The previous implementation unconditionally submitted analog data
whenever values could get extracted out of received serial packets.
This commit checks the channels' enabled state before submission. Care
is taken to obey the user's acquisition limits, exclusively counting
submitted not received values.
Upon reception of serial data from the ES51919 LCR chipset, the data for
channels P1 and P2 was extracted from the packet, and unconditionally got
sent to the sigrok session.
Do check the channels' enabled state before submission. This fixes for
serial-lcr what recently got reported for a Brymen DMM. Tested with
$ sigrok-cli -d peaktech-2170:conn=/dev/ttyUSB0 --channels P2
and other --channels specifications.
The es51919_serial_clean() routine is called by std_dev_clear_with_callback().
Common code unconditionally frees the 'priv' part. The cleanup callback only
shall release descending resources which are local to the callee and opaque
to the caller.
This fixes a double free error. Tested with PeakTech 2170.
$ sigrok-cli -d peaktech-2170:conn=/dev/ttyUSB0 --show
When the acquisition was stopped before a configured limit was reached,
no sample data was retrieved. This is because the api.c stop routine did
unregister the receive callback.
Pass the stop request to the receive routine instead when stop is called
while the acquisition is still running. Have sample data downloaded very
much like it's done for reached limits, and existing logic will run the
stop routine again after state was advanced to "idle".
Extend the 'state' tracking while we are here, mark sample download as
well (that was omitted in the previous implementation). Though the
omission was non-fatal. Move the release of 'dram_line' to some earlier
location (as soon as the resource is not needed any longer), before some
rather complex calls to other routines will execute.
Reported-By: Michael Kaplan <M.KAPLAN@evva.com>
Move the check for the capture ratio being 0..100 into the wrappers,
drop unneeded helper functions, fix incorrect variable types, minor
other consistency fixes.
This makes the code more consistent with the rest of the code-base
and also allows std_gvar_min_max_step_array() to work here.
Without this change:
src/hardware/scpi-pps/api.c: In function ‘config_list’:
src/hardware/scpi-pps/api.c:570:40: warning: passing argument 1 of ‘std_gvar_min_max_step_array’ from incompatible pointer type [-Wincompatible-pointer-types]
*data = std_gvar_min_max_step_array(ch_spec->voltage);
^~~~~~~
In file included from src/scpi.h:30:0,
from src/hardware/scpi-pps/api.c:23:
src/libsigrok-internal.h:964:19: note: expected ‘const double *’ but argument is of type ‘const float *’
SR_PRIV GVariant *std_gvar_min_max_step_array(const double a[3]);
^~~~~~~~~~~~~~~~~~~~~~~~~~~
src/hardware/scpi-pps/api.c:573:40: warning: passing argument 1 of ‘std_gvar_min_max_step_array’ from incompatible pointer type [-Wincompatible-pointer-types]
*data = std_gvar_min_max_step_array(ch_spec->frequency);
^~~~~~~
In file included from src/scpi.h:30:0,
from src/hardware/scpi-pps/api.c:23:
src/libsigrok-internal.h:964:19: note: expected ‘const double *’ but argument is of type ‘const float *’
SR_PRIV GVariant *std_gvar_min_max_step_array(const double a[3]);
^~~~~~~~~~~~~~~~~~~~~~~~~~~
src/hardware/scpi-pps/api.c:576:40: warning: passing argument 1 of ‘std_gvar_min_max_step_array’ from incompatible pointer type [-Wincompatible-pointer-types]
*data = std_gvar_min_max_step_array(ch_spec->current);
^~~~~~~
In file included from src/scpi.h:30:0,
from src/hardware/scpi-pps/api.c:23:
src/libsigrok-internal.h:964:19: note: expected ‘const double *’ but argument is of type ‘const float *’
SR_PRIV GVariant *std_gvar_min_max_step_array(const double a[3]);
^~~~~~~~~~~~~~~~~~~~~~~~~~~
This ensures consistent handling of the SR_CONF_SCAN_OPTIONS and
SR_CONF_DEVICE_OPTIONS (with sdi NULL or non-NULL) config keys
and also reduces copy-pasted boilerplate in the drivers a bit.
This function does not handle channel-group specific items, that's
very driver-specific and thus left to the individual drivers.
Also move some generic checks and error messages from the drivers into
the sr_config_list() wrapper.
The HW simply stops sending data on overflows, so if we receive no data
in one second, we abort the acquisition. We also need to allocate more
buffers to support higher sample rates.
Until now, clear_helper() callbacks for std_dev_clear_with_callback()
were expected to g_free(devc), but not all of them did that.
Have std_dev_clear_with_callback() unconditionally g_free(sdi->priv)
(i.e., devc), regardless of whether a clear_helper() callback was
provided or not. It was doing g_free(sdi->priv) when no callback
was provided already anyway.
This makes the individual drivers' clear_helper() implementations
shorter and prevents errors such as missing g_free(devc) calls.
This works, because all drivers either call std_dev_clear_with_callback()
directly, or indirectly via std_dev_clear().
This also allows us to remove some no-longer needed dev_clear()
and clear_helper() implementations that only did g_free(devc)
in favor of std_dev_clear().
Be explicit and consistent in the drivers about which dev_clear function
will be called to avoid confusion and inconsistencies.
Drop some open-coded implementations of std_dev_clear().
Drop unneeded log messages, add some others that might be useful,
document which ones we're intentionally not emitting.
Don't log "$operation successful" type of messages in most cases,
that's too verbose; logging failures only is sufficient there.
baylibre-acme: Don't log "No such file or directory" messages during scan,
this triggers on all kinds of unrelated devices (e.g. "AMDGPU i2c bit
bus 0x91" in this case):
sr: [...] baylibre-acme: Name for probe 1 can't be read: Failed to open file “/sys/class/i2c-adapter/i2c-1/1-0040/name”: No such file or directory
sr: [...] baylibre-acme: Name for probe 2 can't be read: Failed to open file “/sys/class/i2c-adapter/i2c-1/1-0041/name”: No such file or directory
sr: [...] baylibre-acme: Name for probe 3 can't be read: Failed to open file “/sys/class/i2c-adapter/i2c-1/1-0044/name”: No such file or directory
sr: [...] baylibre-acme: Name for probe 4 can't be read: Failed to open file “/sys/class/i2c-adapter/i2c-1/1-0045/name”: No such file or directory
sr: [...] baylibre-acme: Name for probe 5 can't be read: Failed to open file “/sys/class/i2c-adapter/i2c-1/1-0042/name”: No such file or directory
sr: [...] baylibre-acme: Name for probe 5 can't be read: Failed to open file “/sys/class/i2c-adapter/i2c-1/1-004c/name”: No such file or directory
sr: [...] baylibre-acme: Name for probe 6 can't be read: Failed to open file “/sys/class/i2c-adapter/i2c-1/1-0043/name”: No such file or directory
sr: [...] baylibre-acme: Name for probe 6 can't be read: Failed to open file “/sys/class/i2c-adapter/i2c-1/1-0049/name”: No such file or directory
sr: [...] baylibre-acme: Name for probe 7 can't be read: Failed to open file “/sys/class/i2c-adapter/i2c-1/1-0046/name”: No such file or directory
sr: [...] baylibre-acme: Name for probe 7 can't be read: Failed to open file “/sys/class/i2c-adapter/i2c-1/1-004f/name”: No such file or directory
sr: [...] baylibre-acme: Name for probe 8 can't be read: Failed to open file “/sys/class/i2c-adapter/i2c-1/1-0047/name”: No such file or directory
sr: [...] baylibre-acme: Name for probe 8 can't be read: Failed to open file “/sys/class/i2c-adapter/i2c-1/1-004b/name”: No such file or directory
- sr_dev_clear(): Don't try to clear uninitialized drivers (the same
check was previously done in std_dev_clear()).
- Document some places where we intentionally don't emit log messages.
- std: Various Doxygen fixes and updates.
- std: Add some more sanity-checks on input parameters.
src/hardware/saleae-logic-pro/protocol.c:389:12: warning: 'set_led' defined but not used [-Wunused-function]
static int set_led(const struct sr_dev_inst *sdi, uint8_t r, uint8_t g, uint8_t b)
^
CC src/hardware/saleae-logic-pro/api.lo
src/hardware/saleae-logic-pro/api.c: In function 'dev_acquisition_handle':
src/hardware/saleae-logic-pro/api.c:332:9: warning: missing initializer for field 'tv_sec' of 'struct timeval' [-Wmissing-field-initializers]
struct timeval tv = {};
^
In file included from /usr/include/x86_64-linux-gnu/sys/time.h:27:0,
from include/libsigrok/libsigrok.h:24,
from src/hardware/saleae-logic-pro/protocol.h:25,
from src/hardware/saleae-logic-pro/api.c:23:
/usr/include/x86_64-linux-gnu/bits/time.h:32:14: note: 'tv_sec' declared here
__time_t tv_sec; /* Seconds. */
^
The asix-sigma driver was reported to fail in combination with newer
libftdi versions, because the firmware upload routine opened again an
already opened device, and then failed to claim the interface. Which was
not fatal before with previous libftdi versions.
Remove the redundant open call. Remove the local FTDI context variable,
which brings the firmware upload routine in line with all other calls
that communicate to the USB device.
This fixes bug #471.
Suggested-By: Marian Cingel <cingel.marian@gmail.com>
The asix-sigma driver supports different samplerates, which will involve
different firmware images and will affect the number of available logic
channels as well as their memory layout in downloaded sample data.
Make sure to only store the configuration's parameters after the setup
of that configuration has successfully completed, and make sure to store
a consistent set of parameters. Specifically don't change the number of
channels when the firmware upload failed.
This fixes part of bug #471.
Suggested-By: Marian Cingel <cingel.marian@gmail.com>
The firmware upload code paths in the asix-sigma driver used to return
either the SR_OK code, or the magic number 0 for error conditions. Which
happens to be identical and cannot be told apart by callers.
Provide proper SR_ERR return codes for error conditions, such that
callers can tell whether the firmware upload succeeded.
This fixes part of bug #471.
Suggested-By: Marian Cingel <cingel.marian@gmail.com>
Adjust the string to boolean conversion for an edge case. Accept empty
text (either NULL or empty strings) to mean true instead of false.
This behaviour is more useful from the user's point of view, when the
option's name alone will enable a feature, and an explicit "option=yes"
specification is not strictly necessary. All calling applications in
mainline already implemented this semantics.