Handle I/O sources and timer ("dummy") sources within the same
polling loop, so that both may be used together. Slightly change
the API to improve consistency: a timeout value of -1 now disables
the timeout, and 0 makes the source always time out immediately.
The "dummy" sources already behaved that way, although it wasn't
documented as such.
Make sure that I/O events are processed preferentially: Skip any
timeout callbacks if an I/O event occurred within the same poll
iteration. This applies to both timer/idle sources and timeouts
of I/O sources.
Do not create dummy GPollFDs for timer/idle sources. Instead,
split the sources array into an I/O section and a timer section,
and create corresponding GPollFDs only for the I/O section. Use
GArray to simplify the handling of the dynamic arrays.
Keep track of when source timeouts are due and properly compare
against accumulated elapsed time between invocations. This prevents
sources with short timeouts from blocking other sources with longer
timeouts indefinitely.
Looking at the g_poll() implementations for various systems, it
appears that on Windows the return value is 0 if the wait was
interrupted, and errno is never set. Also, the MacOS X wrapper
around select() does not clear revents on timeout.
To deal with these issues, check for EINTR only on Unices, and
assume revents to be invalid unless g_poll() returned a positive
value.
If the call to g_poll() in sr_session_iteration() fails, report
the error back to the caller. Do not treat EINTR as error though.
Check for session abort only if a source callback was actually
invoked, or at least once if none of the callbacks are invoked.
Stop checking for abort if the session has already been stopped,
just in case a callback sets abort_session again.
Also change the documentation to match the actual behavior.
In sr_session_iteration(), remove the inverted evaluation of the
block parameter if a USB source is present. This stops the deluge
of USB event callbacks due to the timeout always being zero.
Also, just for cleanliness, initialize the revents member of each
GPollFD instance to zero.
SWIG_init() returns void for Python 2.x and 'PyObject *' for Python 3.
Use an #if to handle both cases properly, otherwise the Python bindings
for either Python 2 or 3 will fail to build.
Python 3.x failure:
sigrok/core/classes_wrap.cpp: In function ‘PyObject* PyInit__classes()’:
sigrok/core/classes_wrap.cpp:59002:5: error: return-statement with no
value, in function returning ‘PyObject* {aka _object*}’ [-fpermissive]
return;
^
Python 2.x failure:
In file included from /usr/include/dirent.h:244:0,
from /usr/include/glib-2.0/glib/gdir.h:32,
from /usr/include/glib-2.0/glib.h:45,
from /usr/include/pygobject-3.0/pygobject.h:7,
from sigrok/core/classes_wrap.cpp:3179:
sigrok/core/classes_wrap.cpp: In function ‘void init_classes()’:
sigrok/core/classes_wrap.cpp:59002:12: error: return-statement with a
value, in function returning 'void' [-fpermissive]
return NULL;
^
This was superfluous -- there is no need to be able to query the
last MQ(s) sent by the device, since they're already being sent
along with the measurements in analog packets.
Since there is also no way to change the MQ (that is done with the
buttons on the device), there is no need to even list the possible
MQs.
The need to make this a list no longer applies.
SR_T_MQ is thus a type consisting of a tuple with two elements: the first
item is the MQ (type G_VARIANT_TYPE_UINT32), and the second is the MQ
flags value (G_VARIANT_TYPE_UINT64).
After the packet has been passed through the transformation modules,
the transformed data is in packet_in but the following code uses
the packet variable which still points to the original input.
This fixes bug #631.
Make vxi.h the first #include in all affected files and #undef the
_POSIX_C_SOURCE macro in vxi.h.
This avoids various build issues on e.g. FreeBSD or Mac OS X where
setting _POSIX_C_SOURCE leads to the unavailability of certain types
such as u_long (as used in the VXI/RPC code).
Extend setup.py to allow environment variables to be set on the
command line. Use that functionality to replace the pkg-config
invocations with flags passed on from make. Suppress the annoying
-Wstrict-prototypes warning by overriding the OPT variable.
Also move the "cd bindings/python" from Makefile.am to setup.py
to side-step problems with "cd" in make rules.
This also fixes bug #628.
- SR_MQ_MASS: Mass, as measured by scales / balances.
- SR_UNIT_*: Various units of mass.
- SR_MQFLAG_UNSTABLE: A flag denoting that a value has not
yet stabilized (settled). E.g. when placing an object on a scale
it'll take a few moments until a stable reading is available.
Measurement values marked with SR_MQFLAG_UNSTABLE denote that they
are "unsettled", unstable values (not yet stabilized).
The absence of SR_MQFLAG_UNSTABLE denotes that the value is stable.
- SR_CONF_SCALE: A device class for weighing scales / balances.
This basically makes glibc expose the same set of features as
if gcc was invoked without any restricting -std=c* option. Unlike
_GNU_SOURCE however, it does not enable GNU-specific extensions.
So, with this macro defined the behavior of Linux with glibc
should match that of other platforms.
In order to avoid confusion of the flags-gathering pkg-config
result with the actual test for the availability of "check",
change the pkg-config output variable prefix from CHECK to TESTS.
This type consists of an array, with each item a two-member tuple,
representing an MQ/MQflags pair: the first item is the MQ (type
G_VARIANT_TYPE_UINT32), and the second is the MQ flags value
(G_VARIANT_TYPE_UINT64).
A GVariant of type SR_T_MQLIST can thus always represent more than
one MQ/MQflag pair.
The tables defined with this struct can now be used for information
on items other than config keys.
Functions to access these tables have been renamed sr_key_info_[name_]get.
These take an extra argument, keytype, which should be set to SR_KEY_CONFIG
to get the config key tables. Other key types will be added.