mspdebug/fet.c

927 lines
23 KiB
C

/* MSPDebug - debugging tool for the eZ430
* Copyright (C) 2009, 2010 Daniel Beer
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* Various constants and tables come from uif430, written by Robert
* Kavaler (kavaler@diva.com). This is available under the same license
* as this program, from www.relavak.com.
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <assert.h>
#include <unistd.h>
#include "util.h"
#include "fet.h"
#include "fet_error.h"
#define MAX_PARAMS 16
struct fet_device {
struct device base;
transport_t transport;
int is_rf2500;
int version;
int have_breakpoint;
uint8_t fet_buf[65538];
int fet_len;
/* Recieved packet is parsed into this struct */
struct {
int command_code;
int state;
int argc;
uint32_t argv[MAX_PARAMS];
uint8_t *data;
int datalen;
} fet_reply;
};
/**********************************************************************
* FET command codes.
*
* These come from uif430 by Robert Kavaler (kavaler@diva.com).
* www.relavak.com
*/
#define C_INITIALIZE 0x01
#define C_CLOSE 0x02
#define C_IDENTIFY 0x03
#define C_DEVICE 0x04
#define C_CONFIGURE 0x05
#define C_VCC 0x06
#define C_RESET 0x07
#define C_READREGISTERS 0x08
#define C_WRITEREGISTERS 0x09
#define C_READREGISTER 0x0a
#define C_WRITEREGISTER 0x0b
#define C_ERASE 0x0c
#define C_READMEMORY 0x0d
#define C_WRITEMEMORY 0x0e
#define C_FASTFLASHER 0x0f
#define C_BREAKPOINT 0x10
#define C_RUN 0x11
#define C_STATE 0x12
#define C_SECURE 0x13
#define C_VERIFYMEMORY 0x14
#define C_FASTVERIFYMEMORY 0x15
#define C_ERASECHECK 0x16
#define C_EEMOPEN 0x17
#define C_EEMREADREGISTER 0x18
#define C_EEMREADREGISTERTEST 0x19
#define C_EEMWRITEREGISTER 0x1a
#define C_EEMCLOSE 0x1b
#define C_ERRORNUMBER 0x1c
#define C_GETCURVCCT 0x1d
#define C_GETEXTVOLTAGE 0x1e
#define C_FETSELFTEST 0x1f
#define C_FETSETSIGNALS 0x20
#define C_FETRESET 0x21
#define C_READI2C 0x22
#define C_WRITEI2C 0x23
#define C_ENTERBOOTLOADER 0x24
/* Constants for parameters of various FET commands */
#define FET_RUN_FREE 1
#define FET_RUN_STEP 2
#define FET_RUN_BREAKPOINT 3
#define FET_RESET_PUC 0x01
#define FET_RESET_RST 0x02
#define FET_RESET_VCC 0x04
#define FET_RESET_ALL 0x07
#define FET_ERASE_SEGMENT 0
#define FET_ERASE_MAIN 1
#define FET_ERASE_ALL 2
#define FET_POLL_RUNNING 0x01
#define FET_POLL_BREAKPOINT 0x02
/*********************************************************************
* Checksum calculation
*
* This code table is also derived from uif430.
*/
static const uint16_t fcstab[256] = {
0x0000, 0x1189, 0x2312, 0x329b, 0x4624, 0x57ad, 0x6536, 0x74bf,
0x8c48, 0x9dc1, 0xaf5a, 0xbed3, 0xca6c, 0xdbe5, 0xe97e, 0xf8f7,
0x1081, 0x0108, 0x3393, 0x221a, 0x56a5, 0x472c, 0x75b7, 0x643e,
0x9cc9, 0x8d40, 0xbfdb, 0xae52, 0xdaed, 0xcb64, 0xf9ff, 0xe876,
0x2102, 0x308b, 0x0210, 0x1399, 0x6726, 0x76af, 0x4434, 0x55bd,
0xad4a, 0xbcc3, 0x8e58, 0x9fd1, 0xeb6e, 0xfae7, 0xc87c, 0xd9f5,
0x3183, 0x200a, 0x1291, 0x0318, 0x77a7, 0x662e, 0x54b5, 0x453c,
0xbdcb, 0xac42, 0x9ed9, 0x8f50, 0xfbef, 0xea66, 0xd8fd, 0xc974,
0x4204, 0x538d, 0x6116, 0x709f, 0x0420, 0x15a9, 0x2732, 0x36bb,
0xce4c, 0xdfc5, 0xed5e, 0xfcd7, 0x8868, 0x99e1, 0xab7a, 0xbaf3,
0x5285, 0x430c, 0x7197, 0x601e, 0x14a1, 0x0528, 0x37b3, 0x263a,
0xdecd, 0xcf44, 0xfddf, 0xec56, 0x98e9, 0x8960, 0xbbfb, 0xaa72,
0x6306, 0x728f, 0x4014, 0x519d, 0x2522, 0x34ab, 0x0630, 0x17b9,
0xef4e, 0xfec7, 0xcc5c, 0xddd5, 0xa96a, 0xb8e3, 0x8a78, 0x9bf1,
0x7387, 0x620e, 0x5095, 0x411c, 0x35a3, 0x242a, 0x16b1, 0x0738,
0xffcf, 0xee46, 0xdcdd, 0xcd54, 0xb9eb, 0xa862, 0x9af9, 0x8b70,
0x8408, 0x9581, 0xa71a, 0xb693, 0xc22c, 0xd3a5, 0xe13e, 0xf0b7,
0x0840, 0x19c9, 0x2b52, 0x3adb, 0x4e64, 0x5fed, 0x6d76, 0x7cff,
0x9489, 0x8500, 0xb79b, 0xa612, 0xd2ad, 0xc324, 0xf1bf, 0xe036,
0x18c1, 0x0948, 0x3bd3, 0x2a5a, 0x5ee5, 0x4f6c, 0x7df7, 0x6c7e,
0xa50a, 0xb483, 0x8618, 0x9791, 0xe32e, 0xf2a7, 0xc03c, 0xd1b5,
0x2942, 0x38cb, 0x0a50, 0x1bd9, 0x6f66, 0x7eef, 0x4c74, 0x5dfd,
0xb58b, 0xa402, 0x9699, 0x8710, 0xf3af, 0xe226, 0xd0bd, 0xc134,
0x39c3, 0x284a, 0x1ad1, 0x0b58, 0x7fe7, 0x6e6e, 0x5cf5, 0x4d7c,
0xc60c, 0xd785, 0xe51e, 0xf497, 0x8028, 0x91a1, 0xa33a, 0xb2b3,
0x4a44, 0x5bcd, 0x6956, 0x78df, 0x0c60, 0x1de9, 0x2f72, 0x3efb,
0xd68d, 0xc704, 0xf59f, 0xe416, 0x90a9, 0x8120, 0xb3bb, 0xa232,
0x5ac5, 0x4b4c, 0x79d7, 0x685e, 0x1ce1, 0x0d68, 0x3ff3, 0x2e7a,
0xe70e, 0xf687, 0xc41c, 0xd595, 0xa12a, 0xb0a3, 0x8238, 0x93b1,
0x6b46, 0x7acf, 0x4854, 0x59dd, 0x2d62, 0x3ceb, 0x0e70, 0x1ff9,
0xf78f, 0xe606, 0xd49d, 0xc514, 0xb1ab, 0xa022, 0x92b9, 0x8330,
0x7bc7, 0x6a4e, 0x58d5, 0x495c, 0x3de3, 0x2c6a, 0x1ef1, 0x0f78
};
static uint16_t calc_checksum(uint8_t *cp, int len)
{
uint16_t fcs = 0xffff;
while (len--) {
fcs = (fcs >> 8) ^ fcstab[(fcs ^ *cp++) & 0xff];
}
return fcs ^ 0xffff;
}
/*********************************************************************
* FET packet transfer. This level of the interface deals in packets
* send to/from the device.
*/
/* This is a type of data transfer which appears to be unique to
* the RF2500. Blocks of data are sent to an internal buffer. Each
* block is prefixed with a buffer offset and a payload length.
*
* No checksums are included.
*/
static int send_rf2500_data(struct fet_device *dev,
const uint8_t *data, int len)
{
int offset = 0;
while (len) {
uint8_t pbuf[63];
int plen = len > 59 ? 59 : len;
pbuf[0] = 0x83;
pbuf[1] = offset & 0xff;
pbuf[2] = offset >> 8;
pbuf[3] = plen;
memcpy(pbuf + 4, data, plen);
if (dev->transport->send(dev->transport, pbuf, plen + 4) < 0)
return -1;
data += plen;
len -= plen;
offset += plen;
}
return 0;
}
#define BUFFER_BYTE(b, x) ((int)((uint8_t *)(b))[x])
#define BUFFER_WORD(b, x) ((BUFFER_BYTE(b, x + 1) << 8) | BUFFER_BYTE(b, x))
#define BUFFER_LONG(b, x) ((BUFFER_WORD(b, x + 2) << 16) | BUFFER_WORD(b, x))
#define PTYPE_ACK 0
#define PTYPE_CMD 1
#define PTYPE_PARAM 2
#define PTYPE_DATA 3
#define PTYPE_MIXED 4
#define PTYPE_NAK 5
#define PTYPE_FLASH_ACK 6
static int parse_packet(struct fet_device *dev, int plen)
{
uint16_t c = calc_checksum(dev->fet_buf + 2, plen - 2);
uint16_t r = BUFFER_WORD(dev->fet_buf, plen);
int i = 2;
int type;
int error;
if (c != r) {
fprintf(stderr, "fet: checksum error (calc %04x,"
" recv %04x)\n", c, r);
return -1;
}
if (plen < 6)
goto too_short;
dev->fet_reply.command_code = dev->fet_buf[i++];
type = dev->fet_buf[i++];
dev->fet_reply.state = dev->fet_buf[i++];
error = dev->fet_buf[i++];
if (error) {
fprintf(stderr, "fet: FET returned error code %d (%s)\n",
error, fet_error(error));
return -1;
}
if (type == PTYPE_NAK) {
fprintf(stderr, "fet: FET returned NAK\n");
return -1;
}
/* Parse packet parameters */
if (type == PTYPE_PARAM || type == PTYPE_MIXED) {
int j;
if (i + 2 > plen)
goto too_short;
dev->fet_reply.argc = BUFFER_WORD(dev->fet_buf, i);
i += 2;
if (dev->fet_reply.argc >= MAX_PARAMS) {
fprintf(stderr, "fet: too many params: %d\n",
dev->fet_reply.argc);
return -1;
}
for (j = 0; j < dev->fet_reply.argc; j++) {
if (i + 4 > plen)
goto too_short;
dev->fet_reply.argv[j] = BUFFER_LONG(dev->fet_buf, i);
i += 4;
}
} else {
dev->fet_reply.argc = 0;
}
/* Extract a pointer to the data */
if (type == PTYPE_DATA || type == PTYPE_MIXED) {
if (i + 4 > plen)
goto too_short;
dev->fet_reply.datalen = BUFFER_LONG(dev->fet_buf, i);
i += 4;
if (i + dev->fet_reply.datalen > plen)
goto too_short;
dev->fet_reply.data = dev->fet_buf + i;
} else {
dev->fet_reply.data = NULL;
dev->fet_reply.datalen = 0;
}
return 0;
too_short:
fprintf(stderr, "fet: too short (%d bytes)\n",
plen);
return -1;
}
static int recv_packet(struct fet_device *dev)
{
int plen = BUFFER_WORD(dev->fet_buf, 0);
/* If there's a packet still here from last time, get rid of it */
if (dev->fet_len >= plen + 2) {
memmove(dev->fet_buf, dev->fet_buf + plen + 2,
dev->fet_len - plen - 2);
dev->fet_len -= plen + 2;
}
/* Keep adding data to the buffer until we have a complete packet */
for (;;) {
int len;
plen = BUFFER_WORD(dev->fet_buf, 0);
if (dev->fet_len >= plen + 2)
return parse_packet(dev, plen);
len = dev->transport->recv(dev->transport,
dev->fet_buf + dev->fet_len,
sizeof(dev->fet_buf) -
dev->fet_len);
if (len < 0)
return -1;
dev->fet_len += len;
}
return -1;
}
static int send_command(struct fet_device *dev, int command_code,
const uint32_t *params, int nparams,
const uint8_t *extra, int exlen)
{
uint8_t datapkt[256];
int len = 0;
uint8_t buf[512];
uint16_t cksum;
int i = 0;
int j;
assert (len + exlen + 2 <= sizeof(datapkt));
/* Command code and packet type */
datapkt[len++] = command_code;
datapkt[len++] = ((nparams > 0) ? 1 : 0) + ((exlen > 0) ? 2 : 0) + 1;
/* Optional parameters */
if (nparams > 0) {
datapkt[len++] = nparams & 0xff;
datapkt[len++] = nparams >> 8;
for (j = 0; j < nparams; j++) {
uint32_t p = params[j];
datapkt[len++] = p & 0xff;
p >>= 8;
datapkt[len++] = p & 0xff;
p >>= 8;
datapkt[len++] = p & 0xff;
p >>= 8;
datapkt[len++] = p & 0xff;
}
}
/* Extra data */
if (extra) {
int x = exlen;
datapkt[len++] = x & 0xff;
x >>= 8;
datapkt[len++] = x & 0xff;
x >>= 8;
datapkt[len++] = x & 0xff;
x >>= 8;
datapkt[len++] = x & 0xff;
memcpy(datapkt + len, extra, exlen);
len += exlen;
}
/* Checksum */
cksum = calc_checksum(datapkt, len);
datapkt[len++] = cksum & 0xff;
datapkt[len++] = cksum >> 8;
/* Copy into buf, escaping special characters and adding
* delimeters.
*/
buf[i++] = 0x7e;
for (j = 0; j < len; j++) {
char c = datapkt[j];
if (c == 0x7e || c == 0x7d) {
buf[i++] = 0x7d;
c ^= 0x20;
}
buf[i++] = c;
}
buf[i++] = 0x7e;
assert (i < sizeof(buf));
return dev->transport->send(dev->transport, buf, i);
}
static int xfer(struct fet_device *dev,
int command_code, const uint8_t *data, int datalen,
int nparams, ...)
{
uint32_t params[MAX_PARAMS];
int i;
va_list ap;
assert (nparams <= MAX_PARAMS);
va_start(ap, nparams);
for (i = 0; i < nparams; i++)
params[i] = va_arg(ap, unsigned int);
va_end(ap);
if (data && dev->is_rf2500) {
assert (nparams + 1 <= MAX_PARAMS);
params[nparams++] = datalen;
if (send_rf2500_data(dev, data, datalen) < 0)
return -1;
if (send_command(dev, command_code, params, nparams,
NULL, 0) < 0)
return -1;
} else if (send_command(dev, command_code, params, nparams,
data, datalen) < 0)
return -1;
if (recv_packet(dev) < 0)
return -1;
if (dev->fet_reply.command_code != command_code) {
fprintf(stderr, "fet: reply type mismatch\n");
return -1;
}
return 0;
}
/**********************************************************************
* MSP430 high-level control functions
*/
static int do_identify(struct fet_device *dev)
{
char idtext[64];
if (dev->version < 20300000) {
if (xfer(dev, C_IDENTIFY, NULL, 0, 2, 70, 0) < 0)
return -1;
if (!dev->fet_reply.data) {
fprintf(stderr, "fet: missing info\n");
return -1;
}
memcpy(idtext, dev->fet_reply.data + 4, 32);
idtext[32] = 0;
} else {
uint16_t id;
if (xfer(dev, 0x28, NULL, 0, 2, 0, 0) < 0) {
fprintf(stderr, "fet: command 0x28 failed\n");
return -1;
}
if (dev->fet_reply.datalen < 2) {
fprintf(stderr, "fet: missing info\n");
return -1;
}
id = (dev->fet_reply.data[0] << 8) | dev->fet_reply.data[1];
if (device_id_text(id, idtext, sizeof(idtext)) < 0) {
printf("Unknown device ID: 0x%04x\n", id);
return 0;
}
}
printf("Device: %s\n", idtext);
return 0;
}
static int do_run(struct fet_device *dev, int type)
{
if (xfer(dev, C_RUN, NULL, 0, 2, type, 0) < 0) {
fprintf(stderr, "fet: failed to restart CPU\n");
return -1;
}
return 0;
}
static int do_erase(struct fet_device *dev)
{
if (xfer(dev, C_RESET, NULL, 0, 3, FET_RESET_ALL, 0, 0) < 0) {
fprintf(stderr, "fet: reset before erase failed\n");
return -1;
}
if (xfer(dev, C_CONFIGURE, NULL, 0, 2, 2, 0x26) < 0) {
fprintf(stderr, "fet: config (1) failed\n");
return -1;
}
if (xfer(dev, C_CONFIGURE, NULL, 0, 2, 5, 0) < 0) {
fprintf(stderr, "fet: config (2) failed\n");
return -1;
}
if (xfer(dev, C_ERASE, NULL, 0, 3, FET_ERASE_MAIN, 0x8000, 2) < 0) {
fprintf(stderr, "fet: erase command failed\n");
return -1;
}
return 0;
}
static device_status_t fet_poll(device_t dev_base)
{
struct fet_device *dev = (struct fet_device *)dev_base;
/* Without this delay, breakpoints can get lost. */
if (usleep(500000) < 0)
return DEVICE_STATUS_INTR;
if (xfer(dev, C_STATE, NULL, 0, 1, 0) < 0) {
fprintf(stderr, "fet: polling failed\n");
return DEVICE_STATUS_ERROR;
}
if (!(dev->fet_reply.argv[0] & FET_POLL_RUNNING))
return DEVICE_STATUS_HALTED;
return DEVICE_STATUS_RUNNING;
}
static int fet_ctl(device_t dev_base, device_ctl_t action)
{
struct fet_device *dev = (struct fet_device *)dev_base;
switch (action) {
case DEVICE_CTL_RESET:
if (xfer(dev, C_RESET, NULL, 0, 3, FET_RESET_ALL, 0, 0) < 0) {
fprintf(stderr, "fet: reset failed\n");
return -1;
}
break;
case DEVICE_CTL_RUN:
return do_run(dev, dev->have_breakpoint ?
FET_RUN_BREAKPOINT : FET_RUN_FREE);
case DEVICE_CTL_HALT:
if (xfer(dev, C_STATE, NULL, 0, 1, 1) < 0) {
fprintf(stderr, "fet: failed to halt CPU\n");
return -1;
}
break;
case DEVICE_CTL_STEP:
if (do_run(dev, FET_RUN_STEP) < 0)
return -1;
for (;;) {
device_status_t status = fet_poll(dev_base);
if (status == DEVICE_STATUS_ERROR ||
status == DEVICE_STATUS_INTR)
return -1;
if (status == DEVICE_STATUS_HALTED)
break;
}
break;
case DEVICE_CTL_ERASE:
return do_erase(dev);
}
return 0;
}
static void fet_destroy(device_t dev_base)
{
struct fet_device *dev = (struct fet_device *)dev_base;
if (xfer(dev, C_RUN, NULL, 0, 2, FET_RUN_FREE, 1) < 0)
fprintf(stderr, "fet: failed to restart CPU\n");
if (xfer(dev, C_CLOSE, NULL, 0, 1, 0) < 0)
fprintf(stderr, "fet: close command failed\n");
dev->transport->destroy(dev->transport);
free(dev);
}
int fet_readmem(device_t dev_base, uint16_t addr, uint8_t *buffer, int count)
{
struct fet_device *dev = (struct fet_device *)dev_base;
while (count) {
int plen = count > 128 ? 128 : count;
if (xfer(dev, C_READMEMORY, NULL, 0, 2, addr, plen) < 0) {
fprintf(stderr, "fet: failed to read "
"from 0x%04x\n", addr);
return -1;
}
if (dev->fet_reply.datalen < plen) {
fprintf(stderr, "fet: short data: "
"%d bytes\n", dev->fet_reply.datalen);
return -1;
}
memcpy(buffer, dev->fet_reply.data, plen);
buffer += plen;
count -= plen;
addr += plen;
}
return 0;
}
int fet_writemem(device_t dev_base, uint16_t addr,
const uint8_t *buffer, int count)
{
struct fet_device *dev = (struct fet_device *)dev_base;
while (count) {
int plen = count > 128 ? 128 : count;
int ret;
ret = xfer(dev, C_WRITEMEMORY, buffer, plen, 1, addr);
if (ret < 0) {
fprintf(stderr, "fet: failed to write to 0x%04x\n",
addr);
return -1;
}
buffer += plen;
count -= plen;
addr += plen;
}
return 0;
}
static int fet_getregs(device_t dev_base, uint16_t *regs)
{
struct fet_device *dev = (struct fet_device *)dev_base;
int i;
if (xfer(dev, C_READREGISTERS, NULL, 0, 0) < 0)
return -1;
if (dev->fet_reply.datalen < DEVICE_NUM_REGS * 4) {
fprintf(stderr, "fet: short reply (%d bytes)\n",
dev->fet_reply.datalen);
return -1;
}
for (i = 0; i < DEVICE_NUM_REGS; i++)
regs[i] = BUFFER_WORD(dev->fet_reply.data, i * 4);
return 0;
}
static int fet_setregs(device_t dev_base, const uint16_t *regs)
{
struct fet_device *dev = (struct fet_device *)dev_base;
uint8_t buf[DEVICE_NUM_REGS * 4];;
int i;
int ret;
memset(buf, 0, sizeof(buf));
for (i = 0; i < DEVICE_NUM_REGS; i++) {
buf[i * 4] = regs[i] & 0xff;
buf[i * 4 + 1] = regs[i] >> 8;
}
ret = xfer(dev, C_WRITEREGISTERS, buf, sizeof(buf), 1, 0xffff);
if (ret < 0) {
fprintf(stderr, "fet: context set failed\n");
return -1;
}
return 0;
}
static int fet_breakpoint(device_t dev_base, int enabled, uint16_t addr)
{
struct fet_device *dev = (struct fet_device *)dev_base;
if (enabled) {
dev->have_breakpoint = 1;
if (xfer(dev, C_BREAKPOINT, NULL, 0, 2, 0, addr) < 0) {
fprintf(stderr, "fet: set breakpoint failed\n");
return -1;
}
} else {
dev->have_breakpoint = 0;
}
return 0;
}
#define MAGIC_DATA_SIZE 0x4a
#define MAGIC_PARAM_COUNT 3
#define MAGIC_SEND_29 0x01
#define MAGIC_SEND_2B 0x02
struct magic_record {
int min_version;
int flags;
uint32_t param_29[MAGIC_PARAM_COUNT];
const uint8_t data_29[MAGIC_DATA_SIZE];
const uint8_t data_2b[MAGIC_DATA_SIZE];
};
/* The first entry in this table whose version exceeds the version
* reported by the FET is used. Therefore, it must be kept in descending
* order of version.
*/
const static struct magic_record magic_table[] = {
{ /* TI Chronos */
.min_version = 30001000,
.flags = MAGIC_SEND_29 | MAGIC_SEND_2B,
.param_29 = {0x77, 0x6f, 0x4a},
.data_29 = {
0x00, 0x80, 0xff, 0xff, 0x00, 0x00, 0x00, 0x18,
0xff, 0x19, 0x80, 0x00, 0x00, 0x1c, 0xff, 0x2b,
0x00, 0x00, 0x00, 0x00, 0x03, 0x00, 0x02, 0x00,
0x02, 0x00, 0x07, 0x24, 0x00, 0x00, 0x00, 0x00,
0x08, 0x07, 0x10, 0x0e, 0xc4, 0x09, 0x70, 0x17,
0x58, 0x1b, 0x01, 0x00, 0x03, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x01, 0x00,
0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff
},
.data_2b = {
0x00, 0x10, 0xff, 0x17, 0x00, 0x02, 0x01, 0x00,
0x04, 0x00, 0x40, 0x00, 0x0a, 0x91, 0x8e, 0x00,
0x00, 0xb0, 0x28, 0x29, 0x2a, 0x2b, 0x80, 0xd8,
0xa8, 0x60, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00
}
},
{ /* RF2500 */
.min_version = 30000000,
.flags = MAGIC_SEND_29,
.param_29 = {0, 0x39, 0x31},
.data_29 = {
0x00, 0x80, 0xff, 0xff, 0x00, 0x00, 0x00, 0x10,
0xff, 0x10, 0x40, 0x00, 0x00, 0x02, 0xff, 0x05,
0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x01, 0x00,
0x01, 0x00, 0xd7, 0x60, 0x00, 0x00, 0x00, 0x00,
0x08, 0x07, 0x10, 0x0e, 0xc4, 0x09, 0x70, 0x17,
0x58, 0x1b, 0x01, 0x00, 0x03, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00,
0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x33, 0x0f, 0x1f, 0x0f,
0xff, 0xff
}
},
{ /* FET430UIF */
.min_version = 20404000,
.flags = MAGIC_SEND_29 | MAGIC_SEND_2B,
.param_29 = {0, 7, 7},
.data_29 = {
0x00, 0x11, 0xff, 0xff, 0x00, 0x00, 0x00, 0x10,
0xff, 0x10, 0x80, 0x00, 0x00, 0x02, 0xff, 0x09,
0x00, 0x00, 0x00, 0x00, 0x03, 0x00, 0x02, 0x00,
0x00, 0x00, 0xd7, 0x60, 0x00, 0x00, 0x00, 0x00,
0x08, 0x07, 0x10, 0x0e, 0xc4, 0x09, 0x70, 0x17,
0x58, 0x1b, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0xf3, 0x30, 0xd3, 0x30,
0xc0, 0x30
},
.data_2b = {
0x00, 0x0c, 0xff, 0x0f, 0x00, 0x02, 0x00, 0x00,
0x03, 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00
}
}
};
static int do_magic(struct fet_device *dev)
{
int i;
for (i = 0; i < ARRAY_LEN(magic_table); i++) {
const struct magic_record *r = &magic_table[i];
if (dev->version >= r->min_version) {
printf("Sending magic messages for >= %d\n",
r->min_version);
if ((r->flags & MAGIC_SEND_2B) &&
xfer(dev, 0x2b, r->data_2b,
MAGIC_DATA_SIZE, 0) < 0) {
fprintf(stderr, "fet: command 0x2b failed\n");
return -1;
}
if ((r->flags & MAGIC_SEND_29) &&
xfer(dev, 0x29, r->data_29, MAGIC_DATA_SIZE,
3, r->param_29[0], r->param_29[1],
r->param_29[2]) < 0) {
fprintf(stderr, "fet: command 0x29 failed\n");
return -1;
}
return 0;
}
}
return 0;
}
device_t fet_open(transport_t transport, int proto_flags, int vcc_mv)
{
struct fet_device *dev = malloc(sizeof(*dev));
if (!dev) {
perror("fet: failed to allocate memory");
return NULL;
}
dev->base.destroy = fet_destroy;
dev->base.readmem = fet_readmem;
dev->base.writemem = fet_writemem;
dev->base.getregs = fet_getregs;
dev->base.setregs = fet_setregs;
dev->base.breakpoint = fet_breakpoint;
dev->base.ctl = fet_ctl;
dev->base.poll = fet_poll;
dev->transport = transport;
dev->is_rf2500 = proto_flags & FET_PROTO_RF2500;
dev->have_breakpoint = 0;
dev->fet_len = 0;
if (xfer(dev, C_INITIALIZE, NULL, 0, 0) < 0) {
fprintf(stderr, "fet: open failed\n");
goto fail;
}
dev->version = dev->fet_reply.argv[0];
printf("FET protocol version is %d\n", dev->version);
if (xfer(dev, 0x27, NULL, 0, 1, 4) < 0) {
fprintf(stderr, "fet: init failed\n");
goto fail;
}
/* configure: Spy-Bi-Wire or JTAG */
if (xfer(dev, C_CONFIGURE, NULL, 0,
2, 8, (proto_flags & FET_PROTO_SPYBIWIRE) ? 1 : 0) < 0) {
fprintf(stderr, "fet: configure failed\n");
goto fail;
}
printf("Configured for %s\n",
(proto_flags & FET_PROTO_SPYBIWIRE) ? "Spy-Bi-Wire" : "JTAG");
/* set VCC */
if (xfer(dev, C_VCC, NULL, 0, 1, vcc_mv) < 0) {
fprintf(stderr, "fet: set VCC failed\n");
goto fail;
}
printf("Set Vcc: %d mV\n", vcc_mv);
/* Identify the chip */
if (do_identify(dev) < 0) {
fprintf(stderr, "fet: identify failed\n");
goto fail;
}
/* Send the magic required by RF2500 and Chronos FETs */
if (do_magic(dev) < 0) {
fprintf(stderr, "fet: init magic failed\n");
goto fail;
}
return (device_t)dev;
fail:
free(dev);
return NULL;
}