|
|
#define FET_RESET_ALL 0x07
|
|
|
|
#define FET_ERASE_SEGMENT 0
|
|
#define FET_ERASE_MAIN 1
|
|
#define FET_ERASE_ALL 2
|
|
|
|
#define FET_POLL_RUNNING 0x01
|
|
#define FET_POLL_BREAKPOINT 0x02
|
|
|
|
/*********************************************************************
|
|
* Checksum calculation
|
|
*
|
|
* This code table is also derived from uif430.
|
|
*/
|
|
|
|
static const uint16_t fcstab[256] = {
|
|
0x0000, 0x1189, 0x2312, 0x329b, 0x4624, 0x57ad, 0x6536, 0x74bf,
|
|
0x8c48, 0x9dc1, 0xaf5a, 0xbed3, 0xca6c, 0xdbe5, 0xe97e, 0xf8f7,
|
|
0x1081, 0x0108, 0x3393, 0x221a, 0x56a5, 0x472c, 0x75b7, 0x643e,
|
|
0x9cc9, 0x8d40, 0xbfdb, 0xae52, 0xdaed, 0xcb64, 0xf9ff, 0xe876,
|
|
0x2102, 0x308b, 0x0210, 0x1399, 0x6726, 0x76af, 0x4434, 0x55bd,
|
|
0xad4a, 0xbcc3, 0x8e58, 0x9fd1, 0xeb6e, 0xfae7, 0xc87c, 0xd9f5,
|
|
0x3183, 0x200a, 0x1291, 0x0318, 0x77a7, 0x662e, 0x54b5, 0x453c,
|
|
0xbdcb, 0xac42, 0x9ed9, 0x8f50, 0xfbef, 0xea66, 0xd8fd, 0xc974,
|
|
0x4204, 0x538d, 0x6116, 0x709f, 0x0420, 0x15a9, 0x2732, 0x36bb,
|
|
0xce4c, 0xdfc5, 0xed5e, 0xfcd7, 0x8868, 0x99e1, 0xab7a, 0xbaf3,
|
|
0x5285, 0x430c, 0x7197, 0x601e, 0x14a1, 0x0528, 0x37b3, 0x263a,
|
|
0xdecd, 0xcf44, 0xfddf, 0xec56, 0x98e9, 0x8960, 0xbbfb, 0xaa72,
|
|
0x6306, 0x728f, 0x4014, 0x519d, 0x2522, 0x34ab, 0x0630, 0x17b9,
|
|
0xef4e, 0xfec7, 0xcc5c, 0xddd5, 0xa96a, 0xb8e3, 0x8a78, 0x9bf1,
|
|
0x7387, 0x620e, 0x5095, 0x411c, 0x35a3, 0x242a, 0x16b1, 0x0738,
|
|
0xffcf, 0xee46, 0xdcdd, 0xcd54, 0xb9eb, 0xa862, 0x9af9, 0x8b70,
|
|
0x8408, 0x9581, 0xa71a, 0xb693, 0xc22c, 0xd3a5, 0xe13e, 0xf0b7,
|
|
0x0840, 0x19c9, 0x2b52, 0x3adb, 0x4e64, 0x5fed, 0x6d76, 0x7cff,
|
|
0x9489, 0x8500, 0xb79b, 0xa612, 0xd2ad, 0xc324, 0xf1bf, 0xe036,
|
|
0x18c1, 0x0948, 0x3bd3, 0x2a5a, 0x5ee5, 0x4f6c, 0x7df7, 0x6c7e,
|
|
0xa50a, 0xb483, 0x8618, 0x9791, 0xe32e, 0xf2a7, 0xc03c, 0xd1b5,
|
|
0x2942, 0x38cb, 0x0a50, 0x1bd9, 0x6f66, 0x7eef, 0x4c74, 0x5dfd,
|
|
0xb58b, 0xa402, 0x9699, 0x8710, 0xf3af, 0xe226, 0xd0bd, 0xc134,
|
|
0x39c3, 0x284a, 0x1ad1, 0x0b58, 0x7fe7, 0x6e6e, 0x5cf5, 0x4d7c,
|
|
0xc60c, 0xd785, 0xe51e, 0xf497, 0x8028, 0x91a1, 0xa33a, 0xb2b3,
|
|
0x4a44, 0x5bcd, 0x6956, 0x78df, 0x0c60, 0x1de9, 0x2f72, 0x3efb,
|
|
0xd68d, 0xc704, 0xf59f, 0xe416, 0x90a9, 0x8120, 0xb3bb, 0xa232,
|
|
0x5ac5, 0x4b4c, 0x79d7, 0x685e, 0x1ce1, 0x0d68, 0x3ff3, 0x2e7a,
|
|
0xe70e, 0xf687, 0xc41c, 0xd595, 0xa12a, 0xb0a3, 0x8238, 0x93b1,
|
|
0x6b46, 0x7acf, 0x4854, 0x59dd, 0x2d62, 0x3ceb, 0x0e70, 0x1ff9,
|
|
0xf78f, 0xe606, 0xd49d, 0xc514, 0xb1ab, 0xa022, 0x92b9, 0x8330,
|
|
0x7bc7, 0x6a4e, 0x58d5, 0x495c, 0x3de3, 0x2c6a, 0x1ef1, 0x0f78
|
|
};
|
|
|
|
static uint16_t calc_checksum(uint8_t *cp, int len)
|
|
{
|
|
uint16_t fcs = 0xffff;
|
|
|
|
while (len--) {
|
|
fcs = (fcs >> 8) ^ fcstab[(fcs ^ *cp++) & 0xff];
|
|
}
|
|
|
|
return fcs ^ 0xffff;
|
|
}
|
|
|
|
/*********************************************************************
|
|
* FET packet transfer. This level of the interface deals in packets
|
|
* send to/from the device.
|
|
*/
|
|
|
|
/* This is a type of data transfer which appears to be unique to
|
|
* the RF2500. Blocks of data are sent to an internal buffer. Each
|
|
* block is prefixed with a buffer offset and a payload length.
|
|
*
|
|
* No checksums are included.
|
|
*/
|
|
static int send_rf2500_data(struct fet_device *dev,
|
|
const uint8_t *data, int len)
|
|
{
|
|
int offset = 0;
|
|
|
|
while (len) {
|
|
uint8_t pbuf[63];
|
|
int plen = len > 59 ? 59 : len;
|
|
|
|
pbuf[0] = 0x83;
|
|
pbuf[1] = offset & 0xff;
|
|
pbuf[2] = offset >> 8;
|
|
pbuf[3] = plen;
|
|
memcpy(pbuf + 4, data, plen);
|
|
if (dev->transport->send(dev->transport, pbuf, plen + 4) < 0)
|
|
return -1;
|
|
|
|
data += plen;
|
|
len -= plen;
|
|
offset += plen;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define PTYPE_ACK 0
|
|
#define PTYPE_CMD 1
|
|
#define PTYPE_PARAM 2
|
|
#define PTYPE_DATA 3
|
|
#define PTYPE_MIXED 4
|
|
#define PTYPE_NAK 5
|
|
#define PTYPE_FLASH_ACK 6
|
|
|
|
static int parse_packet(struct fet_device *dev, int plen)
|
|
{
|
|
uint16_t c = calc_checksum(dev->fet_buf + 2, plen - 2);
|
|
uint16_t r = LE_WORD(dev->fet_buf, plen);
|
|
int i = 2;
|
|
int type;
|
|
int error;
|
|
|
|
if (c != r) {
|
|
printc_err("fet: checksum error (calc %04x,"
|
|
" recv %04x)\n", c, r);
|
|
return -1;
|
|
}
|
|
|
|
if (plen < 6)
|
|
goto too_short;
|
|
|
|
dev->fet_reply.command_code = dev->fet_buf[i++];
|
|
type = dev->fet_buf[i++];
|
|
dev->fet_reply.state = dev->fet_buf[i++];
|
|
error = dev->fet_buf[i++];
|
|
|
|
if (error) {
|
|
printc_err("fet: FET returned error code %d (%s)\n",
|
|
error, fet_error(error));
|
|
return -1;
|
|
}
|
|
|
|
if (type == PTYPE_NAK) {
|
|
printc_err("fet: FET returned NAK\n");
|
|
return -1;
|
|
}
|
|
|
|
/* Parse packet parameters */
|
|
if (type == PTYPE_PARAM || type == PTYPE_MIXED) {
|
|
int j;
|
|
|
|
if (i + 2 > plen)
|
|
goto too_short;
|
|
|
|
dev->fet_reply.argc = LE_WORD(dev->fet_buf, i);
|
|
i += 2;
|
|
|
|
if (dev->fet_reply.argc >= MAX_PARAMS) {
|
|
printc_err("fet: too many params: %d\n",
|
|
dev->fet_reply.argc);
|
|
return -1;
|
|
}
|
|
|
|
for (j = 0; j < dev->fet_reply.argc; j++) {
|
|
if (i + 4 > plen)
|
|
goto too_short;
|
|
dev->fet_reply.argv[j] = LE_LONG(dev->fet_buf, i);
|
|
i += 4;
|
|
}
|
|
} else {
|
|
dev->fet_reply.argc = 0;
|
|
}
|
|
|
|
/* Extract a pointer to the data */
|
|
if (type == PTYPE_DATA || type == PTYPE_MIXED) {
|
|
if (i + 4 > plen)
|
|
goto too_short;
|
|
|
|
dev->fet_reply.datalen = LE_LONG(dev->fet_buf, i);
|
|
i += 4;
|
|
|
|
if (i + dev->fet_reply.datalen > plen)
|
|
goto too_short;
|
|
|
|
dev->fet_reply.data = dev->fet_buf + i;
|
|
} else {
|
|
dev->fet_reply.data = NULL;
|
|
dev->fet_reply.datalen = 0;
|
|
}
|
|
|
|
return 0;
|
|
|
|
too_short:
|
|
printc_err("fet: too short (%d bytes)\n",
|
|
plen);
|
|
return -1;
|
|
}
|
|
|
|
/* Receive a packet from the FET. The usual format is:
|
|
* <length (2 bytes)> <data> <checksum>
|
|
*
|
|
* The length is that of the data + checksum. Olimex JTAG adapters follow
|
|
* all packets with a trailing 0x7e byte, which must be discarded.
|
|
*/
|
|
static int recv_packet(struct fet_device *dev)
|
|
{
|
|
int pkt_extra = (dev->flags & FET_PROTO_EXTRA_RECV) ? 3 : 2;
|
|
int plen = LE_WORD(dev->fet_buf, 0);
|
|
|
|
/* If there's a packet still here from last time, get rid of it */
|
|
if (dev->fet_len >= plen + pkt_extra) {
|
|
memmove(dev->fet_buf, dev->fet_buf + plen + pkt_extra,
|
|
dev->fet_len - plen - pkt_extra);
|
|
dev->fet_len -= plen + pkt_extra;
|
|
}
|
|
|
|
/* Keep adding data to the buffer until we have a complete packet */
|
|
for (;;) {
|
|
int len;
|
|
|
|
plen = LE_WORD(dev->fet_buf, 0);
|
|
if (dev->fet_len >= plen + pkt_extra)
|
|
return parse_packet(dev, plen);
|
|
|
|
len = dev->transport->recv(dev->transport,
|
|
dev->fet_buf + dev->fet_len,
|
|
sizeof(dev->fet_buf) -
|
|
dev->fet_len);
|
|
if (len < 0)
|
|
return -1;
|
|
dev->fet_len += len;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
static int send_command(struct fet_device *dev, int command_code,
|
|
const uint32_t *params, int nparams,
|
|
const uint8_t *extra, int exlen)
|
|
{
|
|
uint8_t datapkt[MAX_BLOCK_SIZE * 2];
|
|
int len = 0;
|
|
|
|
uint8_t buf[MAX_BLOCK_SIZE * 3];
|
|
uint16_t cksum;
|
|
int i = 0;
|
|
int j;
|
|
|
|
assert (len + exlen + 2 <= sizeof(datapkt));
|
|
|
|
/* Command code and packet type */
|
|
datapkt[len++] = command_code;
|
|
datapkt[len++] = ((nparams > 0) ? 1 : 0) + ((exlen > 0) ? 2 : 0) + 1;
|
|
|
|
/* Optional parameters */
|
|
if (nparams > 0) {
|
|
datapkt[len++] = nparams & 0xff;
|
|
datapkt[len++] = nparams >> 8;
|
|
|
|
for (j = 0; j < nparams; j++) {
|
|
uint32_t p = params[j];
|
|
|
|
datapkt[len++] = p & 0xff;
|
|
p >>= 8;
|
|
datapkt[len++] = p & 0xff;
|
|
p >>= 8;
|
|
datapkt[len++] = p & 0xff;
|
|
p >>= 8;
|
|
datapkt[len++] = p & 0xff;
|
|
}
|
|
}
|
|
|
|
/* Extra data */
|
|
if (extra) {
|
|
int x = exlen;
|
|
|
|
datapkt[len++] = x & 0xff;
|
|
x >>= 8;
|
|
datapkt[len++] = x & 0xff;
|
|
x >>= 8;
|
|
datapkt[len++] = x & 0xff;
|
|
x >>= 8;
|
|
datapkt[len++] = x & 0xff;
|
|
|
|
memcpy(datapkt + len, extra, exlen);
|
|
len += exlen;
|
|
}
|
|
|
|
/* Checksum */
|
|
cksum = calc_checksum(datapkt, len);
|
|
datapkt[len++] = cksum & 0xff;
|
|
datapkt[len++] = cksum >> 8;
|
|
|
|
/* Copy into buf, escaping special characters and adding
|
|
* delimeters.
|
|
*/
|
|
if (!(dev->flags & FET_PROTO_NOLEAD_SEND))
|
|
buf[i++] = 0x7e;
|
|
|
|
for (j = 0; j < len; j++) {
|
|
char c = datapkt[j];
|
|
|
|
if (c == 0x7e || c == 0x7d) {
|
|
buf[i++] = 0x7d;
|
|
c ^= 0x20;
|
|
}
|
|
|
|
buf[i++] = c;
|
|
}
|
|
buf[i++] = 0x7e;
|
|
|
|
assert (i < sizeof(buf));
|
|
|
|
return dev->transport->send(dev->transport, buf, i);
|
|
}
|
|
|
|
static int xfer(struct fet_device *dev,
|
|
int command_code, const uint8_t *data, int datalen,
|
|
int nparams, ...)
|
|
{
|
|
uint32_t params[MAX_PARAMS];
|
|
int i;
|
|
va_list ap;
|
|
|
|
assert (nparams <= MAX_PARAMS);
|
|
|
|
va_start(ap, nparams);
|
|
for (i = 0; i < nparams; i++)
|
|
params[i] = va_arg(ap, uint32_t);
|
|
va_end(ap);
|
|
|
|
if (data && (dev->flags & FET_PROTO_SEPARATE_DATA)) {
|
|
assert (nparams + 1 <= MAX_PARAMS);
|
|
params[nparams++] = datalen;
|
|
|
|
if (send_rf2500_data(dev, data, datalen) < 0)
|
|
return -1;
|
|
if (send_command(dev, command_code, params, nparams,
|
|
NULL, 0) < 0)
|
|
return -1;
|
|
} else if (send_command(dev, command_code, params, nparams,
|
|
data, datalen) < 0)
|
|
return -1;
|
|
|
|
if (recv_packet(dev) < 0)
|
|
return -1;
|
|
|
|
if (dev->fet_reply.command_code != command_code) {
|
|
printc_err("fet: reply type mismatch\n");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**********************************************************************
|
|
* MSP430 high-level control functions
|
|
*/
|
|
|
|
static void show_dev_info(const char *name, const struct fet_device *dev)
|
|
{
|
|
printc("Device: %s\n", name);
|
|
printc_dbg("Code memory starts at 0x%04x\n", dev->code_start);
|
|
printc_dbg("Number of breakpoints: %d\n", dev->base.max_breakpoints);
|
|
}
|
|
|
|
static int identify_old(struct fet_device *dev)
|
|
{
|
|
char idtext[64];
|
|
|
|
if (xfer(dev, C_IDENTIFY, NULL, 0, 2, 70, 0) < 0)
|
|
return -1;
|
|
|
|
if (dev->fet_reply.datalen < 0x26) {
|
|
printc_err("fet: missing info\n");
|
|
return -1;
|
|
}
|
|
|
|
memcpy(idtext, dev->fet_reply.data + 4, 32);
|
|
idtext[32] = 0;
|
|
|
|
dev->code_start = LE_WORD(dev->fet_reply.data, 0x24);
|
|
dev->base.max_breakpoints = LE_WORD(dev->fet_reply.data, 0x2a);
|
|
|
|
show_dev_info(idtext, dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int identify_new(struct fet_device *dev, const char *force_id)
|
|
{
|
|
const struct fet_db_record *r;
|
|
|
|
if (xfer(dev, C_IDENT1, NULL, 0, 2, 0, 0) < 0) {
|
|
printc_err("fet: command C_IDENT1 failed\n");
|
|
return -1;
|
|
}
|
|
|
|
if (dev->fet_reply.datalen < 2) {
|
|
printc_err("fet: missing info\n");
|
|
return -1;
|
|
}
|
|
|
|
printc_dbg("Device ID: 0x%02x%02x\n",
|
|
dev->fet_reply.data[0], dev->fet_reply.data[1]);
|
|
|
|
if (force_id)
|
|
r = fet_db_find_by_name(force_id);
|
|
else
|
|
r = fet_db_find_by_msg28(dev->fet_reply.data,
|
|
dev->fet_reply.datalen);
|
|
|
|
if (!r) {
|
|
printc_err("fet: unknown device\n");
|
|
debug_hexdump("msg28_data:", dev->fet_reply.data,
|
|
dev->fet_reply.datalen);
|
|
return -1;
|
|
}
|
|
|
|
dev->code_start = LE_WORD(r->msg29_data, 0);
|
|
dev->base.max_breakpoints = r->msg29_data[0x14];
|
|
|
|
printc_dbg(" Code start address: 0x%x\n",
|
|
LE_WORD(r->msg29_data, 0));
|
|
/*
|
|
* The value at 0x02 seems to contain a "virtual code end
|
|
* address". So this value seems to be useful only for
|
|
* calculating the total ROM size.
|
|
*
|
|
* For example, as for the msp430f6736 with 128kb ROM, the ROM
|
|
* is split into two areas: A "near" ROM, and a "far ROM".
|
|
*/
|
|
const uint32_t codeSize =
|
|
LE_LONG(r->msg29_data, 0x02)
|
|
- LE_WORD(r->msg29_data, 0)
|
|
+ 1;
|
|
printc_dbg(" Code size : %lu byte = %lu kb\n",
|
|
codeSize,
|
|
codeSize / 1024);
|
|
|
|
printc_dbg(" RAM start address: 0x%x\n",
|
|
LE_WORD(r->msg29_data, 0x0c));
|
|
printc_dbg(" RAM end address: 0x%x\n",
|
|
LE_WORD(r->msg29_data, 0x0e));
|
|
const uint16_t ramSize =
|
|
LE_WORD(r->msg29_data, 0x0e)
|
|
- LE_WORD(r->msg29_data, 0x0c)
|
|
+ 1;
|
|
printc_dbg(" RAM size : %u byte = %u kb\n",
|
|
ramSize,
|
|
ramSize / 1024);
|
|
|
|
show_dev_info(r->name, dev);
|
|
|
|
if (xfer(dev, C_IDENT3, r->msg2b_data, r->msg2b_len, 0) < 0)
|
|
printc_err("fet: warning: message C_IDENT3 failed\n");
|
|
|
|
if (xfer(dev, C_IDENT2, r->msg29_data, FET_DB_MSG29_LEN,
|
|
3, r->msg29_params[0], r->msg29_params[1],
|
|
r->msg29_params[2]) < 0) {
|
|
printc_err("fet: message C_IDENT2 failed\n");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int do_identify(struct fet_device *dev, const char *force_id)
|
|
{
|
|
if (dev->flags & FET_PROTO_IDENTIFY_NEW)
|
|
return identify_new(dev, force_id);
|
|
|
|
if (dev->version < 20300000)
|
|
return identify_old(dev);
|
|
|
|
return identify_new(dev, force_id);
|
|
}
|
|
|
|
static int do_run(struct fet_device *dev, int type)
|
|
{
|
|
if (xfer(dev, C_RUN, NULL, 0, 2, type, 0) < 0) {
|
|
printc_err("fet: failed to restart CPU\n");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fet_erase(device_t dev_base, device_erase_type_t type,
|
|
address_t addr)
|
|
{
|
|
struct fet_device *dev = (struct fet_device *)dev_base;
|
|
int fet_erase_type = FET_ERASE_MAIN;
|
|
|
|
if (xfer(dev, C_CONFIGURE, NULL, 0, 2, FET_CONFIG_CLKCTRL, 0x26) < 0) {
|
|
printc_err("fet: config (1) failed\n");
|
|
return -1;
|
|
}
|
|
|
|
if (xfer(dev, C_CONFIGURE, NULL, 0, 2, FET_CONFIG_FLASH_LOCK, 0) < 0) {
|
|
printc_err("fet: config (2) failed\n");
|
|
return -1;
|
|
}
|
|
|
|
switch (type) {
|
|
case DEVICE_ERASE_MAIN:
|
|
fet_erase_type = FET_ERASE_MAIN;
|
|
addr = dev->code_start;
|
|
break;
|
|
|
|
case DEVICE_ERASE_SEGMENT:
|
|
fet_erase_type = FET_ERASE_SEGMENT;
|
|
break;
|
|
|
|
case DEVICE_ERASE_ALL:
|
|
fet_erase_type = FET_ERASE_ALL;
|
|
addr = dev->code_start;
|
|
break;
|
|
|
|
default:
|
|
printc_err("fet: unsupported erase type\n");
|
|
return -1;
|
|
}
|
|
|
|
if (xfer(dev, C_ERASE, NULL, 0, 3, fet_erase_type, addr, 0) < 0) {
|
|
printc_err("fet: erase command failed\n");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static device_status_t fet_poll(device_t dev_base)
|
|
{
|
|
struct fet_device *dev = (struct fet_device *)dev_base;
|
|
|
|
ctrlc_reset();
|
|
if ((delay_ms(50) < 0) || ctrlc_check())
|
|
return DEVICE_STATUS_INTR;
|
|
|
|
if (xfer(dev, C_STATE, NULL, 0, 1, 0) < 0) {
|
|
printc_err("fet: polling failed\n");
|
|
return DEVICE_STATUS_ERROR;
|
|
}
|
|
|
|
if (!(dev->fet_reply.argv[0] & FET_POLL_RUNNING))
|
|
return DEVICE_STATUS_HALTED;
|
|
|
|
return DEVICE_STATUS_RUNNING;
|
|
}
|
|
|
|
static int refresh_bps(struct fet_device *dev)
|
|
{
|
|
int i;
|
|
int ret = 0;
|
|
|
|
for (i = 0; i < dev->base.max_breakpoints; i++) {
|
|
struct device_breakpoint *bp = &dev->base.breakpoints[i];
|
|
|
|
if ((bp->flags & DEVICE_BP_DIRTY) &&
|
|
bp->type == DEVICE_BPTYPE_BREAK) {
|
|
uint16_t addr = bp->addr;
|
|
|
|
if (!(bp->flags & DEVICE_BP_ENABLED))
|
|
addr = 0;
|
|
|
|
if (xfer(dev, C_BREAKPOINT, NULL, 0,
|
|
2, i, addr) < 0) {
|
|
printc_err("fet: failed to refresh "
|
|
"breakpoint #%d\n", i);
|
|
ret = -1;
|
|
} else {
|
|
bp->flags &= ~DEVICE_BP_DIRTY;
|
|
}
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int fet_ctl(device_t dev_base, device_ctl_t action)
|
|
{
|
|
struct fet_device *dev = (struct fet_device *)dev_base;
|
|
|
|
switch (action) {
|
|
case DEVICE_CTL_RESET:
|
|
if (xfer(dev, C_RESET, NULL, 0, 3, FET_RESET_ALL, 0, 0) < 0) {
|
|
printc_err("fet: reset failed\n");
|
|
return -1;
|
|
}
|
|
break;
|
|
|
|
case DEVICE_CTL_RUN:
|
|
if (refresh_bps(dev) < 0)
|
|
printc_err("warning: fet: failed to refresh "
|
|
"breakpoints\n");
|
|
return do_run(dev, FET_RUN_BREAKPOINT);
|
|
|
|
case DEVICE_CTL_HALT:
|
|
if (xfer(dev, C_STATE, NULL, 0, 1, 1) < 0) {
|
|
printc_err("fet: failed to halt CPU\n");
|
|
return -1;
|
|
}
|
|
break;
|
|
|
|
case DEVICE_CTL_STEP:
|
|
if (do_run(dev, FET_RUN_STEP) < 0)
|
|
return -1;
|
|
|
|
for (;;) {
|
|
device_status_t status = fet_poll(dev_base);
|
|
|
|
if (status == DEVICE_STATUS_ERROR ||
|
|
status == DEVICE_STATUS_INTR)
|
|
return -1;
|
|
|
|
if (status == DEVICE_STATUS_HALTED)
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void fet_destroy(device_t dev_base)
|
|
{
|
|
struct fet_device *dev = (struct fet_device *)dev_base;
|
|
|
|
/* The second argument to C_RESET is a boolean which specifies
|
|
* whether the chip should run or not. The final argument is
|
|
* also a boolean. Setting it non-zero is required to get the
|
|
* RST pin working on the G2231, but it must be zero on the
|
|
* FR5739, or else the value of the reset vector gets set to
|
|
* 0xffff at the start of the next JTAG session.
|
|
*/
|
|
if (xfer(dev, C_RESET, NULL, 0, 3, FET_RESET_ALL, 1,
|
|
!device_is_fram(dev_base)) < 0)
|
|
printc_err("fet: final reset failed\n");
|
|
|
|
if (xfer(dev, C_CLOSE, NULL, 0, 1, 0) < 0)
|
|
printc_err("fet: close command failed\n");
|
|
|
|
dev->transport->destroy(dev->transport);
|
|
free(dev);
|
|
}
|
|
|
|
static int read_byte(struct fet_device *dev, address_t addr, uint8_t *out)
|
|
{
|
|
address_t base = addr & ~1;
|
|
|
|
if (xfer(dev, C_READMEMORY, NULL, 0, 2, base, 2) < 0) {
|
|
printc_err("fet: failed to read byte from 0x%04x\n", addr);
|
|
return -1;
|
|
}
|
|
|
|
*out = dev->fet_reply.data[addr & 1];
|
|
return 0;
|
|
}
|
|
|
|
static int write_byte(struct fet_device *dev, address_t addr, uint8_t value)
|
|
{
|
|
uint8_t buf[2];
|
|
address_t base = addr & ~1;
|
|
|
|
if (xfer(dev, C_READMEMORY, NULL, 0, 2, base, 2) < 0) {
|
|
printc_err("fet: failed to read byte from 0x%04x\n", addr);
|
|
return -1;
|
|
}
|
|
|
|
buf[0] = dev->fet_reply.data[0];
|
|
buf[1] = dev->fet_reply.data[1];
|
|
buf[addr & 1] = value;
|
|
|
|
if (xfer(dev, C_WRITEMEMORY, buf, 2, 1, base) < 0) {
|
|
printc_err("fet: failed to write byte from 0x%04x\n", addr);
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int get_adjusted_block_size(void)
|
|
{
|
|
int block_size = opdb_get_numeric("fet_block_size") & ~1;
|
|
|
|
if (block_size < 2)
|
|
block_size = 2;
|
|
if (block_size > MAX_BLOCK_SIZE)
|
|
block_size = MAX_BLOCK_SIZE;
|
|
|
|
return block_size;
|
|
}
|
|
|
|
int fet_readmem(device_t dev_base, address_t addr, uint8_t *buffer,
|
|
address_t count)
|
|
{
|
|
struct fet_device *dev = (struct fet_device *)dev_base;
|
|
int block_size = get_adjusted_block_size();
|
|
|
|
if (addr & 1) {
|
|
if (read_byte(dev, addr, buffer) < 0)
|
|
return -1;
|
|
addr++;
|
|
buffer++;
|
|
count--;
|
|
}
|
|
|
|
while (count > 1) {
|
|
int plen = count > block_size ? block_size : count;
|
|
|
|
plen &= ~0x1;
|
|
|
|
if (xfer(dev, C_READMEMORY, NULL, 0, 2, addr, plen) < 0) {
|
|
printc_err("fet: failed to read "
|
|
"from 0x%04x\n", addr);
|
|
return -1;
|
|
}
|
|
|
|
if (dev->fet_reply.datalen < plen) {
|
|
printc_err("fet: short data: "
|
|
"%d bytes\n", dev->fet_reply.datalen);
|
|
return -1;
|
|
}
|
|
|
|
memcpy(buffer, dev->fet_reply.data, plen);
|
|
buffer += plen;
|
|
count -= plen;
|
|
addr += plen;
|
|
}
|
|
|
|
if (count && read_byte(dev, addr, buffer) < 0)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int fet_writemem(device_t dev_base, address_t addr,
|
|
const uint8_t *buffer, address_t count)
|
|
{
|
|
struct fet_device *dev = (struct fet_device *)dev_base;
|
|
int block_size = get_adjusted_block_size();
|
|
|
|
if (addr & 1) {
|
|
if (write_byte(dev, addr, *buffer) < 0)
|
|
return -1;
|
|
addr++;
|
|
buffer++;
|
|
count--;
|
|
}
|
|
|
|
while (count > 1) {
|
|
int plen = count > block_size ? block_size : count;
|
|
int ret;
|
|
|
|
plen &= ~0x1;
|
|
|
|
ret = xfer(dev, C_WRITEMEMORY, buffer, plen, 1, addr);
|
|
|
|
if (ret < 0) {
|
|
printc_err("fet: failed to write to 0x%04x\n",
|
|
addr);
|
|
return -1;
|
|
}
|
|
|
|
buffer += plen;
|
|
count -= plen;
|
|
addr += plen;
|
|
}
|
|
|
|
if (count && write_byte(dev, addr, *buffer) < 0)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fet_getregs(device_t dev_base, address_t *regs)
|
|
{
|
|
struct fet_device *dev = (struct fet_device *)dev_base;
|
|
int i;
|
|
|
|
if (xfer(dev, C_READREGISTERS, NULL, 0, 0) < 0)
|
|
return -1;
|
|
|
|
if (dev->fet_reply.datalen < DEVICE_NUM_REGS * 4) {
|
|
printc_err("fet: short reply (%d bytes)\n",
|
|
dev->fet_reply.datalen);
|
|
return -1;
|
|
}
|
|
|
|
for (i = 0; i < DEVICE_NUM_REGS; i++)
|
|
regs[i] = LE_LONG(dev->fet_reply.data, i * 4);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fet_setregs(device_t dev_base, const address_t *regs)
|
|
{
|
|
struct fet_device *dev = (struct fet_device *)dev_base;
|
|
uint8_t buf[DEVICE_NUM_REGS * 4];;
|
|
int i;
|
|
int ret;
|
|
|
|
memset(buf, 0, sizeof(buf));
|
|
|
|
for (i = 0; i < DEVICE_NUM_REGS; i++) {
|
|
buf[i * 4] = regs[i] & 0xff;
|
|
buf[i * 4 + 1] = (regs[i] >> 8) & 0xff;
|
|
buf[i * 4 + 2] = (regs[i] >> 16) & 0xff;
|
|
buf[i * 4 + 3] = regs[i] >> 24;
|
|
}
|
|
|
|
ret = xfer(dev, C_WRITEREGISTERS, buf, sizeof(buf), 1, 0xffff);
|
|
|
|
if (ret < 0) {
|
|
printc_err("fet: context set failed\n");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int do_configure(struct fet_device *dev,
|
|
const struct device_args *args)
|
|
{
|
|
if (!(args->flags & DEVICE_FLAG_JTAG)) {
|
|
if (!xfer(dev, C_CONFIGURE, NULL, 0,
|
|
2, FET_CONFIG_PROTOCOL, 1)) {
|
|
printc_dbg("Configured for Spy-Bi-Wire\n");
|
|
return 0;
|
|
}
|
|
|
|
printc_err("fet: Spy-Bi-Wire configuration failed\n");
|
|
return -1;
|
|
}
|
|
|
|
if (!xfer(dev, C_CONFIGURE, NULL, 0,
|
|
2, FET_CONFIG_PROTOCOL, 2)) {
|
|
printc_dbg("Configured for JTAG (2)\n");
|
|
return 0;
|
|
}
|
|
|
|
printc_err("fet: warning: JTAG configuration failed -- "
|
|
"retrying\n");
|
|
|
|
if (!xfer(dev, C_CONFIGURE, NULL, 0,
|
|
2, FET_CONFIG_PROTOCOL, 0)) {
|
|
printc_dbg("Configured for JTAG (0)\n");
|
|
return 0;
|
|
}
|
|
|
|
printc_err("fet: JTAG configuration failed\n");
|
|
return -1;
|
|
}
|
|
|
|
int try_open(struct fet_device *dev, const struct device_args *args,
|
|
int send_reset)
|
|
{
|
|
transport_t transport = dev->transport;
|
|
|
|
if (dev->flags & FET_PROTO_NOLEAD_SEND) {
|
|
printc("Resetting Olimex command processor...\n");
|
|
transport->send(dev->transport, (const uint8_t *)"\x7e", 1);
|
|
delay_ms(5);
|
|
transport->send(dev->transport, (const uint8_t *)"\x7e", 1);
|
|
delay_ms(5);
|
|
}
|
|
|
|
printc_dbg("Initializing FET...\n");
|
|
if (xfer(dev, C_INITIALIZE, NULL, 0, 0) < 0) {
|
|
printc_err("fet: open failed\n");
|
|
return -1;
|
|
}
|
|
|
|
dev->version = dev->fet_reply.argv[0];
|
|
printc_dbg("FET protocol version is %d\n", dev->version);
|
|
|
|
if (xfer(dev, 0x27, NULL, 0, 1, 4) < 0) {
|
|
printc_err("fet: init failed\n");
|
|
return -1;
|
|
}
|
|
|
|
if (do_configure(dev, args) < 0)
|
|
return -1;
|
|
|
|
if (send_reset || args->flags & DEVICE_FLAG_FORCE_RESET) {
|
|
printc_dbg("Sending reset...\n");
|
|
if (xfer(dev, C_RESET, NULL, 0, 3, FET_RESET_ALL, 0, 0) < 0)
|
|
printc_err("warning: fet: reset failed\n");
|
|
}
|
|
|
|
/* set VCC */
|
|
if (xfer(dev, C_VCC, NULL, 0, 1, args->vcc_mv) < 0)
|
|
printc_err("warning: fet: set VCC failed\n");
|
|
else
|
|
printc_dbg("Set Vcc: %d mV\n", args->vcc_mv);
|
|
|
|
/* Identify the chip */
|
|
if (do_identify(dev, args->forced_chip_id) < 0) {
|
|
printc_err("fet: identify failed\n");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static device_t fet_open(const struct device_args *args,
|
|
int flags, transport_t transport,
|
|
const struct device_class *type)
|
|
{
|
|
struct fet_device *dev = malloc(sizeof(*dev));
|
|
int i;
|
|
|
|
if (!dev) {
|
|
pr_error("fet: failed to allocate memory");
|
|
return NULL;
|
|
}
|
|
|
|
memset(dev, 0, sizeof(*dev));
|
|
|
|
dev->base.type = type;
|
|
dev->transport = transport;
|
|
dev->flags = flags;
|
|
|
|
if (try_open(dev, args, flags & FET_PROTO_FORCE_RESET) < 0) {
|
|
delay_ms(500);
|
|
printc("Trying again...\n");
|
|
if (try_open(dev, args, 1) < 0)
|
|
goto fail;
|
|
}
|
|
|
|
/* Make sure breakpoints get reset on the first run */
|
|
if (dev->base.max_breakpoints > DEVICE_MAX_BREAKPOINTS)
|
|
dev->base.max_breakpoints = DEVICE_MAX_BREAKPOINTS;
|
|
for (i = 0; i < dev->base.max_breakpoints; i++)
|
|
dev->base.breakpoints[i].flags = DEVICE_BP_DIRTY;
|
|
|
|
return (device_t)dev;
|
|
|
|
fail:
|
|
transport->destroy(transport);
|
|
free(dev);
|
|
return NULL;
|
|
}
|
|
|
|
static device_t fet_open_rf2500(const struct device_args *args)
|
|
{
|
|
transport_t trans;
|
|
|
|
if (args->flags & DEVICE_FLAG_TTY) {
|
|
printc_err("This driver does not support TTY devices.\n");
|
|
return NULL;
|
|
}
|
|
|
|
trans = rf2500_open(args->path, args->requested_serial);
|
|
if (!trans)
|
|
return NULL;
|
|
|
|
return fet_open(args, FET_PROTO_SEPARATE_DATA, trans, &device_rf2500);
|
|
}
|
|
|
|
const struct device_class device_rf2500 = {
|
|
.name = "rf2500",
|
|
.help =
|
|
"eZ430-RF2500 devices. Only USB connection is supported.",
|
|
.open = fet_open_rf2500,
|
|
.destroy = fet_destroy,
|
|
.readmem = fet_readmem,
|
|
.writemem = fet_writemem,
|
|
.erase = fet_erase,
|
|
.getregs = fet_getregs,
|
|
.setregs = fet_setregs,
|
|
.ctl = fet_ctl,
|
|
.poll = fet_poll
|
|
};
|
|
|
|
static device_t fet_open_olimex(const struct device_args *args)
|
|
{
|
|
transport_t trans;
|
|
|
|
if (args->flags & DEVICE_FLAG_TTY)
|
|
trans = uif_open(args->path, UIF_TYPE_OLIMEX);
|
|
else
|
|
trans = olimex_open(args->path, args->requested_serial);
|
|
|
|
if (!trans)
|
|
return NULL;
|
|
|
|
return fet_open(args, FET_PROTO_NOLEAD_SEND | FET_PROTO_EXTRA_RECV |
|
|
FET_PROTO_IDENTIFY_NEW | FET_PROTO_FORCE_RESET,
|
|
trans, &device_olimex);
|
|
}
|
|
|
|
const struct device_class device_olimex = {
|
|
.name = "olimex",
|
|
.help =
|
|
"Olimex MSP-JTAG-TINY.",
|
|
.open = fet_open_olimex,
|
|
.destroy = fet_destroy,
|
|
.readmem = fet_readmem,
|
|
.writemem = fet_writemem,
|
|
.erase = fet_erase,
|
|
.getregs = fet_getregs,
|
|
.setregs = fet_setregs,
|
|
.ctl = fet_ctl,
|
|
.poll = fet_poll
|
|
};
|
|
|
|
static device_t fet_open_olimex_v1(const struct device_args *args)
|
|
{
|
|
transport_t trans;
|
|
|
|
if (args->flags & DEVICE_FLAG_TTY)
|
|
trans = uif_open(args->path, UIF_TYPE_OLIMEX_V1);
|
|
else
|
|
trans = olimex_open(args->path, args->requested_serial);
|
|
|
|
if (!trans)
|
|
return NULL;
|
|
|
|
return fet_open(args, FET_PROTO_NOLEAD_SEND | FET_PROTO_EXTRA_RECV |
|
|
FET_PROTO_IDENTIFY_NEW,
|
|
trans, &device_olimex_v1);
|
|
}
|
|
|
|
const struct device_class device_olimex_v1 = {
|
|
.name = "olimex-v1",
|
|
.help =
|
|
"Olimex MSP-JTAG-TINY (V1).",
|
|
.open = fet_open_olimex_v1,
|
|
.destroy = fet_destroy,
|
|
.readmem = fet_readmem,
|
|
.writemem = fet_writemem,
|
|
.erase = fet_erase,
|
|
.getregs = fet_getregs,
|
|
.setregs = fet_setregs,
|
|
.ctl = fet_ctl,
|
|
.poll = fet_poll
|
|
};
|
|
|
|
static device_t fet_open_olimex_iso(const struct device_args *args)
|
|
{
|
|
transport_t trans;
|
|
|
|
if (args->flags & DEVICE_FLAG_TTY)
|
|
trans = uif_open(args->path, UIF_TYPE_OLIMEX_ISO);
|
|
else
|
|
trans = olimex_iso_open(args->path, args->requested_serial);
|
|
|
|
if (!trans)
|
|
return NULL;
|
|
|
|
return fet_open(args, FET_PROTO_NOLEAD_SEND | FET_PROTO_EXTRA_RECV |
|
|
FET_PROTO_IDENTIFY_NEW,
|
|
trans, &device_olimex_iso);
|
|
}
|
|
|
|
const struct device_class device_olimex_iso = {
|
|
.name = "olimex-iso",
|
|
.help =
|
|
"Olimex MSP-JTAG-ISO.",
|
|
.open = fet_open_olimex_iso,
|
|
.destroy = fet_destroy,
|
|
.readmem = fet_readmem,
|
|
.writemem = fet_writemem,
|
|
.erase = fet_erase,
|
|
.getregs = fet_getregs,
|
|
.setregs = fet_setregs,
|
|
.ctl = fet_ctl,
|
|
.poll = fet_poll
|
|
};
|
|
|
|
static device_t fet_open_uif(const struct device_args *args)
|
|
{
|
|
transport_t trans;
|
|
|
|
if (args->flags & DEVICE_FLAG_TTY)
|
|
trans = uif_open(args->path, UIF_TYPE_FET);
|
|
else
|
|
trans = ti3410_open(args->path, args->requested_serial);
|
|
|
|
if (!trans)
|
|
return NULL;
|
|
|
|
return fet_open(args, 0, trans, &device_uif);
|
|
}
|
|
|
|
const struct device_class device_uif = {
|
|
.name = "uif",
|
|
.help =
|
|
"TI FET430UIF and compatible devices (e.g. eZ430).",
|
|
.open = fet_open_uif,
|
|
.destroy = fet_destroy,
|
|
.readmem = fet_readmem,
|
|
.writemem = fet_writemem,
|
|
.erase = fet_erase,
|
|
.getregs = fet_getregs,
|
|
.setregs = fet_setregs,
|
|
.ctl = fet_ctl,
|
|
.poll = fet_poll
|
|
};
|