782 lines
18 KiB
C
782 lines
18 KiB
C
/* MSPDebug - debugging tool for MSP430 MCUs
|
|
* Copyright (C) 2009, 2010 Daniel Beer
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <errno.h>
|
|
#include "btree.h"
|
|
|
|
#define MAX_HEIGHT 16
|
|
|
|
/* Btree pages consist of the following: a page header (struct btree_page),
|
|
* followed by a block of memory consisting of:
|
|
*
|
|
* For a leaf node:
|
|
* An array of N keys, then an array of N data.
|
|
*
|
|
* For a non-leaf node:
|
|
* An array of N keys, then an array of N struct btree_page *.
|
|
*
|
|
* Where N is the branch factor.
|
|
*/
|
|
struct btree_page {
|
|
int height;
|
|
int num_children;
|
|
struct btree *owner;
|
|
const struct btree_def *def;
|
|
};
|
|
|
|
#define PAGE_KEY(p, i) \
|
|
(((char *)(p)) + sizeof(struct btree_page) + \
|
|
(i) * (p)->def->key_size)
|
|
#define PAGE_DATA(p, i) \
|
|
(((char *)(p)) + sizeof(struct btree_page) + \
|
|
(p)->def->branches * (p)->def->key_size + \
|
|
(i) * (p)->def->data_size)
|
|
#define PAGE_PTR(p, i) \
|
|
((struct btree_page **) \
|
|
(((char *)(p)) + sizeof(struct btree_page) + \
|
|
(p)->def->branches * (p)->def->key_size + \
|
|
(i) * sizeof(struct btree_page *))) \
|
|
|
|
struct btree {
|
|
const struct btree_def *def;
|
|
struct btree_page *root;
|
|
|
|
struct btree_page *path[MAX_HEIGHT];
|
|
int slot[MAX_HEIGHT];
|
|
};
|
|
|
|
/************************************************************************
|
|
* Debugging
|
|
*/
|
|
|
|
#ifdef DEBUG_BTREE
|
|
|
|
static void check_page(struct btree_page *p,
|
|
const void *lbound, const void *ubound,
|
|
int height)
|
|
{
|
|
const struct btree_def *def = p->def;
|
|
int i;
|
|
|
|
assert (p);
|
|
assert (p->height == height);
|
|
|
|
if (p != p->owner->root) {
|
|
assert (p->num_children >= def->branches / 2);
|
|
assert (p->num_children <= def->branches);
|
|
}
|
|
|
|
for (i = 0; i < p->num_children; i++) {
|
|
const void *key = PAGE_KEY(p, i);
|
|
const void *next_key = ubound;
|
|
|
|
if (i + 1 < p->num_children)
|
|
next_key = PAGE_KEY(p, i + 1);
|
|
|
|
assert (def->compare(key, lbound) >= 0);
|
|
if (next_key) {
|
|
assert (def->compare(key, next_key) < 0);
|
|
}
|
|
if (ubound) {
|
|
assert (def->compare(key, ubound) < 0);
|
|
}
|
|
|
|
if (p->height)
|
|
check_page(*PAGE_PTR(p, i), key, next_key, height - 1);
|
|
}
|
|
}
|
|
|
|
static void check_btree(btree_t bt)
|
|
{
|
|
assert (bt->def);
|
|
|
|
if (bt->root->height) {
|
|
assert (bt->root->num_children >= 2);
|
|
}
|
|
|
|
check_page(bt->root, bt->def->zero, NULL, bt->root->height);
|
|
}
|
|
|
|
#else
|
|
#define check_btree(bt)
|
|
#endif
|
|
|
|
/************************************************************************
|
|
* B+Tree auxiliary functions
|
|
*/
|
|
|
|
static void destroy_page(struct btree_page *p)
|
|
{
|
|
if (!p)
|
|
return;
|
|
|
|
if (p->height) {
|
|
int i;
|
|
|
|
for (i = 0; i < p->num_children; i++)
|
|
destroy_page(*PAGE_PTR(p, i));
|
|
}
|
|
|
|
free(p);
|
|
}
|
|
|
|
static struct btree_page *allocate_page(btree_t bt, int height)
|
|
{
|
|
const struct btree_def *def = bt->def;
|
|
struct btree_page *p;
|
|
int size = sizeof(*p) + def->key_size * def->branches;
|
|
|
|
if (height)
|
|
size += sizeof(struct btree_page *) * def->branches;
|
|
else
|
|
size += sizeof(def->data_size) * def->branches;
|
|
|
|
p = malloc(size);
|
|
if (!p) {
|
|
fprintf(stderr, "btree: couldn't allocate page: %s\n",
|
|
strerror(errno));
|
|
return NULL;
|
|
}
|
|
|
|
memset(p, 0, size);
|
|
p->def = bt->def;
|
|
p->owner = bt;
|
|
p->height = height;
|
|
|
|
return p;
|
|
}
|
|
|
|
static void split_page(struct btree_page *op, struct btree_page *np)
|
|
{
|
|
const struct btree_def *def = op->def;
|
|
btree_t bt = op->owner;
|
|
const int halfsize = def->branches / 2;
|
|
|
|
assert (op->num_children == def->branches);
|
|
|
|
memcpy(PAGE_KEY(np, 0), PAGE_KEY(op, halfsize),
|
|
halfsize * def->key_size);
|
|
|
|
if (op->height)
|
|
memcpy(PAGE_PTR(np, 0), PAGE_PTR(op, halfsize),
|
|
halfsize * sizeof(struct btree_page *));
|
|
else
|
|
memcpy(PAGE_DATA(np, 0), PAGE_DATA(op, halfsize),
|
|
halfsize * def->data_size);
|
|
|
|
op->num_children = halfsize;
|
|
np->num_children = halfsize;
|
|
|
|
/* Fix up the cursor if we split an active page */
|
|
if (bt->slot[0] >= 0 && bt->path[op->height] == op &&
|
|
bt->slot[op->height] > op->num_children) {
|
|
bt->slot[op->height] -= op->num_children;
|
|
bt->path[op->height] = np;
|
|
}
|
|
}
|
|
|
|
static void insert_data(struct btree_page *p, int s,
|
|
const void *key, const void *data)
|
|
{
|
|
const struct btree_def *def = p->def;
|
|
btree_t bt = p->owner;
|
|
int r = p->num_children - s;
|
|
|
|
assert (!p->height);
|
|
assert (p->num_children < def->branches);
|
|
assert (s >= 0 && s <= p->num_children);
|
|
|
|
memmove(PAGE_KEY(p, s + 1), PAGE_KEY(p, s),
|
|
r * def->key_size);
|
|
memmove(PAGE_DATA(p, s + 1), PAGE_DATA(p, s),
|
|
r * def->data_size);
|
|
|
|
memcpy(PAGE_KEY(p, s), key, def->key_size);
|
|
memcpy(PAGE_DATA(p, s), data, def->data_size);
|
|
p->num_children++;
|
|
|
|
/* Fix up the cursor if we inserted before it, or if we're inserting
|
|
* a pointer to the cursor data itself (as in a borrow).
|
|
*/
|
|
if (bt->slot[0] >= 0) {
|
|
if (data == PAGE_DATA(bt->path[0], bt->slot[0])) {
|
|
bt->path[0] = p;
|
|
bt->slot[0] = s;
|
|
} else if (bt->path[0] == p && s <= bt->slot[0]) {
|
|
bt->slot[0]++;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void insert_ptr(struct btree_page *p, int s,
|
|
const void *key, struct btree_page *ptr)
|
|
{
|
|
const struct btree_def *def = p->def;
|
|
btree_t bt = p->owner;
|
|
int r = p->num_children - s;
|
|
|
|
assert (p->height);
|
|
assert (p->num_children < def->branches);
|
|
assert (s >= 0 && s <= p->num_children);
|
|
|
|
memmove(PAGE_KEY(p, s + 1), PAGE_KEY(p, s),
|
|
r * def->key_size);
|
|
memmove(PAGE_PTR(p, s + 1), PAGE_PTR(p, s),
|
|
r * sizeof(struct btree_page *));
|
|
|
|
memcpy(PAGE_KEY(p, s), key, def->key_size);
|
|
*PAGE_PTR(p, s) = ptr;
|
|
p->num_children++;
|
|
|
|
/* Fix up the cursor if we inserted before it, or if we just inserted
|
|
* the pointer for the active path (as in a split or borrow).
|
|
*/
|
|
if (bt->slot[0] >= 0) {
|
|
if (ptr == bt->path[p->height - 1]) {
|
|
bt->path[p->height] = p;
|
|
bt->slot[p->height] = s;
|
|
} else if (bt->path[p->height] == p &&
|
|
s <= bt->slot[p->height]) {
|
|
bt->slot[p->height]++;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void delete_item(struct btree_page *p, int s)
|
|
{
|
|
const struct btree_def *def = p->def;
|
|
btree_t bt = p->owner;
|
|
int r = p->num_children - s - 1;
|
|
|
|
assert (s >= 0 && s < p->num_children);
|
|
|
|
memmove(PAGE_KEY(p, s), PAGE_KEY(p, s + 1),
|
|
r * def->key_size);
|
|
|
|
if (p->height)
|
|
memmove(PAGE_PTR(p, s), PAGE_PTR(p, s + 1),
|
|
r * sizeof(struct btree_page *));
|
|
else
|
|
memmove(PAGE_DATA(p, s), PAGE_DATA(p, s + 1),
|
|
r * def->data_size);
|
|
|
|
p->num_children--;
|
|
|
|
/* Fix up the cursor if we deleted before it */
|
|
if (bt->slot[0] >= 0 && bt->path[p->height] == p &&
|
|
s <= bt->slot[p->height])
|
|
bt->slot[p->height]--;
|
|
}
|
|
|
|
static void move_item(struct btree_page *from, int from_pos,
|
|
struct btree_page *to, int to_pos)
|
|
{
|
|
if (from->height)
|
|
insert_ptr(to, to_pos, PAGE_KEY(from, from_pos),
|
|
*PAGE_PTR(from, from_pos));
|
|
else
|
|
insert_data(to, to_pos, PAGE_KEY(from, from_pos),
|
|
PAGE_DATA(from, from_pos));
|
|
|
|
delete_item(from, from_pos);
|
|
}
|
|
|
|
static void merge_pages(struct btree_page *lower,
|
|
struct btree_page *higher)
|
|
{
|
|
const struct btree_def *def = lower->def;
|
|
btree_t bt = lower->owner;
|
|
|
|
assert (lower->num_children + higher->num_children < def->branches);
|
|
|
|
memcpy(PAGE_KEY(lower, lower->num_children),
|
|
PAGE_KEY(higher, 0),
|
|
higher->num_children * def->key_size);
|
|
|
|
if (lower->height)
|
|
memcpy(PAGE_PTR(lower, lower->num_children),
|
|
PAGE_PTR(higher, 0),
|
|
higher->num_children * sizeof(struct btree_page *));
|
|
else
|
|
memcpy(PAGE_DATA(lower, lower->num_children),
|
|
PAGE_DATA(higher, 0),
|
|
higher->num_children * def->data_size);
|
|
|
|
lower->num_children += higher->num_children;
|
|
|
|
/* Fix up the cursor if we subsumed an active page */
|
|
if (bt->slot[0] >= 0) {
|
|
if (bt->path[higher->height] == higher) {
|
|
bt->path[higher->height] = lower;
|
|
bt->slot[higher->height] += lower->num_children;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int find_key_le(const struct btree_page *p, const void *key)
|
|
{
|
|
const struct btree_def *def = p->def;
|
|
int i;
|
|
|
|
for (i = 0; i < p->num_children; i++)
|
|
if (def->compare(key, PAGE_KEY(p, i)) < 0)
|
|
return i - 1;
|
|
|
|
return p->num_children - 1;
|
|
}
|
|
|
|
static int trace_path(btree_t bt, const void *key,
|
|
struct btree_page **path, int *slot)
|
|
{
|
|
const struct btree_def *def = bt->def;
|
|
struct btree_page *p = bt->root;
|
|
int h;
|
|
|
|
for (h = p->height; h >= 0; h--) {
|
|
int s = find_key_le(p, key);
|
|
|
|
path[h] = p;
|
|
slot[h] = s;
|
|
|
|
if (h) {
|
|
assert (s >= 0);
|
|
p = *PAGE_PTR(p, s);
|
|
} else if (s >= 0 && !def->compare(key, PAGE_KEY(p, s))) {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void cursor_first(btree_t bt)
|
|
{
|
|
int h;
|
|
struct btree_page *p = bt->root;
|
|
|
|
if (!bt->root->num_children) {
|
|
bt->slot[0] = -1;
|
|
return;
|
|
}
|
|
|
|
for (h = bt->root->height; h >= 0; h--) {
|
|
assert (p->num_children > 0);
|
|
|
|
bt->path[h] = p;
|
|
bt->slot[h] = 0;
|
|
|
|
if (h)
|
|
p = *PAGE_PTR(p, 0);
|
|
}
|
|
}
|
|
|
|
static void cursor_next(btree_t bt)
|
|
{
|
|
int h;
|
|
|
|
if (bt->slot[0] < 0)
|
|
return;
|
|
|
|
/* Ascend until we find a suitable sibling */
|
|
for (h = 0; h <= bt->root->height; h++) {
|
|
struct btree_page *p = bt->path[h];
|
|
|
|
if (bt->slot[h] + 1 < p->num_children) {
|
|
bt->slot[h]++;
|
|
|
|
while (h > 0) {
|
|
p = *PAGE_PTR(p, bt->slot[h]);
|
|
h--;
|
|
bt->slot[h] = 0;
|
|
bt->path[h] = p;
|
|
}
|
|
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Exhausted all levels */
|
|
bt->slot[0] = -1;
|
|
}
|
|
|
|
/************************************************************************
|
|
* Public interface
|
|
*/
|
|
|
|
btree_t btree_alloc(const struct btree_def *def)
|
|
{
|
|
btree_t bt;
|
|
|
|
if (def->branches < 2 || (def->branches & 1)) {
|
|
fprintf(stderr, "btree: invalid branch count: %d\n",
|
|
def->branches);
|
|
return NULL;
|
|
}
|
|
|
|
bt = malloc(sizeof(*bt));
|
|
if (!bt) {
|
|
fprintf(stderr, "btree: couldn't allocate tree: %s\n",
|
|
strerror(errno));
|
|
return NULL;
|
|
}
|
|
|
|
memset(bt, 0, sizeof(*bt));
|
|
bt->def = def;
|
|
bt->slot[0] = -1;
|
|
|
|
bt->root = allocate_page(bt, 0);
|
|
if (!bt->root) {
|
|
fprintf(stderr, "btree: couldn't allocate root node: %s\n",
|
|
strerror(errno));
|
|
free(bt);
|
|
return NULL;
|
|
}
|
|
|
|
return bt;
|
|
}
|
|
|
|
void btree_free(btree_t bt)
|
|
{
|
|
check_btree(bt);
|
|
destroy_page(bt->root);
|
|
free(bt);
|
|
}
|
|
|
|
void btree_clear(btree_t bt)
|
|
{
|
|
struct btree_page *p;
|
|
struct btree_page *path_up = 0;
|
|
|
|
check_btree(bt);
|
|
|
|
/* The cursor will have nothing to point to after this. */
|
|
bt->slot[0] = -1;
|
|
|
|
/* First, find the last leaf node, which we can re-use as an
|
|
* empty root.
|
|
*/
|
|
p = bt->root;
|
|
while (p->height) {
|
|
path_up = p;
|
|
p = *PAGE_PTR(p, p->num_children - 1);
|
|
}
|
|
|
|
/* Unlink it from the tree and then destroy everything else. */
|
|
if (path_up) {
|
|
path_up->num_children--;
|
|
destroy_page(bt->root);
|
|
}
|
|
|
|
/* Clear it out and make it the new root */
|
|
p->num_children = 0;
|
|
bt->root = p;
|
|
}
|
|
|
|
int btree_put(btree_t bt, const void *key, const void *data)
|
|
{
|
|
const struct btree_def *def = bt->def;
|
|
struct btree_page *new_root = NULL;
|
|
struct btree_page *path_new[MAX_HEIGHT] = {0};
|
|
struct btree_page *path_old[MAX_HEIGHT] = {0};
|
|
int slot_old[MAX_HEIGHT] = {0};
|
|
int h;
|
|
|
|
check_btree(bt);
|
|
|
|
/* Special case: cursor overwrite */
|
|
if (!key) {
|
|
if (bt->slot[0] < 0) {
|
|
fprintf(stderr, "btree: put at invalid cursor\n");
|
|
return -1;
|
|
}
|
|
|
|
memcpy(PAGE_DATA(bt->path[0], bt->slot[0]), data,
|
|
def->data_size);
|
|
return 1;
|
|
}
|
|
|
|
/* Find a path down the tree that leads to the page which should
|
|
* contain this datum (though the page might be too big to hold it).
|
|
*/
|
|
if (trace_path(bt, key, path_old, slot_old)) {
|
|
/* Special case: overwrite existing item */
|
|
memcpy(PAGE_DATA(path_old[0], slot_old[0]), data,
|
|
def->data_size);
|
|
return 1;
|
|
}
|
|
|
|
/* Trace from the leaf up. If the leaf is at its maximum size, it will
|
|
* need to split, and cause a pointer to be added in the parent page
|
|
* of the same node (which may in turn cause it to split).
|
|
*/
|
|
for (h = 0; h <= bt->root->height; h++) {
|
|
if (path_old[h]->num_children < def->branches)
|
|
break;
|
|
|
|
path_new[h] = allocate_page(bt, h);
|
|
if (!path_new[h])
|
|
goto fail;
|
|
}
|
|
|
|
/* If the split reaches the top (i.e. the root splits), then we need
|
|
* to allocate a new root node.
|
|
*/
|
|
if (h > bt->root->height) {
|
|
if (h >= MAX_HEIGHT) {
|
|
fprintf(stderr, "btree: maximum height exceeded\n");
|
|
goto fail;
|
|
}
|
|
|
|
new_root = allocate_page(bt, h);
|
|
if (!new_root)
|
|
goto fail;
|
|
}
|
|
|
|
/* Trace up to one page above the split. At each page that needs
|
|
* splitting, copy the top half of keys into the new page. Also,
|
|
* insert a key into one of the pages at all pages from the leaf
|
|
* to the page above the top of the split.
|
|
*/
|
|
for (h = 0; h <= bt->root->height; h++) {
|
|
int s = slot_old[h] + 1;
|
|
struct btree_page *p = path_old[h];
|
|
|
|
/* If there's a split at this level, copy the top half of
|
|
* the keys from the old page to the new one. Check to see
|
|
* if the position we were going to insert into is in the
|
|
* old page or the new one.
|
|
*/
|
|
if (path_new[h]) {
|
|
split_page(path_old[h], path_new[h]);
|
|
|
|
if (s > p->num_children) {
|
|
s -= p->num_children;
|
|
p = path_new[h];
|
|
}
|
|
}
|
|
|
|
/* Insert the key in the appropriate page */
|
|
if (h)
|
|
insert_ptr(p, s, PAGE_KEY(path_new[h - 1], 0),
|
|
path_new[h - 1]);
|
|
else
|
|
insert_data(p, s, key, data);
|
|
|
|
/* If there was no split at this level, there's nothing to
|
|
* insert higher up, and we're all done.
|
|
*/
|
|
if (!path_new[h])
|
|
return 0;
|
|
}
|
|
|
|
/* If we made it this far, the split reached the top of the tree, and
|
|
* we need to grow it using the extra page we allocated.
|
|
*/
|
|
assert (new_root);
|
|
|
|
if (bt->slot[0] >= 0) {
|
|
/* Fix up the cursor, if active */
|
|
bt->slot[new_root->height] =
|
|
bt->path[bt->root->height] == new_root ? 1 : 0;
|
|
bt->path[new_root->height] = new_root;
|
|
}
|
|
|
|
memcpy(PAGE_KEY(new_root, 0), def->zero, def->key_size);
|
|
*PAGE_PTR(new_root, 0) = path_old[h - 1];
|
|
memcpy(PAGE_KEY(new_root, 1), PAGE_KEY(path_new[h - 1], 0),
|
|
def->key_size);
|
|
*PAGE_PTR(new_root, 1) = path_new[h - 1];
|
|
new_root->num_children = 2;
|
|
bt->root = new_root;
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
for (h = 0; h <= bt->root->height; h++)
|
|
if (path_new[h])
|
|
free(path_new[h]);
|
|
return -1;
|
|
}
|
|
|
|
int btree_delete(btree_t bt, const void *key)
|
|
{
|
|
const struct btree_def *def = bt->def;
|
|
const int halfsize = def->branches / 2;
|
|
struct btree_page *path[MAX_HEIGHT] = {0};
|
|
int slot[MAX_HEIGHT] = {0};
|
|
int h;
|
|
|
|
check_btree(bt);
|
|
|
|
/* Trace a path to the item to be deleted */
|
|
if (!key) {
|
|
if (bt->slot[0] < 0)
|
|
return 1;
|
|
|
|
memcpy(path, bt->path, sizeof(path));
|
|
memcpy(slot, bt->slot, sizeof(slot));
|
|
} else if (!trace_path(bt, key, path, slot)) {
|
|
return 1;
|
|
}
|
|
|
|
/* Select the next item if we're deleting at the cursor */
|
|
if (bt->slot[0] == slot[0] && bt->path[0] == path[0])
|
|
cursor_next(bt);
|
|
|
|
/* Delete from the leaf node. If it's still full enough, then we don't
|
|
* need to do anything else.
|
|
*/
|
|
delete_item(path[0], slot[0]);
|
|
if (path[0]->num_children >= halfsize)
|
|
return 0;
|
|
|
|
/* Trace back up the tree, fixing underfull nodes. If we can fix by
|
|
* borrowing, do it and we're done. Otherwise, we need to fix by
|
|
* merging, which may result in another underfull node, and we need
|
|
* to continue.
|
|
*/
|
|
for (h = 1; h <= bt->root->height; h++) {
|
|
struct btree_page *p = path[h];
|
|
struct btree_page *c = path[h - 1];
|
|
int s = slot[h];
|
|
|
|
if (s > 0) {
|
|
/* Borrow/merge from lower page */
|
|
struct btree_page *d = *PAGE_PTR(p, s - 1);
|
|
|
|
if (d->num_children > halfsize) {
|
|
move_item(d, d->num_children - 1, c, 0);
|
|
memcpy(PAGE_KEY(p, s), PAGE_KEY(c, 0),
|
|
def->key_size);
|
|
return 0;
|
|
}
|
|
|
|
merge_pages(d, c);
|
|
delete_item(p, s);
|
|
free(c);
|
|
} else {
|
|
/* Borrow/merge from higher page */
|
|
struct btree_page *d = *PAGE_PTR(p, s + 1);
|
|
|
|
if (d->num_children > halfsize) {
|
|
move_item(d, 0, c, c->num_children);
|
|
memcpy(PAGE_KEY(p, s + 1),
|
|
PAGE_KEY(d, 0),
|
|
def->key_size);
|
|
return 0;
|
|
}
|
|
|
|
merge_pages(c, d);
|
|
delete_item(p, s + 1);
|
|
free(d);
|
|
}
|
|
|
|
if (p->num_children >= halfsize)
|
|
return 0;
|
|
}
|
|
|
|
/* If the root contains only a single pointer to another page,
|
|
* shrink the tree. This does not affect the cursor.
|
|
*/
|
|
if (bt->root->height && bt->root->num_children == 1) {
|
|
struct btree_page *old = bt->root;
|
|
|
|
bt->root = *PAGE_PTR(old, 0);
|
|
free(old);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int btree_get(btree_t bt, const void *key, void *data)
|
|
{
|
|
const struct btree_def *def = bt->def;
|
|
struct btree_page *p = bt->root;
|
|
int h;
|
|
|
|
check_btree(bt);
|
|
|
|
if (!key)
|
|
return btree_select(bt, NULL, BTREE_READ, NULL, data);
|
|
|
|
for (h = bt->root->height; h >= 0; h--) {
|
|
int s = find_key_le(p, key);
|
|
|
|
if (h) {
|
|
assert (s >= 0 && s < p->num_children);
|
|
p = *PAGE_PTR(p, s);
|
|
} else if (s >= 0 && !def->compare(key, PAGE_KEY(p, s))) {
|
|
memcpy(data, PAGE_DATA(p, s), def->data_size);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
int btree_select(btree_t bt, const void *key, btree_selmode_t mode,
|
|
void *key_ret, void *data_ret)
|
|
{
|
|
const struct btree_def *def = bt->def;
|
|
|
|
check_btree(bt);
|
|
|
|
switch (mode) {
|
|
case BTREE_CLEAR:
|
|
bt->slot[0] = -1;
|
|
break;
|
|
|
|
case BTREE_READ:
|
|
break;
|
|
|
|
case BTREE_EXACT:
|
|
case BTREE_LE:
|
|
if (!trace_path(bt, key, bt->path, bt->slot) &&
|
|
mode == BTREE_EXACT)
|
|
bt->slot[0] = -1;
|
|
break;
|
|
|
|
case BTREE_FIRST:
|
|
cursor_first(bt);
|
|
break;
|
|
|
|
case BTREE_NEXT:
|
|
cursor_next(bt);
|
|
break;
|
|
}
|
|
|
|
/* Return the data at the cursor */
|
|
if (bt->slot[0] >= 0) {
|
|
if (key_ret)
|
|
memcpy(key_ret,
|
|
PAGE_KEY(bt->path[0], bt->slot[0]),
|
|
def->key_size);
|
|
if (data_ret)
|
|
memcpy(data_ret,
|
|
PAGE_DATA(bt->path[0], bt->slot[0]),
|
|
def->data_size);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|