mspdebug/stab.c

493 lines
9.6 KiB
C

/* MSPDebug - debugging tool for the eZ430
* Copyright (C) 2009, 2010 Daniel Beer
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <sys/types.h>
#include <regex.h>
#include <errno.h>
#include <assert.h>
#include "btree.h"
#include "stab.h"
#include "util.h"
struct sym_key {
char name[64];
};
static const struct sym_key sym_key_zero;
static int sym_key_compare(const void *left, const void *right)
{
return strcmp(((const struct sym_key *)left)->name,
((const struct sym_key *)right)->name);
}
static void sym_key_init(struct sym_key *key, const char *text)
{
int len = strlen(text);
if (len >= sizeof(key->name))
len = sizeof(key->name) - 1;
memcpy(key->name, text, len);
key->name[len] = 0;
}
struct addr_key {
u_int16_t addr;
char name[64];
};
static const struct addr_key addr_key_zero;
static int addr_key_compare(const void *left, const void *right)
{
const struct addr_key *kl = (const struct addr_key *)left;
const struct addr_key *kr = (const struct addr_key *)right;
if (kl->addr < kr->addr)
return -1;
if (kl->addr > kr->addr)
return 1;
return strcmp(kl->name, kr->name);
}
static void addr_key_init(struct addr_key *key, u_int16_t addr,
const char *text)
{
int len = strlen(text);
if (len >= sizeof(key->name))
len = sizeof(key->name) - 1;
key->addr = addr;
memcpy(key->name, text, len);
key->name[len] = 0;
}
static const struct btree_def sym_table_def = {
.compare = sym_key_compare,
.zero = &sym_key_zero,
.branches = 32,
.key_size = sizeof(struct sym_key),
.data_size = sizeof(u_int16_t)
};
static const struct btree_def addr_table_def = {
.compare = addr_key_compare,
.zero = &addr_key_zero,
.branches = 32,
.key_size = sizeof(struct addr_key),
.data_size = 0
};
static btree_t sym_table;
static btree_t addr_table;
void stab_clear(void)
{
btree_clear(sym_table);
btree_clear(addr_table);
}
int stab_set(const char *name, int value)
{
struct sym_key skey;
struct addr_key akey;
u_int16_t addr = value;
u_int16_t old_addr;
sym_key_init(&skey, name);
/* Look for an old address first, and delete the reverse mapping
* if it's there.
*/
if (!btree_get(sym_table, &skey, &old_addr)) {
addr_key_init(&akey, old_addr, skey.name);
btree_delete(addr_table, &akey);
}
/* Put the new mapping into both tables */
addr_key_init(&akey, addr, name);
if (btree_put(addr_table, &akey, NULL) < 0 ||
btree_put(sym_table, &skey, &addr) < 0) {
fprintf(stderr, "stab: can't set %s = 0x%04x\n", name, addr);
return -1;
}
return 0;
}
int stab_nearest(u_int16_t addr, char *ret_name, int max_len,
u_int16_t *ret_offset)
{
struct addr_key akey;
int i;
akey.addr = addr;
for (i = 0; i < sizeof(akey.name); i++)
akey.name[i] = 0xff;
akey.name[sizeof(akey.name) - 1] = 0xff;
if (!btree_select(addr_table, &akey, BTREE_LE, &akey, NULL)) {
strncpy(ret_name, akey.name, max_len);
ret_name[max_len - 1] = 0;
*ret_offset = addr - akey.addr;
return 0;
}
return -1;
}
int stab_get(const char *name, int *value)
{
struct sym_key skey;
u_int16_t addr;
sym_key_init(&skey, name);
if (btree_get(sym_table, &skey, &addr))
return -1;
*value = addr;
return 0;
}
int stab_del(const char *name)
{
struct sym_key skey;
u_int16_t value;
struct addr_key akey;
sym_key_init(&skey, name);
if (btree_get(sym_table, &skey, &value))
return -1;
addr_key_init(&akey, value, name);
btree_delete(sym_table, &skey);
btree_delete(addr_table, &akey);
return 0;
}
int stab_enum(stab_callback_t cb)
{
int ret;
struct addr_key akey;
ret = btree_select(addr_table, NULL, BTREE_FIRST,
&akey, NULL);
while (!ret) {
if (cb(akey.name, akey.addr) < 0)
return -1;
ret = btree_select(addr_table, NULL, BTREE_NEXT,
&akey, NULL);
}
return 0;
}
int stab_init(void)
{
sym_table = btree_alloc(&sym_table_def);
if (!sym_table) {
fprintf(stderr, "stab: failed to allocate symbol table\n");
return -1;
}
addr_table = btree_alloc(&addr_table_def);
if (!addr_table) {
fprintf(stderr, "stab: failed to allocate address table\n");
btree_free(sym_table);
return -1;
}
return 0;
}
void stab_exit(void)
{
btree_free(sym_table);
btree_free(addr_table);
}
/************************************************************************
* Address expression parsing.
*/
struct addr_exp_state {
int last_operator;
int data_stack[32];
int data_stack_size;
int op_stack[32];
int op_stack_size;
};
static int addr_exp_data(struct addr_exp_state *s, const char *text)
{
int value;
if (!s->last_operator || s->last_operator == ')') {
fprintf(stderr, "syntax error at token %s\n", text);
return -1;
}
/* Hex value */
if (*text == '0' && text[1] == 'x')
value = strtoul(text + 2, NULL, 16);
else if (isdigit(*text))
value = atoi(text);
else if (stab_get(text, &value) < 0) {
fprintf(stderr, "can't parse token: %s\n", text);
return -1;
}
if (s->data_stack_size + 1 > ARRAY_LEN(s->data_stack)) {
fprintf(stderr, "data stack overflow at token %s\n", text);
return -1;
}
s->data_stack[s->data_stack_size++] = value;
s->last_operator = 0;
return 0;
}
static int addr_exp_pop(struct addr_exp_state *s)
{
char op = s->op_stack[--s->op_stack_size];
int data1 = s->data_stack[--s->data_stack_size];
int data2 = 0;
int result = 0;
if (op != 'N')
data2 = s->data_stack[--s->data_stack_size];
assert (s->op_stack_size >= 0);
assert (s->data_stack_size >= 0);
switch (op) {
case '+':
result = data2 + data1;
break;
case '-':
result = data2 - data1;
break;
case '*':
result = data2 * data1;
break;
case '/':
if (!data1)
goto divzero;
result = data2 / data1;
break;
case '%':
if (!data1)
goto divzero;
result = data2 % data1;
break;
case 'N':
result = -data1;
break;
}
s->data_stack[s->data_stack_size++] = result;
return 0;
divzero:
fprintf(stderr, "divide by zero\n");
return -1;
}
static int can_push(struct addr_exp_state *s, char op)
{
char top;
if (!s->op_stack_size || op == '(')
return 1;
top = s->op_stack[s->op_stack_size - 1];
if (top == '(')
return 1;
switch (op) {
case 'N':
return 1;
case '*':
case '%':
case '/':
return top == '+' || top == '-';
default:
break;
}
return 0;
}
static int addr_exp_op(struct addr_exp_state *s, char op)
{
if (op == '(') {
if (!s->last_operator || s->last_operator == ')')
goto syntax_error;
} else if (op == '-') {
if (s->last_operator && s->last_operator != ')')
op = 'N';
} else {
if (s->last_operator && s->last_operator != ')')
goto syntax_error;
}
if (op == ')') {
/* ) collapses the stack to the last matching ( */
while (s->op_stack_size &&
s->op_stack[s->op_stack_size - 1] != '(')
if (addr_exp_pop(s) < 0)
return -1;
if (!s->op_stack_size) {
fprintf(stderr, "parenthesis mismatch: )\n");
return -1;
}
s->op_stack_size--;
} else {
while (!can_push(s, op))
if (addr_exp_pop(s) < 0)
return -1;
if (s->op_stack_size + 1 > ARRAY_LEN(s->op_stack)) {
fprintf(stderr, "operator stack overflow: %c\n", op);
return -1;
}
s->op_stack[s->op_stack_size++] = op;
}
s->last_operator = op;
return 0;
syntax_error:
fprintf(stderr, "syntax error at operator %c\n", op);
return -1;
}
static int addr_exp_finish(struct addr_exp_state *s, int *ret)
{
if (s->last_operator && s->last_operator != ')') {
fprintf(stderr, "syntax error at end of expression\n");
return -1;
}
while (s->op_stack_size) {
if (s->op_stack[s->op_stack_size - 1] == '(') {
fprintf(stderr, "parenthesis mismatch: (\n");
return -1;
}
if (addr_exp_pop(s) < 0)
return -1;
}
if (s->data_stack_size != 1) {
fprintf(stderr, "no data: stack size is %d\n",
s->data_stack_size);
return -1;
}
if (ret)
*ret = s->data_stack[0];
return 0;
}
int stab_exp(const char *text, int *addr)
{
const char *text_save = text;
int last_cc = 1;
char token_buf[64];
int token_len = 0;
struct addr_exp_state s = {0};
s.last_operator = '(';
for (;;) {
int cc;
/* Figure out what class this character is */
if (*text == '+' || *text == '-' ||
*text == '*' || *text == '/' ||
*text == '%' || *text == '(' ||
*text == ')')
cc = 1;
else if (!*text || isspace(*text))
cc = 2;
else if (isalnum(*text) || *text == '.' || *text == '_' ||
*text == '$' || *text == ':')
cc = 3;
else {
fprintf(stderr, "illegal character in expression: %c\n",
*text);
return -1;
}
/* Accumulate and process token text */
if (cc == 3) {
if (token_len + 1 < sizeof(token_buf))
token_buf[token_len++] = *text;
} else if (token_len) {
token_buf[token_len] = 0;
token_len = 0;
if (addr_exp_data(&s, token_buf) < 0)
goto fail;
}
/* Process operators */
if (cc == 1) {
if (addr_exp_op(&s, *text) < 0)
goto fail;
}
if (!*text)
break;
last_cc = cc;
text++;
}
if (addr_exp_finish(&s, addr) < 0)
goto fail;
return 0;
fail:
fprintf(stderr, "bad address expression: %s\n", text_save);
return -1;
}