mspdebug/ui/devcmd.c

854 lines
17 KiB
C

/* MSPDebug - debugging tool for the eZ430
* Copyright (C) 2009, 2010 Daniel Beer
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <unistd.h>
#include "device.h"
#include "binfile.h"
#include "stab.h"
#include "expr.h"
#include "reader.h"
#include "output_util.h"
#include "util.h"
#include "prog.h"
#include "dis.h"
#include "opdb.h"
int cmd_regs(char **arg)
{
address_t regs[DEVICE_NUM_REGS];
uint8_t code[16];
int len = sizeof(code);
(void)arg;
if (device_getregs(regs) < 0)
return -1;
show_regs(regs);
/* Try to disassemble the instruction at PC */
if (len > 0x10000 - regs[0])
len = 0x10000 - regs[0];
if (device_readmem(regs[0], code, len) < 0)
return 0;
disassemble(regs[0], (uint8_t *)code, len, device_default->power_buf);
return 0;
}
int cmd_md(char **arg)
{
char *off_text = get_arg(arg);
char *len_text = get_arg(arg);
address_t offset = 0;
address_t length = 0x40;
if (!off_text) {
printc_err("md: offset must be specified\n");
return -1;
}
if (expr_eval(off_text, &offset) < 0) {
printc_err("md: can't parse offset: %s\n", off_text);
return -1;
}
if (len_text) {
if (expr_eval(len_text, &length) < 0) {
printc_err("md: can't parse length: %s\n",
len_text);
return -1;
}
} else if (offset < 0x10000 && offset + length > 0x10000) {
length = 0x10000 - offset;
}
reader_set_repeat("md 0x%x 0x%x", offset + length, length);
while (length) {
uint8_t buf[4096];
int blen = length > sizeof(buf) ? sizeof(buf) : length;
if (device_readmem(offset, buf, blen) < 0)
return -1;
hexdump(offset, buf, blen);
offset += blen;
length -= blen;
}
return 0;
}
int cmd_mw(char **arg)
{
char *off_text = get_arg(arg);
char *byte_text;
address_t offset = 0;
address_t length = 0;
uint8_t buf[1024];
if (!off_text) {
printc_err("md: offset must be specified\n");
return -1;
}
if (expr_eval(off_text, &offset) < 0) {
printc_err("md: can't parse offset: %s\n", off_text);
return -1;
}
while ((byte_text = get_arg(arg))) {
if (length >= sizeof(buf)) {
printc_err("md: maximum length exceeded\n");
return -1;
}
buf[length++] = strtoul(byte_text, NULL, 16);
}
if (!length)
return 0;
if (device_writemem(offset, buf, length) < 0)
return -1;
return 0;
}
int cmd_reset(char **arg)
{
(void)arg;
return device_ctl(DEVICE_CTL_RESET);
}
int cmd_erase(char **arg)
{
const char *type_text = get_arg(arg);
const char *seg_text = get_arg(arg);
device_erase_type_t type = DEVICE_ERASE_MAIN;
address_t segment = 0;
address_t total_size = 0;
address_t segment_size = 0;
if (seg_text && expr_eval(seg_text, &segment) < 0) {
printc_err("erase: invalid expression: %s\n", seg_text);
return -1;
}
if (type_text) {
if (!strcasecmp(type_text, "all")) {
type = DEVICE_ERASE_ALL;
} else if (!strcasecmp(type_text, "segment")) {
type = DEVICE_ERASE_SEGMENT;
if (!seg_text) {
printc_err("erase: expected segment "
"address\n");
return -1;
}
} else if (!strcasecmp(type_text, "segrange")) {
const char *total_text = get_arg(arg);
const char *ss_text = get_arg(arg);
if (!(total_text && ss_text)) {
printc_err("erase: you must specify "
"total and segment sizes\n");
return -1;
}
if (expr_eval(total_text, &total_size) < 0) {
printc_err("erase: invalid expression: %s\n",
total_text);
return -1;
}
if (expr_eval(ss_text, &segment_size) < 0) {
printc_err("erase: invalid expression: %s\n",
ss_text);
return -1;
}
if (segment_size > 0x200 || segment_size < 0x40) {
printc_err("erase: invalid segment size: "
"0x%x\n", segment_size);
return -1;
}
} else {
printc_err("erase: unknown erase type: %s\n",
type_text);
return -1;
}
}
if (device_ctl(DEVICE_CTL_HALT) < 0)
return -1;
if (!segment_size) {
printc("Erasing...\n");
return device_erase(type, segment);
} else {
printc("Erasing segments...\n");
while (total_size >= segment_size) {
printc_dbg("Erasing 0x%04x...\n", segment);
if (device_erase(DEVICE_ERASE_SEGMENT, segment) < 0)
return -1;
total_size -= segment_size;
segment += segment_size;
}
}
return 0;
}
int cmd_step(char **arg)
{
char *count_text = get_arg(arg);
address_t count = 1;
int i;
if (count_text) {
if (expr_eval(count_text, &count) < 0) {
printc_err("step: can't parse count: %s\n", count_text);
return -1;
}
}
for (i = 0; i < count; i++)
if (device_ctl(DEVICE_CTL_STEP) < 0)
return -1;
reader_set_repeat("step");
return cmd_regs(NULL);
}
int cmd_run(char **arg)
{
device_status_t status;
address_t regs[DEVICE_NUM_REGS];
(void)arg;
if (device_getregs(regs) < 0) {
printc_err("warning: device: can't fetch registers\n");
} else {
int i;
for (i = 0; i < device_default->max_breakpoints; i++) {
struct device_breakpoint *bp =
&device_default->breakpoints[i];
if ((bp->flags & DEVICE_BP_ENABLED) &&
bp->type == DEVICE_BPTYPE_BREAK &&
bp->addr == regs[0])
break;
}
if (i < device_default->max_breakpoints) {
printc("Stepping over breakpoint #%d at 0x%04x\n",
i, regs[0]);
device_ctl(DEVICE_CTL_STEP);
}
}
if (device_ctl(DEVICE_CTL_RUN) < 0) {
printc_err("run: failed to start CPU\n");
return -1;
}
printc("Running. Press Ctrl+C to interrupt...\n");
do {
status = device_poll();
} while (status == DEVICE_STATUS_RUNNING);
if (status == DEVICE_STATUS_INTR)
printc("\n");
if (status == DEVICE_STATUS_ERROR)
return -1;
if (device_ctl(DEVICE_CTL_HALT) < 0)
return -1;
return cmd_regs(NULL);
}
int cmd_set(char **arg)
{
char *reg_text = get_arg(arg);
char *val_text = get_arg(arg);
int reg;
address_t value = 0;
address_t regs[DEVICE_NUM_REGS];
if (!(reg_text && val_text)) {
printc_err("set: must specify a register and a value\n");
return -1;
}
reg = dis_reg_from_name(reg_text);
if (reg < 0) {
printc_err("set: unknown register: %s\n", reg_text);
return -1;
}
if (expr_eval(val_text, &value) < 0) {
printc_err("set: can't parse value: %s\n", val_text);
return -1;
}
if (device_getregs(regs) < 0)
return -1;
regs[reg] = value;
if (device_setregs(regs) < 0)
return -1;
show_regs(regs);
return 0;
}
int cmd_dis(char **arg)
{
char *off_text = get_arg(arg);
char *len_text = get_arg(arg);
address_t offset = 0;
address_t length = 0x40;
uint8_t *buf;
if (!off_text) {
printc_err("dis: offset must be specified\n");
return -1;
}
if (expr_eval(off_text, &offset) < 0) {
printc_err("dis: can't parse offset: %s\n", off_text);
return -1;
}
if (len_text) {
if (expr_eval(len_text, &length) < 0) {
printc_err("dis: can't parse length: %s\n",
len_text);
return -1;
}
} else if (offset < 0x10000 && offset + length > 0x10000) {
length = 0x10000 - offset;
}
buf = malloc(length);
if (!buf) {
pr_error("dis: couldn't allocate memory");
return -1;
}
if (device_readmem(offset, buf, length) < 0) {
free(buf);
return -1;
}
reader_set_repeat("dis 0x%x 0x%x", offset + length, length);
disassemble(offset, buf, length, device_default->power_buf);
free(buf);
return 0;
}
#define IHEX_REC_DATA 0x00
#define IHEX_REC_EOF 0x01
#define IHEX_REC_ESAR 0x02
#define IHEX_REC_SSAR 0x03
#define IHEX_REC_ELAR 0x04
#define IHEX_REC_SLAR 0x05
#define IHEX_SEG(addr) (((addr) >> 16) & 0xFFFF)
struct hexout_data {
FILE *file;
address_t addr;
uint8_t buf[16];
int len;
uint16_t segoff;
};
static int hexout_start(struct hexout_data *hexout, const char *filename)
{
char * path = NULL;
path = expand_tilde(filename);
if (!path)
return -1;
hexout->file = fopen(path, "w");
free(path);
if (!hexout->file) {
pr_error("hexout: couldn't open output file");
return -1;
}
hexout->addr = 0;
hexout->len = 0;
hexout->segoff = 0;
return 0;
}
static int hexout_write(FILE *out, uint8_t type, int len, uint16_t addr,
const uint8_t *payload)
{
int i;
int cksum = 0;
if (fprintf(out, ":%02X%04X%02X", len, addr, type) < 0)
goto fail;
cksum += len;
cksum += addr & 0xff;
cksum += addr >> 8;
cksum += type;
for (i = 0; i < len; i++) {
if (fprintf(out, "%02X", payload[i]) < 0)
goto fail;
cksum += payload[i];
}
if (fprintf(out, "%02X\n", ~(cksum - 1) & 0xff) < 0)
goto fail;
return 0;
fail:
pr_error("hexout: can't write HEX data");
return -1;
}
static int hexout_flush(struct hexout_data *hexout)
{
while (hexout->len) {
address_t addr_low = hexout->addr & 0xffff;
address_t segoff = IHEX_SEG(hexout->addr);
if (segoff != hexout->segoff) {
uint8_t offset_data[] = {segoff >> 8, segoff & 0xff};
if (hexout_write(hexout->file, IHEX_REC_ELAR,
2, 0, offset_data) < 0)
return -1;
hexout->segoff = segoff;
}
uint32_t writesize = hexout->len;
/* If the hexout buffer will wrap past the end of segment;
* only write until the end of the segment to allow
* emitting an ELAR record */
if (IHEX_SEG(hexout->addr + writesize) != segoff)
writesize = 0x10000 - addr_low;
if (hexout_write(hexout->file, IHEX_REC_DATA, writesize, addr_low,
hexout->buf) < 0)
return -1;
hexout->len -= writesize;
hexout->addr += writesize;
memmove(hexout->buf, hexout->buf + writesize,
sizeof(hexout->buf) - writesize);
}
return 0;
}
static int hexout_feed(struct hexout_data *hexout,
uint32_t addr, const uint8_t *buf, int len)
{
while (len) {
int count;
if ((hexout->addr + hexout->len != addr ||
hexout->len >= sizeof(hexout->buf)) &&
hexout_flush(hexout) < 0)
return -1;
if (!hexout->len)
hexout->addr = addr;
count = sizeof(hexout->buf) - hexout->len;
if (count > len)
count = len;
memcpy(hexout->buf + hexout->len, buf, count);
hexout->len += count;
addr += count;
buf += count;
len -= count;
}
return 0;
}
int cmd_hexout(char **arg)
{
char *off_text = get_arg(arg);
char *len_text = get_arg(arg);
char *filename = *arg;
address_t off;
address_t length;
struct hexout_data hexout;
if (!(off_text && len_text && *filename)) {
printc_err("hexout: need offset, length and filename\n");
return -1;
}
if (expr_eval(off_text, &off) < 0 ||
expr_eval(len_text, &length) < 0)
return -1;
if (hexout_start(&hexout, filename) < 0)
return -1;
while (length) {
uint8_t buf[4096];
int count = length;
if (count > sizeof(buf))
count = sizeof(buf);
printc("Reading %4d bytes from 0x%04x...\n", count, off);
if (device_readmem(off, buf, count) < 0) {
pr_error("hexout: can't read memory");
goto fail;
}
if (hexout_feed(&hexout, off, buf, count) < 0)
goto fail;
length -= count;
off += count;
}
if (hexout_flush(&hexout) < 0)
goto fail;
if (hexout_write(hexout.file, IHEX_REC_EOF, 0, 0, NULL) < 0) {
pr_error("hexout: failed to write terminator\n");
goto fail;
}
if (fclose(hexout.file) < 0) {
pr_error("hexout: error on close");
return -1;
}
return 0;
fail:
fclose(hexout.file);
unlink(filename);
return -1;
}
static int cmd_prog_feed(void *user_data, const struct binfile_chunk *ch)
{
return prog_feed((struct prog_data *)user_data, ch);
}
static int do_cmd_prog(char **arg, int prog_flags)
{
FILE *in;
struct prog_data prog;
char * path;
if (prompt_abort(MODIFY_SYMS))
return 0;
path = expand_tilde(*arg);
if (!path)
return -1;
in = fopen(path, "rb");
free(path);
if (!in) {
printc_err("prog: %s: %s\n", *arg, last_error());
return -1;
}
if (device_ctl(DEVICE_CTL_HALT) < 0) {
fclose(in);
return -1;
}
prog_init(&prog, prog_flags);
if (binfile_extract(in, cmd_prog_feed, &prog) < 0) {
fclose(in);
return -1;
}
if ((prog_flags & PROG_WANT_ERASE) &&
(binfile_info(in) & BINFILE_HAS_SYMS)) {
stab_clear();
binfile_syms(in);
}
fclose(in);
if (prog_flush(&prog) < 0)
return -1;
printc("Done, %d bytes total\n", prog.total_written);
if (device_ctl(DEVICE_CTL_RESET) < 0)
printc_err("warning: prog: "
"failed to reset after programming\n");
unmark_modified(MODIFY_SYMS);
return 0;
}
int cmd_prog(char **arg)
{
return do_cmd_prog(arg, PROG_WANT_ERASE);
}
int cmd_load(char **arg)
{
return do_cmd_prog(arg, 0);
}
int cmd_verify(char **arg)
{
return do_cmd_prog(arg, PROG_VERIFY);
}
static int do_setbreak(device_bptype_t type, char **arg)
{
char *addr_text = get_arg(arg);
char *index_text = get_arg(arg);
int index = -1;
address_t addr;
if (!addr_text) {
printc_err("setbreak: address required\n");
return -1;
}
if (expr_eval(addr_text, &addr) < 0) {
printc_err("setbreak: invalid address\n");
return -1;
}
if (index_text) {
address_t val;
if (expr_eval(index_text, &val) < 0 ||
val >= device_default->max_breakpoints) {
printc("setbreak: invalid breakpoint slot: %d\n",
val);
return -1;
}
index = val;
}
index = device_setbrk(device_default, index, 1, addr, type);
if (index < 0) {
printc_err("setbreak: all breakpoint slots are "
"occupied\n");
return -1;
}
printc("Set breakpoint %d\n", index);
return 0;
}
int cmd_setbreak(char **arg)
{
return do_setbreak(DEVICE_BPTYPE_BREAK, arg);
}
int cmd_setwatch(char **arg)
{
return do_setbreak(DEVICE_BPTYPE_WATCH, arg);
}
int cmd_setwatch_w(char **arg)
{
return do_setbreak(DEVICE_BPTYPE_WRITE, arg);
}
int cmd_setwatch_r(char **arg)
{
return do_setbreak(DEVICE_BPTYPE_READ, arg);
}
int cmd_delbreak(char **arg)
{
char *index_text = get_arg(arg);
int ret = 0;
if (index_text) {
address_t index;
if (expr_eval(index_text, &index) < 0 ||
index >= device_default->max_breakpoints) {
printc("delbreak: invalid breakpoint slot: %d\n",
index);
return -1;
}
printc("Clearing breakpoint %d\n", index);
device_setbrk(device_default, index, 0, 0, 0);
} else {
int i;
printc("Clearing all breakpoints...\n");
for (i = 0; i < device_default->max_breakpoints; i++)
device_setbrk(device_default, i, 0, 0, 0);
}
return ret;
}
int cmd_break(char **arg)
{
int i;
(void)arg;
printc("%d breakpoints available:\n",
device_default->max_breakpoints);
for (i = 0; i < device_default->max_breakpoints; i++) {
const struct device_breakpoint *bp =
&device_default->breakpoints[i];
if (bp->flags & DEVICE_BP_ENABLED) {
char name[128];
print_address(bp->addr, name, sizeof(name), 0);
printc(" %d. %s", i, name);
switch (bp->type) {
case DEVICE_BPTYPE_WATCH:
printc(" [watchpoint]\n");
break;
case DEVICE_BPTYPE_READ:
printc(" [read watchpoint]\n");
break;
case DEVICE_BPTYPE_WRITE:
printc(" [write watchpoint]\n");
break;
case DEVICE_BPTYPE_BREAK:
printc("\n");
break;
}
}
}
return 0;
}
int cmd_fill(char **arg)
{
char *addr_text = get_arg(arg);
char *len_text = get_arg(arg);
char *byte_text;
address_t addr = 0;
address_t len = 0;
uint8_t buf[256];
int period = 0;
int phase = 0;
int i;
if (!(addr_text && len_text)) {
printc_err("fill: address and length must be supplied\n");
return -1;
}
if (expr_eval(addr_text, &addr) < 0) {
printc_err("fill: invalid address\n");
return -1;
}
if (expr_eval(len_text, &len) < 0) {
printc_err("fill: invalid length\n");
return -1;
}
while ((byte_text = get_arg(arg))) {
if (period >= sizeof(buf)) {
printc_err("fill: maximum length exceeded\n");
return -1;
}
buf[period++] = strtoul(byte_text, NULL, 16);
}
if (!period) {
printc_err("fill: no pattern supplied\n");
return -1;
}
for (i = period; i < sizeof(buf); i++)
buf[i] = buf[i % period];
while (len > 0) {
int plen = sizeof(buf) - phase;
if (plen > len)
plen = len;
if (device_writemem(addr, buf + phase, plen) < 0)
return -1;
addr += plen;
len -= plen;
phase = (phase + plen) % period;
}
return 0;
}
int cmd_blow_jtag_fuse(char **arg)
{
(void)arg;
if (!opdb_get_boolean("enable_fuse_blow")) {
printc_err(
"blow_jtag_fuse: fuse blow has not been enabled.\n"
"\n"
"If you really want to blow the JTAG fuse, you need to set the option\n"
"\"enable_fuse_blow\" first. If in doubt, do not do this.\n"
"\n"
"\x1b[1mWARNING: this is in irreversible operation!\x1b[0m\n");
return -1;
}
return device_ctl(DEVICE_CTL_SECURE);
}