saleae-logic16: Implemented acquisition.

This commit is contained in:
Marcus Comstedt 2013-08-04 13:46:35 +02:00 committed by Uwe Hermann
parent 15abcf0f58
commit 7b5daad45c
4 changed files with 615 additions and 35 deletions

View File

@ -457,6 +457,7 @@ fi
AC_CHECK_HEADERS([fcntl.h sys/time.h termios.h]) AC_CHECK_HEADERS([fcntl.h sys/time.h termios.h])
# Checks for typedefs, structures, and compiler characteristics. # Checks for typedefs, structures, and compiler characteristics.
AC_C_BIGENDIAN
AC_C_INLINE AC_C_INLINE
AC_TYPE_INT8_T AC_TYPE_INT8_T
AC_TYPE_INT16_T AC_TYPE_INT16_T

View File

@ -34,6 +34,7 @@
#define FX2_FIRMWARE FIRMWARE_DIR "/saleae-logic16-fx2.fw" #define FX2_FIRMWARE FIRMWARE_DIR "/saleae-logic16-fx2.fw"
#define MAX_RENUM_DELAY_MS 3000 #define MAX_RENUM_DELAY_MS 3000
#define NUM_SIMUL_TRANSFERS 32
SR_PRIV struct sr_dev_driver saleae_logic16_driver_info; SR_PRIV struct sr_dev_driver saleae_logic16_driver_info;
@ -45,6 +46,23 @@ static const char *probe_names[NUM_PROBES + 1] = {
NULL, NULL,
}; };
static const uint64_t samplerates[] = {
SR_KHZ(500),
SR_MHZ(1),
SR_MHZ(2),
SR_MHZ(4),
SR_MHZ(5),
SR_MHZ(8),
SR_MHZ(10),
SR_KHZ(12500),
SR_MHZ(16),
SR_MHZ(25),
SR_MHZ(32),
SR_MHZ(40),
SR_MHZ(80),
SR_MHZ(100),
};
static int init(struct sr_context *sr_ctx) static int init(struct sr_context *sr_ctx)
{ {
return std_init(sr_ctx, di, LOG_PREFIX); return std_init(sr_ctx, di, LOG_PREFIX);
@ -357,7 +375,7 @@ static int dev_open(struct sr_dev_inst *sdi)
if (devc->cur_samplerate == 0) { if (devc->cur_samplerate == 0) {
/* Samplerate hasn't been set; default to the slowest one. */ /* Samplerate hasn't been set; default to the slowest one. */
devc->cur_samplerate = 500000; devc->cur_samplerate = samplerates[0];
} }
return SR_OK; return SR_OK;
@ -399,6 +417,7 @@ static int cleanup(void)
static int config_get(int key, GVariant **data, const struct sr_dev_inst *sdi) static int config_get(int key, GVariant **data, const struct sr_dev_inst *sdi)
{ {
struct dev_context *devc;
int ret; int ret;
(void)sdi; (void)sdi;
@ -406,7 +425,12 @@ static int config_get(int key, GVariant **data, const struct sr_dev_inst *sdi)
ret = SR_OK; ret = SR_OK;
switch (key) { switch (key) {
/* TODO */ case SR_CONF_SAMPLERATE:
if (!sdi)
return SR_ERR;
devc = sdi->priv;
*data = g_variant_new_uint64(devc->cur_samplerate);
break;
default: default:
return SR_ERR_NA; return SR_ERR_NA;
} }
@ -416,16 +440,22 @@ static int config_get(int key, GVariant **data, const struct sr_dev_inst *sdi)
static int config_set(int key, GVariant *data, const struct sr_dev_inst *sdi) static int config_set(int key, GVariant *data, const struct sr_dev_inst *sdi)
{ {
struct dev_context *devc;
int ret; int ret;
(void)data;
if (sdi->status != SR_ST_ACTIVE) if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED; return SR_ERR_DEV_CLOSED;
devc = sdi->priv;
ret = SR_OK; ret = SR_OK;
switch (key) { switch (key) {
/* TODO */ case SR_CONF_SAMPLERATE:
devc->cur_samplerate = g_variant_get_uint64(data);
break;
case SR_CONF_LIMIT_SAMPLES:
devc->limit_samples = g_variant_get_uint64(data);
break;
default: default:
ret = SR_ERR_NA; ret = SR_ERR_NA;
} }
@ -435,14 +465,21 @@ static int config_set(int key, GVariant *data, const struct sr_dev_inst *sdi)
static int config_list(int key, GVariant **data, const struct sr_dev_inst *sdi) static int config_list(int key, GVariant **data, const struct sr_dev_inst *sdi)
{ {
GVariant *gvar;
GVariantBuilder gvb;
int ret; int ret;
(void)sdi; (void)sdi;
(void)data;
ret = SR_OK; ret = SR_OK;
switch (key) { switch (key) {
/* TODO */ case SR_CONF_SAMPLERATE:
g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"), samplerates,
ARRAY_SIZE(samplerates), sizeof(uint64_t));
g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar);
*data = g_variant_builder_end(&gvb);
break;
default: default:
return SR_ERR_NA; return SR_ERR_NA;
} }
@ -450,31 +487,244 @@ static int config_list(int key, GVariant **data, const struct sr_dev_inst *sdi)
return ret; return ret;
} }
static void abort_acquisition(struct dev_context *devc)
{
int i;
devc->num_samples = -1;
for (i = devc->num_transfers - 1; i >= 0; i--) {
if (devc->transfers[i])
libusb_cancel_transfer(devc->transfers[i]);
}
}
static unsigned int bytes_per_ms(struct dev_context *devc)
{
return devc->cur_samplerate * devc->num_channels / 8000;
}
static size_t get_buffer_size(struct dev_context *devc)
{
size_t s;
/*
* The buffer should be large enough to hold 10ms of data and
* a multiple of 512.
*/
s = 10 * bytes_per_ms(devc);
return (s + 511) & ~511;
}
static unsigned int get_number_of_transfers(struct dev_context *devc)
{
unsigned int n;
/* Total buffer size should be able to hold about 500ms of data. */
n = 500 * bytes_per_ms(devc) / get_buffer_size(devc);
if (n > NUM_SIMUL_TRANSFERS)
return NUM_SIMUL_TRANSFERS;
return n;
}
static unsigned int get_timeout(struct dev_context *devc)
{
size_t total_size;
unsigned int timeout;
total_size = get_buffer_size(devc) * get_number_of_transfers(devc);
timeout = total_size / bytes_per_ms(devc);
return timeout + timeout / 4; /* Leave a headroom of 25% percent. */
}
static int configure_probes(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct sr_probe *probe;
GSList *l;
uint16_t probe_bit;
devc = sdi->priv;
devc->cur_channels = 0;
devc->num_channels = 0;
for (l = sdi->probes; l; l = l->next) {
probe = (struct sr_probe *)l->data;
if (probe->enabled == FALSE)
continue;
probe_bit = 1 << (probe->index);
devc->cur_channels |= probe_bit;
#ifdef WORDS_BIGENDIAN
/* Output logic data should be stored in little endian
format. To speed things up during conversion, do the
switcharoo here instead. */
probe_bit = 1 << (probe->index ^ 8);
#endif
devc->channel_masks[devc->num_channels ++] = probe_bit;
}
return SR_OK;
}
static int receive_data(int fd, int revents, void *cb_data)
{
struct timeval tv;
struct dev_context *devc;
struct drv_context *drvc;
const struct sr_dev_inst *sdi;
(void)fd;
(void)revents;
sdi = cb_data;
drvc = di->priv;
devc = sdi->priv;
tv.tv_sec = tv.tv_usec = 0;
libusb_handle_events_timeout(drvc->sr_ctx->libusb_ctx, &tv);
if (devc->num_samples == -2) {
saleae_logic16_abort_acquisition(sdi);
abort_acquisition(devc);
}
return TRUE;
}
static int dev_acquisition_start(const struct sr_dev_inst *sdi, static int dev_acquisition_start(const struct sr_dev_inst *sdi,
void *cb_data) void *cb_data)
{ {
(void)sdi; struct dev_context *devc;
(void)cb_data; struct drv_context *drvc;
struct sr_usb_dev_inst *usb;
struct libusb_transfer *transfer;
const struct libusb_pollfd **lupfd;
unsigned int i, timeout, num_transfers;
int ret;
unsigned char *buf;
size_t size, convsize;
if (sdi->status != SR_ST_ACTIVE) if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED; return SR_ERR_DEV_CLOSED;
/* TODO: configure hardware, reset acquisition state, set up drvc = di->priv;
* callbacks and send header packet. */ devc = sdi->priv;
usb = sdi->conn;
/* Configures devc->cur_channels */
if (configure_probes(sdi) != SR_OK) {
sr_err("Failed to configure probes.");
return SR_ERR;
}
devc->cb_data = cb_data;
devc->num_samples = 0;
devc->empty_transfer_count = 0;
devc->cur_channel = 0;
memset(devc->channel_data, 0, sizeof(devc->channel_data));
timeout = get_timeout(devc);
num_transfers = get_number_of_transfers(devc);
size = get_buffer_size(devc);
convsize = (size / devc->num_channels + 2) * 16;
devc->submitted_transfers = 0;
devc->usbfd = NULL;
devc->convbuffer_size = convsize;
if (!(devc->convbuffer = g_try_malloc(convsize))) {
sr_err("Conversion buffer malloc failed.");
return SR_ERR_MALLOC;
}
devc->transfers = g_try_malloc0(sizeof(*devc->transfers) * num_transfers);
if (!devc->transfers) {
sr_err("USB transfers malloc failed.");
g_free(devc->convbuffer);
return SR_ERR_MALLOC;
}
if ((ret = saleae_logic16_setup_acquisition(sdi, devc->cur_samplerate,
devc->cur_channels)) != SR_OK) {
g_free(devc->transfers);
g_free(devc->convbuffer);
return ret;
}
devc->num_transfers = num_transfers;
for (i = 0; i < num_transfers; i++) {
if (!(buf = g_try_malloc(size))) {
sr_err("USB transfer buffer malloc failed.");
if (devc->submitted_transfers)
abort_acquisition(devc);
else {
g_free(devc->transfers);
g_free(devc->convbuffer);
}
return SR_ERR_MALLOC;
}
transfer = libusb_alloc_transfer(0);
libusb_fill_bulk_transfer(transfer, usb->devhdl,
2 | LIBUSB_ENDPOINT_IN, buf, size,
saleae_logic16_receive_transfer, devc, timeout);
if ((ret = libusb_submit_transfer(transfer)) != 0) {
sr_err("Failed to submit transfer: %s.",
libusb_error_name(ret));
libusb_free_transfer(transfer);
g_free(buf);
abort_acquisition(devc);
return SR_ERR;
}
devc->transfers[i] = transfer;
devc->submitted_transfers++;
}
lupfd = libusb_get_pollfds(drvc->sr_ctx->libusb_ctx);
for (i = 0; lupfd[i]; i++);
if (!(devc->usbfd = g_try_malloc(sizeof(struct libusb_pollfd) * (i + 1)))) {
abort_acquisition(devc);
free(lupfd);
return SR_ERR;
}
for (i = 0; lupfd[i]; i++) {
sr_source_add(lupfd[i]->fd, lupfd[i]->events,
timeout, receive_data, (void *)sdi);
devc->usbfd[i] = lupfd[i]->fd;
}
devc->usbfd[i] = -1;
free(lupfd);
/* Send header packet to the session bus. */
std_session_send_df_header(cb_data, LOG_PREFIX);
if ((ret = saleae_logic16_start_acquisition(sdi)) != SR_OK) {
abort_acquisition(devc);
return ret;
}
return SR_OK; return SR_OK;
} }
static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data) static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
{ {
int ret;
(void)cb_data; (void)cb_data;
if (sdi->status != SR_ST_ACTIVE) if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED; return SR_ERR_DEV_CLOSED;
/* TODO: stop acquisition. */ ret = saleae_logic16_abort_acquisition(sdi);
return SR_OK; abort_acquisition(sdi->priv);
return ret;
} }
SR_PRIV struct sr_dev_driver saleae_logic16_driver_info = { SR_PRIV struct sr_dev_driver saleae_logic16_driver_info = {

View File

@ -32,6 +32,16 @@
#define FPGA_FIRMWARE_18 FIRMWARE_DIR"/saleae-logic16-fpga-18.bitstream" #define FPGA_FIRMWARE_18 FIRMWARE_DIR"/saleae-logic16-fpga-18.bitstream"
#define FPGA_FIRMWARE_33 FIRMWARE_DIR"/saleae-logic16-fpga-33.bitstream" #define FPGA_FIRMWARE_33 FIRMWARE_DIR"/saleae-logic16-fpga-33.bitstream"
#define MAX_SAMPLE_RATE SR_MHZ(100)
#define MAX_4CH_SAMPLE_RATE SR_MHZ(50)
#define MAX_7CH_SAMPLE_RATE SR_MHZ(40)
#define MAX_8CH_SAMPLE_RATE SR_MHZ(32)
#define MAX_10CH_SAMPLE_RATE SR_MHZ(25)
#define MAX_13CH_SAMPLE_RATE SR_MHZ(16)
#define BASE_CLOCK_0_FREQ SR_MHZ(100)
#define BASE_CLOCK_1_FREQ SR_MHZ(160)
#define COMMAND_START_ACQUISITION 1 #define COMMAND_START_ACQUISITION 1
#define COMMAND_ABORT_ACQUISITION_ASYNC 2 #define COMMAND_ABORT_ACQUISITION_ASYNC 2
#define COMMAND_WRITE_EEPROM 6 #define COMMAND_WRITE_EEPROM 6
@ -52,6 +62,8 @@
#define READ_EEPROM_COOKIE2 0x81 #define READ_EEPROM_COOKIE2 0x81
#define ABORT_ACQUISITION_SYNC_PATTERN 0x55 #define ABORT_ACQUISITION_SYNC_PATTERN 0x55
#define MAX_EMPTY_TRANSFERS 64
static void encrypt(uint8_t *dest, const uint8_t *src, uint8_t cnt) static void encrypt(uint8_t *dest, const uint8_t *src, uint8_t cnt)
{ {
@ -384,15 +396,11 @@ static int upload_fpga_bitstream(const struct sr_dev_inst *sdi,
if ((ret = configure_led(sdi)) != SR_OK) if ((ret = configure_led(sdi)) != SR_OK)
return ret; return ret;
/* XXX */
if ((ret = configure_led(sdi)) != SR_OK)
return ret;
devc->cur_voltage_range = vrange; devc->cur_voltage_range = vrange;
return SR_OK; return SR_OK;
} }
SR_PRIV int saleae_logic16_abort_acquisition(const struct sr_dev_inst *sdi) static int abort_acquisition_sync(const struct sr_dev_inst *sdi)
{ {
static const uint8_t command[2] = { static const uint8_t command[2] = {
COMMAND_ABORT_ACQUISITION_SYNC, COMMAND_ABORT_ACQUISITION_SYNC,
@ -414,6 +422,137 @@ SR_PRIV int saleae_logic16_abort_acquisition(const struct sr_dev_inst *sdi)
return SR_OK; return SR_OK;
} }
SR_PRIV int saleae_logic16_setup_acquisition(const struct sr_dev_inst *sdi,
uint64_t samplerate,
uint16_t channels)
{
uint8_t clock_select, reg1, reg10;
uint64_t div;
int i, ret, nchan = 0;
if (samplerate == 0 || samplerate > MAX_SAMPLE_RATE) {
sr_err("Unable to sample at %" PRIu64 "Hz.", samplerate);
return SR_ERR;
}
if (BASE_CLOCK_0_FREQ % samplerate == 0 &&
(div = BASE_CLOCK_0_FREQ / samplerate) <= 256) {
clock_select = 0;
} else if (BASE_CLOCK_1_FREQ % samplerate == 0 &&
(div = BASE_CLOCK_1_FREQ / samplerate) <= 256) {
clock_select = 1;
} else {
sr_err("Unable to sample at %" PRIu64 "Hz.", samplerate);
return SR_ERR;
}
for (i=0; i<16; i++)
if (channels & (1U<<i))
nchan++;
if ((nchan >= 13 && samplerate > MAX_13CH_SAMPLE_RATE) ||
(nchan >= 10 && samplerate > MAX_10CH_SAMPLE_RATE) ||
(nchan >= 8 && samplerate > MAX_8CH_SAMPLE_RATE) ||
(nchan >= 7 && samplerate > MAX_7CH_SAMPLE_RATE) ||
(nchan >= 4 && samplerate > MAX_4CH_SAMPLE_RATE)) {
sr_err("Unable to sample at %" PRIu64 "Hz "
"with this many channels.", samplerate);
return SR_ERR;
}
if ((ret = read_fpga_register(sdi, 1, &reg1)) != SR_OK)
return ret;
if (reg1 != 0x08) {
sr_dbg("Invalid state at acquisition setup: 0x%02x != 0x08", reg1);
return SR_ERR;
}
if ((ret = write_fpga_register(sdi, 1, 0x40)) != SR_OK)
return ret;
if ((ret = write_fpga_register(sdi, 10, clock_select)) != SR_OK)
return ret;
if ((ret = write_fpga_register(sdi, 4, (uint8_t)(div-1))) != SR_OK)
return ret;
if ((ret = write_fpga_register(sdi, 2, (uint8_t)(channels & 0xff))) != SR_OK)
return ret;
if ((ret = write_fpga_register(sdi, 3, (uint8_t)(channels >> 8))) != SR_OK)
return ret;
if ((ret = write_fpga_register(sdi, 1, 0x42)) != SR_OK)
return ret;
if ((ret = write_fpga_register(sdi, 1, 0x40)) != SR_OK)
return ret;
if ((ret = read_fpga_register(sdi, 1, &reg1)) != SR_OK)
return ret;
if (reg1 != 0x48) {
sr_dbg("Invalid state at acquisition setup: 0x%02x != 0x48", reg1);
return SR_ERR;
}
if ((ret = read_fpga_register(sdi, 10, &reg10)) != SR_OK)
return ret;
if (reg10 != clock_select) {
sr_dbg("Invalid state at acquisition setup: 0x%02x != 0x%02x",
reg10, (unsigned)clock_select);
return SR_ERR;
}
return SR_OK;
}
SR_PRIV int saleae_logic16_start_acquisition(const struct sr_dev_inst *sdi)
{
static const uint8_t command[1] = {
COMMAND_START_ACQUISITION,
};
int ret;
if ((ret = do_ep1_command(sdi, command, 1, NULL, 0)) != SR_OK)
return ret;
return write_fpga_register(sdi, 1, 0x41);
}
SR_PRIV int saleae_logic16_abort_acquisition(const struct sr_dev_inst *sdi)
{
static const uint8_t command[1] = {
COMMAND_ABORT_ACQUISITION_ASYNC,
};
int ret;
uint8_t reg1, reg8, reg9;
if ((ret = do_ep1_command(sdi, command, 1, NULL, 0)) != SR_OK)
return ret;
if ((ret = write_fpga_register(sdi, 1, 0x00)) != SR_OK)
return ret;
if ((ret = read_fpga_register(sdi, 1, &reg1)) != SR_OK)
return ret;
if (reg1 != 0x08) {
sr_dbg("Invalid state at acquisition stop: 0x%02x != 0x08", reg1);
return SR_ERR;
}
if ((ret = read_fpga_register(sdi, 8, &reg8)) != SR_OK)
return ret;
if ((ret = read_fpga_register(sdi, 9, &reg9)) != SR_OK)
return ret;
return SR_OK;
}
SR_PRIV int saleae_logic16_init_device(const struct sr_dev_inst *sdi) SR_PRIV int saleae_logic16_init_device(const struct sr_dev_inst *sdi)
{ {
struct dev_context *devc; struct dev_context *devc;
@ -423,7 +562,7 @@ SR_PRIV int saleae_logic16_init_device(const struct sr_dev_inst *sdi)
devc->cur_voltage_range = VOLTAGE_RANGE_UNKNOWN; devc->cur_voltage_range = VOLTAGE_RANGE_UNKNOWN;
if ((ret = saleae_logic16_abort_acquisition(sdi)) != SR_OK) if ((ret = abort_acquisition_sync(sdi)) != SR_OK)
return ret; return ret;
if ((ret = read_eeprom(sdi, 8, 8, devc->eeprom_data)) != SR_OK) if ((ret = read_eeprom(sdi, 8, 8, devc->eeprom_data)) != SR_OK)
@ -435,22 +574,188 @@ SR_PRIV int saleae_logic16_init_device(const struct sr_dev_inst *sdi)
return SR_OK; return SR_OK;
} }
SR_PRIV int saleae_logic16_receive_data(int fd, int revents, void *cb_data) static void finish_acquisition(struct dev_context *devc)
{ {
(void)fd; struct sr_datafeed_packet packet;
int i;
const struct sr_dev_inst *sdi; /* Terminate session. */
packet.type = SR_DF_END;
sr_session_send(devc->cb_data, &packet);
/* Remove fds from polling. */
if (devc->usbfd != NULL) {
for (i = 0; devc->usbfd[i] != -1; i++)
sr_source_remove(devc->usbfd[i]);
g_free(devc->usbfd);
}
devc->num_transfers = 0;
g_free(devc->transfers);
g_free(devc->convbuffer);
}
static void free_transfer(struct libusb_transfer *transfer)
{
struct dev_context *devc; struct dev_context *devc;
unsigned int i;
if (!(sdi = cb_data)) devc = transfer->user_data;
return TRUE;
if (!(devc = sdi->priv)) g_free(transfer->buffer);
return TRUE; transfer->buffer = NULL;
libusb_free_transfer(transfer);
if (revents == G_IO_IN) { for (i = 0; i < devc->num_transfers; i++) {
/* TODO */ if (devc->transfers[i] == transfer) {
devc->transfers[i] = NULL;
break;
}
} }
return TRUE; devc->submitted_transfers--;
if (devc->submitted_transfers == 0)
finish_acquisition(devc);
}
static void resubmit_transfer(struct libusb_transfer *transfer)
{
int ret;
if ((ret = libusb_submit_transfer(transfer)) == LIBUSB_SUCCESS)
return;
free_transfer(transfer);
/* TODO: Stop session? */
sr_err("%s: %s", __func__, libusb_error_name(ret));
}
static size_t convert_sample_data(struct dev_context *devc,
uint8_t *dest, size_t destcnt,
const uint8_t *src, size_t srccnt)
{
uint16_t *channel_data;
int i, cur_channel;
size_t ret = 0;
srccnt /= 2;
channel_data = devc->channel_data;
cur_channel = devc->cur_channel;
while(srccnt--) {
uint16_t sample, channel_mask;
sample = src[0] | (src[1] << 8);
src += 2;
channel_mask = devc->channel_masks[cur_channel];
for (i=15; i>=0; --i, sample >>= 1)
if (sample & 1)
channel_data[i] |= channel_mask;
if (++cur_channel == devc->num_channels) {
cur_channel = 0;
if (destcnt < 16*2) {
sr_err("Conversion buffer too small!");
break;
}
memcpy(dest, channel_data, 16*2);
memset(channel_data, 0, 16*2);
dest += 16*2;
ret += 16*2;
destcnt -= 16*2;
}
}
devc->cur_channel = cur_channel;
return ret;
}
SR_PRIV void saleae_logic16_receive_transfer(struct libusb_transfer *transfer)
{
gboolean packet_has_error = FALSE;
struct sr_datafeed_packet packet;
struct sr_datafeed_logic logic;
struct dev_context *devc;
size_t converted_length;
devc = transfer->user_data;
/*
* If acquisition has already ended, just free any queued up
* transfer that come in.
*/
if (devc->num_samples < 0) {
free_transfer(transfer);
return;
}
sr_info("receive_transfer(): status %d received %d bytes.",
transfer->status, transfer->actual_length);
switch (transfer->status) {
case LIBUSB_TRANSFER_NO_DEVICE:
devc->num_samples = -2;
free_transfer(transfer);
return;
case LIBUSB_TRANSFER_COMPLETED:
case LIBUSB_TRANSFER_TIMED_OUT: /* We may have received some data though. */
break;
default:
packet_has_error = TRUE;
break;
}
if (transfer->actual_length & 1) {
sr_err("Got an odd number of bytes from the device. This should not happen.");
/* Bail out right away */
packet_has_error = TRUE;
devc->empty_transfer_count = MAX_EMPTY_TRANSFERS;
}
if (transfer->actual_length == 0 || packet_has_error) {
devc->empty_transfer_count++;
if (devc->empty_transfer_count > MAX_EMPTY_TRANSFERS) {
/*
* The FX2 gave up. End the acquisition, the frontend
* will work out that the samplecount is short.
*/
devc->num_samples = -2;
free_transfer(transfer);
} else {
resubmit_transfer(transfer);
}
return;
} else {
devc->empty_transfer_count = 0;
}
converted_length =
convert_sample_data(devc,
devc->convbuffer, devc->convbuffer_size,
transfer->buffer, transfer->actual_length);
if (converted_length > 0) {
/* Send the incoming transfer to the session bus. */
packet.type = SR_DF_LOGIC;
packet.payload = &logic;
logic.length = converted_length;
logic.unitsize = 2;
logic.data = devc->convbuffer;
sr_session_send(devc->cb_data, &packet);
devc->num_samples += converted_length / 2;
if (devc->limit_samples &&
(uint64_t)devc->num_samples > devc->limit_samples) {
devc->num_samples = -2;
free_transfer(transfer);
return;
}
}
resubmit_transfer(transfer);
} }

View File

@ -53,17 +53,41 @@ struct dev_context {
/** The currently configured samplerate of the device. */ /** The currently configured samplerate of the device. */
uint64_t cur_samplerate; uint64_t cur_samplerate;
/** Maximum number of samples to capture, if nonzero */
uint64_t limit_samples;
/** The currently configured input voltage of the device */ /** The currently configured input voltage of the device */
enum voltage_range cur_voltage_range; enum voltage_range cur_voltage_range;
/** Channels to use */
uint16_t cur_channels;
/* /*
* EEPROM data from address 8 * EEPROM data from address 8
*/ */
uint8_t eeprom_data[8]; uint8_t eeprom_data[8];
int64_t num_samples;
int submitted_transfers;
int empty_transfer_count;
int num_channels, cur_channel;
uint16_t channel_masks[16];
uint16_t channel_data[16];
uint8_t *convbuffer;
size_t convbuffer_size;
void *cb_data;
unsigned int num_transfers;
struct libusb_transfer **transfers;
int *usbfd;
}; };
SR_PRIV int saleae_logic16_setup_acquisition(const struct sr_dev_inst *sdi,
uint64_t samplerate,
uint16_t channels);
SR_PRIV int saleae_logic16_start_acquisition(const struct sr_dev_inst *sdi);
SR_PRIV int saleae_logic16_abort_acquisition(const struct sr_dev_inst *sdi); SR_PRIV int saleae_logic16_abort_acquisition(const struct sr_dev_inst *sdi);
SR_PRIV int saleae_logic16_init_device(const struct sr_dev_inst *sdi); SR_PRIV int saleae_logic16_init_device(const struct sr_dev_inst *sdi);
SR_PRIV int saleae_logic16_receive_data(int fd, int revents, void *cb_data); SR_PRIV void saleae_logic16_receive_transfer(struct libusb_transfer *transfer);
#endif #endif