libsigrok/hardware/common/dmm/es519xx.c

822 lines
23 KiB
C
Raw Normal View History

/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2012 Uwe Hermann <uwe@hermann-uwe.de>
* Copyright (C) 2013 Aurelien Jacobs <aurel@gnuage.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
* Cyrustek ES519XX protocol parser.
*
* Communication parameters: Unidirectional, 2400/7o1 or 19230/7o1
*/
#include <string.h>
#include <ctype.h>
#include <math.h>
#include <glib.h>
#include "libsigrok.h"
#include "libsigrok-internal.h"
#define LOG_PREFIX "es519xx"
/* Factors for the respective measurement mode (0 means "invalid"). */
static const float factors_2400_11b[9][8] = {
{1e-4, 1e-3, 1e-2, 1e-1, 1, 0, 0, 0 }, /* V */
{1e-7, 1e-6, 0, 0, 0, 0, 0, 0 }, /* uA */
{1e-5, 1e-4, 0, 0, 0, 0, 0, 0 }, /* mA */
{1e-2, 0, 0, 0, 0, 0, 0, 0 }, /* A */
{1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 0, 0 }, /* RPM */
{1e-1, 1, 1e1, 1e2, 1e3, 1e4, 0, 0 }, /* Resistance */
{1, 1e1, 1e2, 1e3, 1e4, 1e5, 0, 0 }, /* Frequency */
{1e-12, 1e-11, 1e-10, 1e-9, 1e-8, 1e-7, 1e-6, 1e-5}, /* Capacitance */
{1e-3, 0, 0, 0, 0, 0, 0, 0 }, /* Diode */
};
static const float factors_19200_11b_5digits[9][8] = {
{1e-4, 1e-3, 1e-2, 1e-1, 1e-5, 0, 0, 0}, /* V */
{1e-8, 1e-7, 0, 0, 0, 0, 0, 0}, /* uA */
{1e-6, 1e-5, 0, 0, 0, 0, 0, 0}, /* mA */
{0, 1e-3, 0, 0, 0, 0, 0, 0}, /* A */
{1e-4, 1e-3, 1e-2, 1e-1, 1, 0, 0, 0}, /* Manual A */
{1e-2, 1e-1, 1, 1e1, 1e2, 1e3, 1e4, 0}, /* Resistance */
{1e-1, 0, 1, 1e1, 1e2, 1e3, 1e4, 0}, /* Frequency */
{1e-12, 1e-11, 1e-10, 1e-9, 1e-8, 1e-7, 1e-6, 1e-5}, /* Capacitance */
{1e-4, 0, 0, 0, 0, 0, 0, 0 }, /* Diode */
};
static const float factors_19200_11b_clampmeter[9][8] = {
{1e-3, 1e-2, 1e-1, 1, 1e-4, 0, 0, 0}, /* V */
{1e-7, 1e-6, 0, 0, 0, 0, 0, 0}, /* uA */
{1e-5, 1e-4, 0, 0, 0, 0, 0, 0}, /* mA */
{1e-2, 0, 0, 0, 0, 0, 0, 0}, /* A */
{1e-3, 1e-2, 1e-1, 1, 0, 0, 0, 0}, /* Manual A */
{1e-1, 1, 1e1, 1e2, 1e3, 1e4, 0, 0}, /* Resistance */
{1e-1, 0, 1, 1e1, 1e2, 1e3, 1e4, 0}, /* Frequency */
{1e-12, 1e-11, 1e-10, 1e-9, 1e-8, 1e-7, 1e-6, 1e-5}, /* Capacitance */
{1e-3, 0, 0, 0, 0, 0, 0, 0 }, /* Diode */
};
static const float factors_19200_11b[9][8] = {
{1e-3, 1e-2, 1e-1, 1, 1e-4, 0, 0, 0}, /* V */
{1e-7, 1e-6, 0, 0, 0, 0, 0, 0}, /* uA */
{1e-5, 1e-4, 0, 0, 0, 0, 0, 0}, /* mA */
{1e-3, 1e-2, 0, 0, 0, 0, 0, 0}, /* A */
{0, 0, 0, 0, 0, 0, 0, 0}, /* Manual A */
{1e-1, 1, 1e1, 1e2, 1e3, 1e4, 0, 0}, /* Resistance */
{1, 1e1, 1e2, 1e3, 1e4, 0, 0, 0}, /* Frequency */
{1e-12, 1e-11, 1e-10, 1e-9, 1e-8, 1e-7, 1e-6, 0}, /* Capacitance */
{1e-3, 0, 0, 0, 0, 0, 0, 0}, /* Diode */
};
static const float factors_19200_14b[9][8] = {
{1e-4, 1e-3, 1e-2, 1e-1, 1e-5, 0, 0, 0}, /* V */
{1e-8, 1e-7, 0, 0, 0, 0, 0, 0}, /* uA */
{1e-6, 1e-5, 0, 0, 0, 0, 0, 0}, /* mA */
{1e-3, 0, 0, 0, 0, 0, 0, 0}, /* A */
{1e-4, 1e-3, 1e-2, 1e-1, 1, 0, 0, 0}, /* Manual A */
{1e-2, 1e-1, 1, 1e1, 1e2, 1e3, 1e4, 0}, /* Resistance */
{1e-2, 1e-1, 0, 1, 1e1, 1e2, 1e3, 1e4}, /* Frequency */
{1e-12, 1e-11, 1e-10, 1e-9, 1e-8, 1e-7, 1e-6, 1e-5}, /* Capacitance */
{1e-4, 0, 0, 0, 0, 0, 0, 0 }, /* Diode */
};
static int parse_value(const uint8_t *buf, struct es519xx_info *info,
float *result)
{
int i, intval, num_digits;
float floatval;
num_digits = 4 + ((info->packet_size == 14) ? 1 : 0);
/* Bytes 1-4 (or 5): Value (4 or 5 decimal digits) */
if (info->is_ol) {
sr_spew("Over limit.");
*result = INFINITY;
return SR_OK;
} else if (info->is_ul) {
sr_spew("Under limit.");
*result = INFINITY;
return SR_OK;
} else if (!isdigit(buf[1]) || !isdigit(buf[2]) ||
!isdigit(buf[3]) || !isdigit(buf[4]) ||
(num_digits == 5 && !isdigit(buf[5]))) {
sr_err("Value contained invalid digits: %02x %02x %02x %02x "
"(%c %c %c %c).", buf[1], buf[2], buf[3], buf[4],
buf[1], buf[2], buf[3], buf[4]);
return SR_ERR;
}
intval = (info->is_digit4) ? 1 : 0;
for (i = 0; i < num_digits; i++)
intval = 10 * intval + (buf[i + 1] - '0');
/* Apply sign. */
intval *= info->is_sign ? -1 : 1;
floatval = (float)intval;
/* Note: The decimal point position will be parsed later. */
sr_spew("The display value is %f.", floatval);
*result = floatval;
return SR_OK;
}
static int parse_range(uint8_t b, float *floatval,
const struct es519xx_info *info)
{
int idx, mode;
float factor = 0;
idx = b - '0';
if (idx < 0 || idx > 7) {
sr_dbg("Invalid range byte / index: 0x%02x / 0x%02x.", b, idx);
return SR_ERR;
}
/* Parse range byte (depends on the measurement mode). */
if (info->is_voltage)
mode = 0; /* V */
else if (info->is_current && info->is_micro)
mode = 1; /* uA */
else if (info->is_current && info->is_milli)
mode = 2; /* mA */
else if (info->is_current && info->is_auto)
mode = 3; /* A */
else if (info->is_current && !info->is_auto)
mode = 4; /* Manual A */
else if (info->is_rpm)
/* Not a typo, it's really index 4 in factors_2400_11b[][]. */
mode = 4; /* RPM */
else if (info->is_resistance || info->is_continuity)
mode = 5; /* Resistance */
else if (info->is_frequency)
mode = 6; /* Frequency */
else if (info->is_capacitance)
mode = 7; /* Capacitance */
else if (info->is_diode)
mode = 8; /* Diode */
else if (info->is_duty_cycle)
mode = 0; /* Dummy, unused */
else {
sr_dbg("Invalid mode, range byte was: 0x%02x.", b);
return SR_ERR;
}
if (info->is_vbar) {
if (info->is_micro)
factor = (const float[]){1e-1, 1}[idx];
else if (info->is_milli)
factor = (const float[]){1e-2, 1e-1}[idx];
}
else if (info->is_duty_cycle)
factor = 1e-1;
else if (info->baudrate == 2400)
factor = factors_2400_11b[mode][idx];
else if (info->fivedigits)
factor = factors_19200_11b_5digits[mode][idx];
else if (info->clampmeter)
factor = factors_19200_11b_clampmeter[mode][idx];
else if (info->packet_size == 11)
factor = factors_19200_11b[mode][idx];
else if (info->packet_size == 14)
factor = factors_19200_14b[mode][idx];
if (factor == 0) {
sr_dbg("Invalid factor for range byte: 0x%02x.", b);
return SR_ERR;
}
/* Apply respective factor (mode-dependent) on the value. */
*floatval *= factor;
sr_dbg("Applying factor %f, new value is %f.", factor, *floatval);
return SR_OK;
}
static void parse_flags(const uint8_t *buf, struct es519xx_info *info)
{
int function, status;
function = 5 + ((info->packet_size == 14) ? 1 : 0);
status = function + 1;
/* Status byte */
if (info->alt_functions) {
info->is_sign = (buf[status] & (1 << 3)) != 0;
info->is_batt = (buf[status] & (1 << 2)) != 0; /* Bat. low */
info->is_ol = (buf[status] & (1 << 1)) != 0; /* Overflow */
info->is_ol |= (buf[status] & (1 << 0)) != 0; /* Overflow */
} else {
info->is_judge = (buf[status] & (1 << 3)) != 0;
info->is_sign = (buf[status] & (1 << 2)) != 0;
info->is_batt = (buf[status] & (1 << 1)) != 0; /* Bat. low */
info->is_ol = (buf[status] & (1 << 0)) != 0; /* Overflow */
}
if (info->packet_size == 14) {
/* Option 1 byte */
info->is_max = (buf[8] & (1 << 3)) != 0;
info->is_min = (buf[8] & (1 << 2)) != 0;
info->is_rel = (buf[8] & (1 << 1)) != 0;
info->is_rmr = (buf[8] & (1 << 0)) != 0;
/* Option 2 byte */
info->is_ul = (buf[9] & (1 << 3)) != 0; /* Underflow */
info->is_pmax = (buf[9] & (1 << 2)) != 0; /* Max. peak value */
info->is_pmin = (buf[9] & (1 << 1)) != 0; /* Min. peak value */
/* Option 3 byte */
info->is_dc = (buf[10] & (1 << 3)) != 0;
info->is_ac = (buf[10] & (1 << 2)) != 0;
info->is_auto = (buf[10] & (1 << 1)) != 0;
info->is_vahz = (buf[10] & (1 << 0)) != 0;
/* LPF: Low-pass filter(s) */
if (info->selectable_lpf) {
/* Option 4 byte */
info->is_hold = (buf[11] & (1 << 3)) != 0;
info->is_vbar = (buf[11] & (1 << 2)) != 0;
info->is_lpf1 = (buf[11] & (1 << 1)) != 0;
info->is_lpf0 = (buf[11] & (1 << 0)) != 0;
} else {
/* Option 4 byte */
info->is_vbar = (buf[11] & (1 << 2)) != 0;
info->is_hold = (buf[11] & (1 << 1)) != 0;
info->is_lpf1 = (buf[11] & (1 << 0)) != 0;
}
} else if (info->alt_functions) {
/* Option 2 byte */
info->is_dc = (buf[8] & (1 << 3)) != 0;
info->is_auto = (buf[8] & (1 << 2)) != 0;
info->is_apo = (buf[8] & (1 << 0)) != 0;
info->is_ac = !info->is_dc;
} else {
/* Option 1 byte */
if (info->baudrate == 2400) {
info->is_pmax = (buf[7] & (1 << 3)) != 0;
info->is_pmin = (buf[7] & (1 << 2)) != 0;
info->is_vahz = (buf[7] & (1 << 0)) != 0;
} else if (info->fivedigits) {
info->is_ul = (buf[7] & (1 << 3)) != 0;
info->is_pmax = (buf[7] & (1 << 2)) != 0;
info->is_pmin = (buf[7] & (1 << 1)) != 0;
info->is_digit4 = (buf[7] & (1 << 0)) != 0;
} else if (info->clampmeter) {
info->is_ul = (buf[7] & (1 << 3)) != 0;
info->is_vasel = (buf[7] & (1 << 2)) != 0;
info->is_vbar = (buf[7] & (1 << 1)) != 0;
} else {
info->is_hold = (buf[7] & (1 << 3)) != 0;
info->is_max = (buf[7] & (1 << 2)) != 0;
info->is_min = (buf[7] & (1 << 1)) != 0;
}
/* Option 2 byte */
info->is_dc = (buf[8] & (1 << 3)) != 0;
info->is_ac = (buf[8] & (1 << 2)) != 0;
info->is_auto = (buf[8] & (1 << 1)) != 0;
if (info->baudrate == 2400)
info->is_apo = (buf[8] & (1 << 0)) != 0;
else
info->is_vahz = (buf[8] & (1 << 0)) != 0;
}
/* Function byte */
if (info->alt_functions) {
switch (buf[function]) {
case 0x3f: /* A */
info->is_current = info->is_auto = TRUE;
break;
case 0x3e: /* uA */
info->is_current = info->is_micro = info->is_auto = TRUE;
break;
case 0x3d: /* mA */
info->is_current = info->is_milli = info->is_auto = TRUE;
break;
case 0x3c: /* V */
info->is_voltage = TRUE;
break;
case 0x37: /* Resistance */
info->is_resistance = TRUE;
break;
case 0x36: /* Continuity */
info->is_continuity = TRUE;
break;
case 0x3b: /* Diode */
info->is_diode = TRUE;
break;
case 0x3a: /* Frequency */
info->is_frequency = TRUE;
break;
case 0x34: /* ADP0 */
case 0x35: /* ADP0 */
info->is_adp0 = TRUE;
break;
case 0x38: /* ADP1 */
case 0x39: /* ADP1 */
info->is_adp1 = TRUE;
break;
case 0x32: /* ADP2 */
case 0x33: /* ADP2 */
info->is_adp2 = TRUE;
break;
case 0x30: /* ADP3 */
case 0x31: /* ADP3 */
info->is_adp3 = TRUE;
break;
default:
sr_err("Invalid function byte: 0x%02x.", buf[function]);
break;
}
} else {
/* Note: Some of these mappings are fixed up later. */
switch (buf[function]) {
case 0x3b: /* V */
info->is_voltage = TRUE;
break;
case 0x3d: /* uA */
info->is_current = info->is_micro = info->is_auto = TRUE;
break;
case 0x3f: /* mA */
info->is_current = info->is_milli = info->is_auto = TRUE;
break;
case 0x30: /* A */
info->is_current = info->is_auto = TRUE;
break;
case 0x39: /* Manual A */
info->is_current = TRUE;
info->is_auto = FALSE; /* Manual mode */
break;
case 0x33: /* Resistance */
info->is_resistance = TRUE;
break;
case 0x35: /* Continuity */
info->is_continuity = TRUE;
break;
case 0x31: /* Diode */
info->is_diode = TRUE;
break;
case 0x32: /* Frequency / RPM / duty cycle */
if (info->packet_size == 14) {
if (info->is_judge)
info->is_duty_cycle = TRUE;
else
info->is_frequency = TRUE;
} else {
if (info->is_judge)
info->is_rpm = TRUE;
else
info->is_frequency = TRUE;
}
break;
case 0x36: /* Capacitance */
info->is_capacitance = TRUE;
break;
case 0x34: /* Temperature */
info->is_temperature = TRUE;
if (info->is_judge)
info->is_celsius = TRUE;
else
info->is_fahrenheit = TRUE;
/* IMPORTANT: The digits always represent Celsius! */
break;
case 0x3e: /* ADP0 */
info->is_adp0 = TRUE;
break;
case 0x3c: /* ADP1 */
info->is_adp1 = TRUE;
break;
case 0x38: /* ADP2 */
info->is_adp2 = TRUE;
break;
case 0x3a: /* ADP3 */
info->is_adp3 = TRUE;
break;
default:
sr_err("Invalid function byte: 0x%02x.", buf[function]);
break;
}
}
if (info->is_vahz && (info->is_voltage || info->is_current)) {
info->is_voltage = FALSE;
info->is_current = FALSE;
info->is_milli = info->is_micro = FALSE;
if (info->packet_size == 14) {
if (info->is_judge)
info->is_duty_cycle = TRUE;
else
info->is_frequency = TRUE;
} else {
if (info->is_judge)
info->is_rpm = TRUE;
else
info->is_frequency = TRUE;
}
}
if (info->is_current && (info->is_micro || info->is_milli) && info->is_vasel) {
info->is_current = info->is_auto = FALSE;
info->is_voltage = TRUE;
}
if (info->baudrate == 2400) {
/* Inverted mapping between mA and A, and no manual A. */
if (info->is_current && (info->is_milli || !info->is_auto)) {
info->is_milli = !info->is_milli;
info->is_auto = TRUE;
}
}
}
static void handle_flags(struct sr_datafeed_analog *analog,
float *floatval, const struct es519xx_info *info)
{
/*
* Note: is_micro etc. are not used directly to multiply/divide
* floatval, this is handled via parse_range() and factors[][].
*/
/* Measurement modes */
if (info->is_voltage) {
analog->mq = SR_MQ_VOLTAGE;
analog->unit = SR_UNIT_VOLT;
}
if (info->is_current) {
analog->mq = SR_MQ_CURRENT;
analog->unit = SR_UNIT_AMPERE;
}
if (info->is_resistance) {
analog->mq = SR_MQ_RESISTANCE;
analog->unit = SR_UNIT_OHM;
}
if (info->is_frequency) {
analog->mq = SR_MQ_FREQUENCY;
analog->unit = SR_UNIT_HERTZ;
}
if (info->is_capacitance) {
analog->mq = SR_MQ_CAPACITANCE;
analog->unit = SR_UNIT_FARAD;
}
if (info->is_temperature && info->is_celsius) {
analog->mq = SR_MQ_TEMPERATURE;
analog->unit = SR_UNIT_CELSIUS;
}
if (info->is_temperature && info->is_fahrenheit) {
analog->mq = SR_MQ_TEMPERATURE;
analog->unit = SR_UNIT_FAHRENHEIT;
}
if (info->is_continuity) {
analog->mq = SR_MQ_CONTINUITY;
analog->unit = SR_UNIT_BOOLEAN;
*floatval = (*floatval < 0.0 || *floatval > 25.0) ? 0.0 : 1.0;
}
if (info->is_diode) {
analog->mq = SR_MQ_VOLTAGE;
analog->unit = SR_UNIT_VOLT;
}
if (info->is_rpm) {
analog->mq = SR_MQ_FREQUENCY;
analog->unit = SR_UNIT_REVOLUTIONS_PER_MINUTE;
}
if (info->is_duty_cycle) {
analog->mq = SR_MQ_DUTY_CYCLE;
analog->unit = SR_UNIT_PERCENTAGE;
}
/* Measurement related flags */
if (info->is_ac)
analog->mqflags |= SR_MQFLAG_AC;
if (info->is_dc)
analog->mqflags |= SR_MQFLAG_DC;
if (info->is_auto)
analog->mqflags |= SR_MQFLAG_AUTORANGE;
if (info->is_diode)
analog->mqflags |= SR_MQFLAG_DIODE;
if (info->is_hold)
/*
* Note: HOLD only affects the number displayed on the LCD,
* but not the value sent via the protocol! It also does not
* affect the bargraph on the LCD.
*/
analog->mqflags |= SR_MQFLAG_HOLD;
if (info->is_max)
analog->mqflags |= SR_MQFLAG_MAX;
if (info->is_min)
analog->mqflags |= SR_MQFLAG_MIN;
if (info->is_rel)
analog->mqflags |= SR_MQFLAG_RELATIVE;
/* Other flags */
if (info->is_judge)
sr_spew("Judge bit is set.");
if (info->is_batt)
sr_spew("Battery is low.");
if (info->is_ol)
sr_spew("Input overflow.");
if (info->is_ul)
sr_spew("Input underflow.");
if (info->is_pmax)
sr_spew("pMAX active, LCD shows max. peak value.");
if (info->is_pmin)
sr_spew("pMIN active, LCD shows min. peak value.");
if (info->is_vahz)
sr_spew("VAHZ active.");
if (info->is_apo)
sr_spew("Auto-Power-Off enabled.");
if (info->is_vbar)
sr_spew("VBAR active.");
if ((!info->selectable_lpf && info->is_lpf1) ||
(info->selectable_lpf && (!info->is_lpf0 || !info->is_lpf1)))
sr_spew("Low-pass filter feature is active.");
}
static gboolean flags_valid(const struct es519xx_info *info)
{
int count;
/* Does the packet have more than one multiplier? */
count = (info->is_micro) ? 1 : 0;
count += (info->is_milli) ? 1 : 0;
if (count > 1) {
sr_err("More than one multiplier detected in packet.");
return FALSE;
}
/* Does the packet "measure" more than one type of value? */
count = (info->is_voltage) ? 1 : 0;
count += (info->is_current) ? 1 : 0;
count += (info->is_resistance) ? 1 : 0;
count += (info->is_frequency) ? 1 : 0;
count += (info->is_capacitance) ? 1 : 0;
count += (info->is_temperature) ? 1 : 0;
count += (info->is_continuity) ? 1 : 0;
count += (info->is_diode) ? 1 : 0;
count += (info->is_rpm) ? 1 : 0;
if (count > 1) {
sr_err("More than one measurement type detected in packet.");
return FALSE;
}
/* Both AC and DC set? */
if (info->is_ac && info->is_dc) {
sr_err("Both AC and DC flags detected in packet.");
return FALSE;
}
return TRUE;
}
static gboolean sr_es519xx_packet_valid(const uint8_t *buf,
struct es519xx_info *info)
{
int s;
s = info->packet_size;
if (s == 11 && memcmp(buf, buf + s, s))
return FALSE;
if (buf[s - 2] != '\r' || buf[s - 1] != '\n')
return FALSE;
parse_flags(buf, info);
if (!flags_valid(info))
return FALSE;
return TRUE;
}
static int sr_es519xx_parse(const uint8_t *buf, float *floatval,
struct sr_datafeed_analog *analog,
struct es519xx_info *info)
{
int ret;
if (!sr_es519xx_packet_valid(buf, info))
return SR_ERR;
if ((ret = parse_value(buf, info, floatval)) != SR_OK) {
sr_err("Error parsing value: %d.", ret);
return ret;
}
if ((ret = parse_range(buf[0], floatval, info)) != SR_OK)
return ret;
handle_flags(analog, floatval, info);
return SR_OK;
}
/*
* Functions for 2400 baud / 11 bytes protocols.
* This includes ES51962, ES51971, ES51972, ES51978 and ES51989.
*/
SR_PRIV gboolean sr_es519xx_2400_11b_packet_valid(const uint8_t *buf)
{
struct es519xx_info info = { 0 };
info.baudrate = 2400;
info.packet_size = 11;
return sr_es519xx_packet_valid(buf, &info);
}
SR_PRIV int sr_es519xx_2400_11b_parse(const uint8_t *buf, float *floatval,
struct sr_datafeed_analog *analog, void *info)
{
struct es519xx_info *info_local;
info_local = info;
memset(info_local, 0, sizeof(struct es519xx_info));
info_local->baudrate = 2400;
info_local->packet_size = 11;
return sr_es519xx_parse(buf, floatval, analog, info);
}
/*
* Functions for 2400 baud / 11 byte protocols.
* This includes ES51960, ES51977 and ES51988.
*/
SR_PRIV gboolean sr_es519xx_2400_11b_altfn_packet_valid(const uint8_t *buf)
{
struct es519xx_info info = { 0 };
info.baudrate = 2400;
info.packet_size = 11;
info.alt_functions = TRUE;
return sr_es519xx_packet_valid(buf, &info);
}
SR_PRIV int sr_es519xx_2400_11b_altfn_parse(const uint8_t *buf,
float *floatval, struct sr_datafeed_analog *analog, void *info)
{
struct es519xx_info *info_local;
info_local = info;
memset(info_local, 0, sizeof(struct es519xx_info));
info_local->baudrate = 2400;
info_local->packet_size = 11;
info_local->alt_functions = TRUE;
return sr_es519xx_parse(buf, floatval, analog, info);
}
/*
* Functions for 19200 baud / 11 bytes protocols with 5 digits display.
* This includes ES51911, ES51916 and ES51918.
*/
SR_PRIV gboolean sr_es519xx_19200_11b_5digits_packet_valid(const uint8_t *buf)
{
struct es519xx_info info = { 0 };
info.baudrate = 19200;
info.packet_size = 11;
info.fivedigits = TRUE;
return sr_es519xx_packet_valid(buf, &info);
}
SR_PRIV int sr_es519xx_19200_11b_5digits_parse(const uint8_t *buf,
float *floatval, struct sr_datafeed_analog *analog, void *info)
{
struct es519xx_info *info_local;
info_local = info;
memset(info_local, 0, sizeof(struct es519xx_info));
info_local->baudrate = 19200;
info_local->packet_size = 11;
info_local->fivedigits = TRUE;
return sr_es519xx_parse(buf, floatval, analog, info);
}
/*
* Functions for 19200 baud / 11 bytes protocols with clamp meter support.
* This includes ES51967 and ES51969.
*/
SR_PRIV gboolean sr_es519xx_19200_11b_clamp_packet_valid(const uint8_t *buf)
{
struct es519xx_info info = { 0 };
info.baudrate = 19200;
info.packet_size = 11;
info.clampmeter = TRUE;
return sr_es519xx_packet_valid(buf, &info);
}
SR_PRIV int sr_es519xx_19200_11b_clamp_parse(const uint8_t *buf,
float *floatval, struct sr_datafeed_analog *analog, void *info)
{
struct es519xx_info *info_local;
info_local = info;
memset(info_local, 0, sizeof(struct es519xx_info));
info_local->baudrate = 19200;
info_local->packet_size = 11;
info_local->clampmeter = TRUE;
return sr_es519xx_parse(buf, floatval, analog, info);
}
/*
* Functions for 19200 baud / 11 bytes protocols.
* This includes ES51981, ES51982, ES51983, ES51984 and ES51986.
*/
SR_PRIV gboolean sr_es519xx_19200_11b_packet_valid(const uint8_t *buf)
{
struct es519xx_info info = { 0 };
info.baudrate = 19200;
info.packet_size = 11;
return sr_es519xx_packet_valid(buf, &info);
}
SR_PRIV int sr_es519xx_19200_11b_parse(const uint8_t *buf, float *floatval,
struct sr_datafeed_analog *analog, void *info)
{
struct es519xx_info *info_local;
info_local = info;
memset(info_local, 0, sizeof(struct es519xx_info));
info_local->baudrate = 19200;
info_local->packet_size = 11;
return sr_es519xx_parse(buf, floatval, analog, info);
}
/*
* Functions for 19200 baud / 14 bytes protocols.
* This includes ES51921 and ES51922.
*/
SR_PRIV gboolean sr_es519xx_19200_14b_packet_valid(const uint8_t *buf)
{
struct es519xx_info info = { 0 };
info.baudrate = 19200;
info.packet_size = 14;
return sr_es519xx_packet_valid(buf, &info);
}
SR_PRIV int sr_es519xx_19200_14b_parse(const uint8_t *buf, float *floatval,
struct sr_datafeed_analog *analog, void *info)
{
struct es519xx_info *info_local;
info_local = info;
memset(info_local, 0, sizeof(struct es519xx_info));
info_local->baudrate = 19200;
info_local->packet_size = 14;
return sr_es519xx_parse(buf, floatval, analog, info);
}
/*
* Functions for 19200 baud / 14 bytes protocols with selectable LPF.
* This includes ES51931 and ES51932.
*/
SR_PRIV gboolean sr_es519xx_19200_14b_sel_lpf_packet_valid(const uint8_t *buf)
{
struct es519xx_info info = { 0 };
info.baudrate = 19200;
info.packet_size = 14;
info.selectable_lpf = TRUE;
return sr_es519xx_packet_valid(buf, &info);
}
SR_PRIV int sr_es519xx_19200_14b_sel_lpf_parse(const uint8_t *buf,
float *floatval, struct sr_datafeed_analog *analog, void *info)
{
struct es519xx_info *info_local;
info_local = info;
memset(info_local, 0, sizeof(struct es519xx_info));
info_local->baudrate = 19200;
info_local->packet_size = 14;
info_local->selectable_lpf = TRUE;
return sr_es519xx_parse(buf, floatval, analog, info);
}