900 lines
22 KiB
C
900 lines
22 KiB
C
/* MSPDebug - debugging tool for the eZ430
|
|
* Copyright (C) 2009, 2010 Daniel Beer
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
* Various constants and tables come from uif430, written by Robert
|
|
* Kavaler (kavaler@diva.com). This is available under the same license
|
|
* as this program, from www.relavak.com.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdarg.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <unistd.h>
|
|
|
|
#include "util.h"
|
|
#include "device.h"
|
|
|
|
static const struct fet_transport *fet_transport;
|
|
static int fet_is_rf2500;
|
|
|
|
/**********************************************************************
|
|
* FET command codes.
|
|
*
|
|
* These come from uif430 by Robert Kavaler (kavaler@diva.com).
|
|
* www.relavak.com
|
|
*/
|
|
|
|
#define C_INITIALIZE 0x01
|
|
#define C_CLOSE 0x02
|
|
#define C_IDENTIFY 0x03
|
|
#define C_DEVICE 0x04
|
|
#define C_CONFIGURE 0x05
|
|
#define C_VCC 0x06
|
|
#define C_RESET 0x07
|
|
#define C_READREGISTERS 0x08
|
|
#define C_WRITEREGISTERS 0x09
|
|
#define C_READREGISTER 0x0a
|
|
#define C_WRITEREGISTER 0x0b
|
|
#define C_ERASE 0x0c
|
|
#define C_READMEMORY 0x0d
|
|
#define C_WRITEMEMORY 0x0e
|
|
#define C_FASTFLASHER 0x0f
|
|
#define C_BREAKPOINT 0x10
|
|
#define C_RUN 0x11
|
|
#define C_STATE 0x12
|
|
#define C_SECURE 0x13
|
|
#define C_VERIFYMEMORY 0x14
|
|
#define C_FASTVERIFYMEMORY 0x15
|
|
#define C_ERASECHECK 0x16
|
|
#define C_EEMOPEN 0x17
|
|
#define C_EEMREADREGISTER 0x18
|
|
#define C_EEMREADREGISTERTEST 0x19
|
|
#define C_EEMWRITEREGISTER 0x1a
|
|
#define C_EEMCLOSE 0x1b
|
|
#define C_ERRORNUMBER 0x1c
|
|
#define C_GETCURVCCT 0x1d
|
|
#define C_GETEXTVOLTAGE 0x1e
|
|
#define C_FETSELFTEST 0x1f
|
|
#define C_FETSETSIGNALS 0x20
|
|
#define C_FETRESET 0x21
|
|
#define C_READI2C 0x22
|
|
#define C_WRITEI2C 0x23
|
|
#define C_ENTERBOOTLOADER 0x24
|
|
|
|
/* Constants for parameters of various FET commands */
|
|
#define FET_RUN_FREE 1
|
|
#define FET_RUN_STEP 2
|
|
#define FET_RUN_BREAKPOINT 3
|
|
|
|
#define FET_RESET_PUC 0x01
|
|
#define FET_RESET_RST 0x02
|
|
#define FET_RESET_VCC 0x04
|
|
#define FET_RESET_ALL 0x07
|
|
|
|
#define FET_ERASE_SEGMENT 0
|
|
#define FET_ERASE_MAIN 1
|
|
#define FET_ERASE_ALL 2
|
|
|
|
#define FET_POLL_RUNNING 0x01
|
|
#define FET_POLL_BREAKPOINT 0x02
|
|
|
|
/*********************************************************************
|
|
* Checksum calculation
|
|
*/
|
|
|
|
static u_int16_t code_left[65536];
|
|
|
|
/* Initialise the code table. The code table is a function which takes
|
|
* us from one checksum position code to the next.
|
|
*/
|
|
|
|
static void init_codes(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 65536; i++) {
|
|
u_int16_t right = i << 1;
|
|
|
|
if (i & 0x8000)
|
|
right ^= 0x0811;
|
|
|
|
code_left[right] = i;
|
|
}
|
|
}
|
|
|
|
/* Calculate the checksum over the given payload and return it. This checksum
|
|
* needs to be stored in little-endian format at the end of the payload.
|
|
*/
|
|
|
|
static u_int16_t calc_checksum(const u_int8_t *data, int len)
|
|
{
|
|
int i;
|
|
u_int16_t cksum = 0xffff;
|
|
u_int16_t code = 0x8408;
|
|
|
|
for (i = len * 8; i; i--)
|
|
cksum = code_left[cksum];
|
|
|
|
for (i = len - 1; i >= 0; i--) {
|
|
int j;
|
|
u_int8_t c = data[i];
|
|
|
|
for (j = 0; j < 8; j++) {
|
|
if (c & 0x80)
|
|
cksum ^= code;
|
|
code = code_left[code];
|
|
c <<= 1;
|
|
}
|
|
}
|
|
|
|
return cksum ^ 0xffff;
|
|
}
|
|
|
|
/*********************************************************************
|
|
* FET packet transfer. This level of the interface deals in packets
|
|
* send to/from the device.
|
|
*/
|
|
|
|
/* This is a type of data transfer which appears to be unique to
|
|
* the RF2500. Blocks of data are sent to an internal buffer. Each
|
|
* block is prefixed with a buffer offset and a payload length.
|
|
*
|
|
* No checksums are included.
|
|
*/
|
|
static int send_rf2500_data(const u_int8_t *data, int len)
|
|
{
|
|
int offset = 0;
|
|
|
|
assert (fet_transport != NULL);
|
|
while (len) {
|
|
u_int8_t pbuf[63];
|
|
int plen = len > 59 ? 59 : len;
|
|
|
|
pbuf[0] = 0x83;
|
|
pbuf[1] = offset & 0xff;
|
|
pbuf[2] = offset >> 8;
|
|
pbuf[3] = plen;
|
|
memcpy(pbuf + 4, data, plen);
|
|
if (fet_transport->send(pbuf, plen + 4) < 0)
|
|
return -1;
|
|
|
|
data += plen;
|
|
len -= plen;
|
|
offset += plen;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u_int8_t fet_buf[65538];
|
|
static int fet_len;
|
|
|
|
#define MAX_PARAMS 16
|
|
|
|
/* Recieved packet is parsed into this struct */
|
|
static struct {
|
|
int command_code;
|
|
int state;
|
|
|
|
int argc;
|
|
u_int32_t argv[MAX_PARAMS];
|
|
|
|
u_int8_t *data;
|
|
int datalen;
|
|
} fet_reply;
|
|
|
|
#define BUFFER_BYTE(b, x) ((int)((u_int8_t *)(b))[x])
|
|
#define BUFFER_WORD(b, x) ((BUFFER_BYTE(b, x + 1) << 8) | BUFFER_BYTE(b, x))
|
|
#define BUFFER_LONG(b, x) ((BUFFER_WORD(b, x + 2) << 16) | BUFFER_WORD(b, x))
|
|
|
|
#define PTYPE_ACK 0
|
|
#define PTYPE_CMD 1
|
|
#define PTYPE_PARAM 2
|
|
#define PTYPE_DATA 3
|
|
#define PTYPE_MIXED 4
|
|
#define PTYPE_NAK 5
|
|
#define PTYPE_FLASH_ACK 6
|
|
|
|
/* This table is taken from uif430 */
|
|
static const char *error_strings[] =
|
|
{
|
|
"No error", // 0
|
|
"Could not initialize device interface", // 1
|
|
"Could not close device interface", // 2
|
|
"Invalid parameter(s)", // 3
|
|
"Could not find device (or device not supported)", // 4
|
|
"Unknown device", // 5
|
|
"Could not read device memory", // 6
|
|
"Could not write device memory", // 7
|
|
"Could not read device configuration fuses", // 8
|
|
"Incorrectly configured device; device derivative not supported",// 9
|
|
|
|
"Could not set device Vcc", // 10
|
|
"Could not reset device", // 11
|
|
"Could not preserve/restore device memory", // 12
|
|
"Could not set device operating frequency", // 13
|
|
"Could not erase device memory", // 14
|
|
"Could not set device breakpoint", // 15
|
|
"Could not single step device", // 16
|
|
"Could not run device (to breakpoint)", // 17
|
|
"Could not determine device state", // 18
|
|
"Could not open Enhanced Emulation Module", // 19
|
|
|
|
"Could not read Enhanced Emulation Module register", // 20
|
|
"Could not write Enhanced Emulation Module register", // 21
|
|
"Could not close Enhanced Emulation Module", // 22
|
|
"File open error", // 23
|
|
"Could not determine file type", // 24
|
|
"Unexpected end of file encountered", // 25
|
|
"File input/output error", // 26
|
|
"File data error", // 27
|
|
"Verification error", // 28
|
|
"Could not blow device security fuse", // 29
|
|
|
|
"Could not access device - security fuse is blown", // 30
|
|
"Error within Intel Hex file", // 31
|
|
"Could not write device Register", // 32
|
|
"Could not read device Register", // 33
|
|
"Not supported by selected Interface", // 34
|
|
"Could not communicate with FET", // 35
|
|
"No external power supply detected", // 36
|
|
"External power too low", // 37
|
|
"External power detected", // 38
|
|
"External power too high", // 39
|
|
|
|
"Hardware Self Test Error", // 40
|
|
"Fast Flash Routine experienced a timeout", // 41
|
|
"Could not create thread for polling", // 42
|
|
"Could not initialize Enhanced Emulation Module", // 43
|
|
"Insufficient resources", // 44
|
|
"No clock control emulation on connected device", // 45
|
|
"No state storage buffer implemented on connected device", // 46
|
|
"Could not read trace buffer", // 47
|
|
"Enable the variable watch function", // 48
|
|
"No trigger sequencer implemented on connected device", // 49
|
|
|
|
"Could not read sequencer state - Sequencer is disabled", // 50
|
|
"Could not remove trigger - Used in sequencer", // 51
|
|
"Could not set combination - Trigger is used in sequencer", // 52
|
|
"Invalid error number", // 53
|
|
};
|
|
|
|
static int parse_packet(int plen)
|
|
{
|
|
u_int16_t c = calc_checksum(fet_buf + 2, plen - 2);
|
|
u_int16_t r = BUFFER_WORD(fet_buf, plen);
|
|
int i = 2;
|
|
int type;
|
|
int error;
|
|
|
|
if (c != r) {
|
|
fprintf(stderr, "fet: checksum error (calc %04x,"
|
|
" recv %04x)\n", c, r);
|
|
return -1;
|
|
}
|
|
|
|
if (plen < 6)
|
|
goto too_short;
|
|
|
|
fet_reply.command_code = fet_buf[i++];
|
|
type = fet_buf[i++];
|
|
fet_reply.state = fet_buf[i++];
|
|
error = fet_buf[i++];
|
|
|
|
if (error) {
|
|
fprintf(stderr, "fet: FET returned error code %d\n",
|
|
error);
|
|
if (error > 0 && error < ARRAY_LEN(error_strings)) {
|
|
fprintf(stderr, " (%s)\n", error_strings[error]);
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
if (type == PTYPE_NAK) {
|
|
fprintf(stderr, "fet: FET returned NAK\n");
|
|
return -1;
|
|
}
|
|
|
|
/* Parse packet parameters */
|
|
if (type == PTYPE_PARAM || type == PTYPE_MIXED) {
|
|
int j;
|
|
|
|
if (i + 2 > plen)
|
|
goto too_short;
|
|
|
|
fet_reply.argc = BUFFER_WORD(fet_buf, i);
|
|
i += 2;
|
|
|
|
if (fet_reply.argc >= MAX_PARAMS) {
|
|
fprintf(stderr, "fet: too many params: %d\n",
|
|
fet_reply.argc);
|
|
return -1;
|
|
}
|
|
|
|
for (j = 0; j < fet_reply.argc; j++) {
|
|
if (i + 4 > plen)
|
|
goto too_short;
|
|
fet_reply.argv[j] = BUFFER_LONG(fet_buf, i);
|
|
i += 4;
|
|
}
|
|
} else {
|
|
fet_reply.argc = 0;
|
|
}
|
|
|
|
/* Extract a pointer to the data */
|
|
if (type == PTYPE_DATA || type == PTYPE_MIXED) {
|
|
if (i + 4 > plen)
|
|
goto too_short;
|
|
|
|
fet_reply.datalen = BUFFER_LONG(fet_buf, i);
|
|
i += 4;
|
|
|
|
if (i + fet_reply.datalen > plen)
|
|
goto too_short;
|
|
|
|
fet_reply.data = fet_buf + i;
|
|
} else {
|
|
fet_reply.data = NULL;
|
|
fet_reply.datalen = 0;
|
|
}
|
|
|
|
return 0;
|
|
|
|
too_short:
|
|
fprintf(stderr, "fet: too short (%d bytes)\n",
|
|
plen);
|
|
return -1;
|
|
}
|
|
|
|
static int recv_packet(void)
|
|
{
|
|
int plen = BUFFER_WORD(fet_buf, 0);
|
|
|
|
assert (fet_transport != NULL);
|
|
|
|
/* If there's a packet still here from last time, get rid of it */
|
|
if (fet_len >= plen + 2) {
|
|
memmove(fet_buf, fet_buf + plen + 2, fet_len - plen - 2);
|
|
fet_len -= plen + 2;
|
|
}
|
|
|
|
/* Keep adding data to the buffer until we have a complete packet */
|
|
for (;;) {
|
|
int len;
|
|
|
|
plen = BUFFER_WORD(fet_buf, 0);
|
|
if (fet_len >= plen + 2)
|
|
return parse_packet(plen);
|
|
|
|
len = fet_transport->recv(fet_buf + fet_len,
|
|
sizeof(fet_buf) - fet_len);
|
|
if (len < 0)
|
|
return -1;
|
|
fet_len += len;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
static int send_command(int command_code,
|
|
const u_int32_t *params, int nparams,
|
|
const u_int8_t *extra, int exlen)
|
|
{
|
|
u_int8_t datapkt[256];
|
|
int len = 0;
|
|
|
|
u_int8_t buf[512];
|
|
u_int16_t cksum;
|
|
int i = 0;
|
|
int j;
|
|
|
|
assert (len + exlen + 2 <= sizeof(datapkt));
|
|
assert (fet_transport != NULL);
|
|
|
|
/* Command code and packet type */
|
|
datapkt[len++] = command_code;
|
|
datapkt[len++] = ((nparams > 0) ? 1 : 0) + ((exlen > 0) ? 2 : 0) + 1;
|
|
|
|
/* Optional parameters */
|
|
if (nparams > 0) {
|
|
datapkt[len++] = nparams & 0xff;
|
|
datapkt[len++] = nparams >> 8;
|
|
|
|
for (j = 0; j < nparams; j++) {
|
|
u_int32_t p = params[j];
|
|
|
|
datapkt[len++] = p & 0xff;
|
|
p >>= 8;
|
|
datapkt[len++] = p & 0xff;
|
|
p >>= 8;
|
|
datapkt[len++] = p & 0xff;
|
|
p >>= 8;
|
|
datapkt[len++] = p & 0xff;
|
|
}
|
|
}
|
|
|
|
/* Extra data */
|
|
if (extra) {
|
|
int x = exlen;
|
|
|
|
datapkt[len++] = x & 0xff;
|
|
x >>= 8;
|
|
datapkt[len++] = x & 0xff;
|
|
x >>= 8;
|
|
datapkt[len++] = x & 0xff;
|
|
x >>= 8;
|
|
datapkt[len++] = x & 0xff;
|
|
|
|
memcpy(datapkt + len, extra, exlen);
|
|
len += exlen;
|
|
}
|
|
|
|
/* Checksum */
|
|
cksum = calc_checksum(datapkt, len);
|
|
datapkt[len++] = cksum & 0xff;
|
|
datapkt[len++] = cksum >> 8;
|
|
|
|
/* Copy into buf, escaping special characters and adding
|
|
* delimeters.
|
|
*/
|
|
buf[i++] = 0x7e;
|
|
for (j = 0; j < len; j++) {
|
|
char c = datapkt[j];
|
|
|
|
if (c == 0x7e || c == 0x7d) {
|
|
buf[i++] = 0x7d;
|
|
c ^= 0x20;
|
|
}
|
|
|
|
buf[i++] = c;
|
|
}
|
|
buf[i++] = 0x7e;
|
|
|
|
assert (i < sizeof(buf));
|
|
|
|
return fet_transport->send(buf, i);
|
|
}
|
|
|
|
static int xfer(int command_code, const u_int8_t *data, int datalen,
|
|
int nparams, ...)
|
|
{
|
|
u_int32_t params[MAX_PARAMS];
|
|
int i;
|
|
va_list ap;
|
|
|
|
assert (nparams <= MAX_PARAMS);
|
|
|
|
va_start(ap, nparams);
|
|
for (i = 0; i < nparams; i++)
|
|
params[i] = va_arg(ap, unsigned int);
|
|
va_end(ap);
|
|
|
|
if (data && fet_is_rf2500) {
|
|
assert (nparams + 1 <= MAX_PARAMS);
|
|
params[nparams++] = datalen;
|
|
|
|
if (send_rf2500_data(data, datalen) < 0)
|
|
return -1;
|
|
if (send_command(command_code, params, nparams, NULL, 0) < 0)
|
|
return -1;
|
|
} else if (send_command(command_code, params, nparams,
|
|
data, datalen) < 0)
|
|
return -1;
|
|
|
|
if (recv_packet() < 0)
|
|
return -1;
|
|
|
|
if (fet_reply.command_code != command_code) {
|
|
fprintf(stderr, "fet: reply type mismatch\n");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**********************************************************************
|
|
* MSP430 high-level control functions
|
|
*/
|
|
|
|
static int fet_version;
|
|
|
|
static int do_identify(void)
|
|
{
|
|
char idtext[64];
|
|
|
|
if (fet_version < 20300000) {
|
|
if (xfer(C_IDENTIFY, NULL, 0, 2, 70, 0) < 0)
|
|
return -1;
|
|
|
|
if (!fet_reply.data) {
|
|
fprintf(stderr, "fet: missing info\n");
|
|
return -1;
|
|
}
|
|
|
|
memcpy(idtext, fet_reply.data + 4, 32);
|
|
idtext[32] = 0;
|
|
} else {
|
|
u_int16_t id;
|
|
|
|
if (xfer(0x28, NULL, 0, 2, 0, 0) < 0) {
|
|
fprintf(stderr, "fet: command 0x28 failed\n");
|
|
return -1;
|
|
}
|
|
|
|
if (fet_reply.datalen < 2) {
|
|
fprintf(stderr, "fet: missing info\n");
|
|
return -1;
|
|
}
|
|
|
|
id = (fet_reply.data[0] << 8) | fet_reply.data[1];
|
|
if (find_device_id(id, idtext, sizeof(idtext)) < 0) {
|
|
printf("Unknown device ID: 0x%04x\n", id);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
printf("Device: %s\n", idtext);
|
|
return 0;
|
|
}
|
|
|
|
static void fet_close(void)
|
|
{
|
|
if (xfer(C_RUN, NULL, 0, 2, FET_RUN_FREE, 1) < 0)
|
|
fprintf(stderr, "fet: failed to restart CPU\n");
|
|
|
|
if (xfer(C_CLOSE, NULL, 0, 1, 0) < 0)
|
|
fprintf(stderr, "fet: close command failed\n");
|
|
|
|
fet_transport->close();
|
|
fet_transport = NULL;
|
|
}
|
|
|
|
static int do_reset(void) {
|
|
if (xfer(C_RESET, NULL, 0, 3, FET_RESET_ALL, 0, 0) < 0) {
|
|
fprintf(stderr, "fet: reset failed\n");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int do_run(int type)
|
|
{
|
|
if (xfer(C_RUN, NULL, 0, 2, type, 0) < 0) {
|
|
fprintf(stderr, "fet: failed to restart CPU\n");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int do_halt(void)
|
|
{
|
|
if (xfer(C_STATE, NULL, 0, 1, 1) < 0) {
|
|
fprintf(stderr, "fet: failed to halt CPU\n");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int do_erase(void)
|
|
{
|
|
if (xfer(C_RESET, NULL, 0, 3, FET_RESET_ALL, 0, 0) < 0) {
|
|
fprintf(stderr, "fet: reset before erase failed\n");
|
|
return -1;
|
|
}
|
|
|
|
if (xfer(C_CONFIGURE, NULL, 0, 2, 2, 0x26) < 0) {
|
|
fprintf(stderr, "fet: config (1) failed\n");
|
|
return -1;
|
|
}
|
|
|
|
if (xfer(C_CONFIGURE, NULL, 0, 2, 5, 0) < 0) {
|
|
fprintf(stderr, "fet: config (2) failed\n");
|
|
return -1;
|
|
}
|
|
|
|
if (xfer(C_ERASE, NULL, 0, 3, FET_ERASE_MAIN, 0x8000, 2) < 0) {
|
|
fprintf(stderr, "fet: erase command failed\n");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static device_status_t fet_wait(int blocking)
|
|
{
|
|
do {
|
|
/* Without this delay, breakpoints can get lost. */
|
|
if (usleep(500000) < 0)
|
|
return DEVICE_STATUS_INTR;
|
|
|
|
if (xfer(C_STATE, NULL, 0, 1, 0) < 0) {
|
|
fprintf(stderr, "fet: polling failed\n");
|
|
return DEVICE_STATUS_ERROR;
|
|
}
|
|
|
|
if (!(fet_reply.argv[0] & FET_POLL_RUNNING))
|
|
return DEVICE_STATUS_HALTED;
|
|
} while (blocking);
|
|
|
|
return DEVICE_STATUS_RUNNING;
|
|
}
|
|
|
|
static int fet_control(device_ctl_t action)
|
|
{
|
|
switch (action) {
|
|
case DEVICE_CTL_RESET:
|
|
return do_reset();
|
|
|
|
case DEVICE_CTL_RUN:
|
|
return do_run(FET_RUN_FREE);
|
|
|
|
case DEVICE_CTL_RUN_BP:
|
|
return do_run(FET_RUN_BREAKPOINT);
|
|
|
|
case DEVICE_CTL_HALT:
|
|
return do_halt();
|
|
|
|
case DEVICE_CTL_STEP:
|
|
if (do_run(FET_RUN_STEP) < 0)
|
|
return -1;
|
|
if (fet_wait(1) < 0)
|
|
return -1;
|
|
return 0;
|
|
|
|
case DEVICE_CTL_ERASE:
|
|
return do_erase();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fet_breakpoint(u_int16_t addr)
|
|
{
|
|
if (xfer(C_BREAKPOINT, NULL, 0, 2, 0, addr) < 0) {
|
|
fprintf(stderr, "fet: set breakpoint failed\n");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fet_getregs(u_int16_t *regs)
|
|
{
|
|
int i;
|
|
|
|
if (xfer(C_READREGISTERS, NULL, 0, 0) < 0)
|
|
return -1;
|
|
|
|
if (fet_reply.datalen < DEVICE_NUM_REGS * 4) {
|
|
fprintf(stderr, "fet: short reply (%d bytes)\n",
|
|
fet_reply.datalen);
|
|
return -1;
|
|
}
|
|
|
|
for (i = 0; i < DEVICE_NUM_REGS; i++)
|
|
regs[i] = BUFFER_WORD(fet_reply.data, i * 4);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fet_setregs(const u_int16_t *regs)
|
|
{
|
|
u_int8_t buf[DEVICE_NUM_REGS * 4];;
|
|
int i;
|
|
int ret;
|
|
|
|
memset(buf, 0, sizeof(buf));
|
|
|
|
for (i = 0; i < DEVICE_NUM_REGS; i++) {
|
|
buf[i * 4] = regs[i] & 0xff;
|
|
buf[i * 4 + 1] = regs[i] >> 8;
|
|
}
|
|
|
|
ret = xfer(C_WRITEREGISTERS, buf, sizeof(buf), 1, 0xffff);
|
|
|
|
if (ret < 0) {
|
|
fprintf(stderr, "fet: context set failed\n");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int fet_readmem(u_int16_t addr, u_int8_t *buffer, int count)
|
|
{
|
|
while (count) {
|
|
int plen = count > 128 ? 128 : count;
|
|
|
|
if (xfer(C_READMEMORY, NULL, 0, 2, addr, plen) < 0) {
|
|
fprintf(stderr, "fet: failed to read "
|
|
"from 0x%04x\n", addr);
|
|
return -1;
|
|
}
|
|
|
|
if (fet_reply.datalen < plen) {
|
|
fprintf(stderr, "fet: short data: "
|
|
"%d bytes\n", fet_reply.datalen);
|
|
return -1;
|
|
}
|
|
|
|
memcpy(buffer, fet_reply.data, plen);
|
|
buffer += plen;
|
|
count -= plen;
|
|
addr += plen;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int fet_writemem(u_int16_t addr, const u_int8_t *buffer, int count)
|
|
{
|
|
while (count) {
|
|
int plen = count > 128 ? 128 : count;
|
|
int ret;
|
|
|
|
ret = xfer(C_WRITEMEMORY, buffer, plen, 1, addr);
|
|
|
|
if (ret < 0) {
|
|
fprintf(stderr, "fet: failed to write to 0x%04x\n",
|
|
addr);
|
|
return -1;
|
|
}
|
|
|
|
buffer += plen;
|
|
count -= plen;
|
|
addr += plen;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
const static struct device fet_device = {
|
|
.close = fet_close,
|
|
.control = fet_control,
|
|
.wait = fet_wait,
|
|
.breakpoint = fet_breakpoint,
|
|
.getregs = fet_getregs,
|
|
.setregs = fet_setregs,
|
|
.readmem = fet_readmem,
|
|
.writemem = fet_writemem
|
|
};
|
|
|
|
static const u_int8_t rf2500_29_magic[] = {
|
|
0x00, 0x80, 0xff, 0xff, 0x00, 0x00, 0x00, 0x10,
|
|
0xff, 0x10, 0x40, 0x00, 0x00, 0x02, 0xff, 0x05,
|
|
0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x01, 0x00,
|
|
0x01, 0x00, 0xd7, 0x60, 0x00, 0x00, 0x00, 0x00,
|
|
0x08, 0x07, 0x10, 0x0e, 0xc4, 0x09, 0x70, 0x17,
|
|
0x58, 0x1b, 0x01, 0x00, 0x03, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00,
|
|
0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x33, 0x0f, 0x1f, 0x0f,
|
|
0xff, 0xff
|
|
};
|
|
|
|
static const u_int8_t chronos_2b_magic[] = {
|
|
0x00, 0x10, 0xff, 0x17, 0x00, 0x02, 0x01, 0x00,
|
|
0x04, 0x00, 0x40, 0x00, 0x0a, 0x91, 0x8e, 0x00,
|
|
0x00, 0xb0, 0x28, 0x29, 0x2a, 0x2b, 0x80, 0xd8,
|
|
0xa8, 0x60, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00
|
|
};
|
|
|
|
static const u_int8_t chronos_29_magic[] = {
|
|
0x00, 0x80, 0xff, 0xff, 0x00, 0x00, 0x00, 0x18,
|
|
0xff, 0x19, 0x80, 0x00, 0x00, 0x1c, 0xff, 0x2b,
|
|
0x00, 0x00, 0x00, 0x00, 0x03, 0x00, 0x02, 0x00,
|
|
0x02, 0x00, 0x07, 0x24, 0x00, 0x00, 0x00, 0x00,
|
|
0x08, 0x07, 0x10, 0x0e, 0xc4, 0x09, 0x70, 0x17,
|
|
0x58, 0x1b, 0x01, 0x00, 0x03, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x01, 0x00,
|
|
0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff
|
|
};
|
|
|
|
static int do_magic(void)
|
|
{
|
|
if (fet_version >= 30001000) {
|
|
printf("Sending Chronos init messages...\n");
|
|
|
|
if (xfer(0x2b, chronos_2b_magic,
|
|
sizeof(chronos_2b_magic), 0) < 0) {
|
|
fprintf(stderr, "fet: command 0x2b failed\n");
|
|
return -1;
|
|
}
|
|
|
|
if (xfer(0x29, chronos_29_magic,
|
|
sizeof(chronos_29_magic), 3, 0x77, 0x6f, 0x4a) < 0) {
|
|
fprintf(stderr, "fet: command 0x29 failed\n");
|
|
return -1;
|
|
}
|
|
} else if (fet_version >= 30000000) {
|
|
printf("Sending RF2500 init messages...\n");
|
|
|
|
if (xfer(0x29, rf2500_29_magic,
|
|
sizeof(rf2500_29_magic), 3, 0, 0x39, 0x31) < 0) {
|
|
fprintf(stderr, "fet: command 0x29 failed\n");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
const struct device *fet_open(const struct fet_transport *tr,
|
|
int proto_flags, int vcc_mv)
|
|
{
|
|
fet_transport = tr;
|
|
fet_is_rf2500 = proto_flags & FET_PROTO_RF2500;
|
|
init_codes();
|
|
|
|
if (xfer(C_INITIALIZE, NULL, 0, 0) < 0) {
|
|
fprintf(stderr, "fet: open failed\n");
|
|
return NULL;
|
|
}
|
|
|
|
fet_version = fet_reply.argv[0];
|
|
printf("FET protocol version is %d\n", fet_version);
|
|
|
|
if (xfer(0x27, NULL, 0, 1, 4) < 0) {
|
|
fprintf(stderr, "fet: init failed\n");
|
|
return NULL;
|
|
}
|
|
|
|
/* configure: Spy-Bi-Wire or JTAG */
|
|
if (xfer(C_CONFIGURE, NULL, 0,
|
|
2, 8, (proto_flags & FET_PROTO_SPYBIWIRE) ? 1 : 0) < 0) {
|
|
fprintf(stderr, "fet: configure failed\n");
|
|
return NULL;
|
|
}
|
|
|
|
printf("Configured for %s\n",
|
|
(proto_flags & FET_PROTO_SPYBIWIRE) ? "Spy-Bi-Wire" : "JTAG");
|
|
|
|
/* set VCC */
|
|
if (xfer(C_VCC, NULL, 0, 1, vcc_mv) < 0) {
|
|
fprintf(stderr, "fet: set VCC failed\n");
|
|
return NULL;
|
|
}
|
|
|
|
printf("Set Vcc: %d mV\n", vcc_mv);
|
|
|
|
/* Identify the chip */
|
|
if (do_identify() < 0) {
|
|
fprintf(stderr, "fet: identify failed\n");
|
|
return NULL;
|
|
}
|
|
|
|
/* Send the magic required by RF2500 and Chronos FETs */
|
|
if (do_magic() < 0) {
|
|
fprintf(stderr, "fet: init magic failed\n");
|
|
return NULL;
|
|
}
|
|
|
|
return &fet_device;
|
|
}
|