libsigrok/hardware/asix-sigma/asix-sigma.c

747 lines
16 KiB
C

/*
* This file is part of the sigrok project.
*
* Copyright (C) 2010 Håvard Espeland <gus@ping.uio.no>,
* Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
* Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* ASIX Sigma Logic Analyzer Driver
*/
#include <ftdi.h>
#include <string.h>
#include <zlib.h>
#include "sigrok.h"
#include "asix-sigma.h"
#define USB_VENDOR 0xa600
#define USB_PRODUCT 0xa000
#define USB_DESCRIPTION "ASIX SIGMA"
#define USB_VENDOR_NAME "ASIX"
#define USB_MODEL_NAME "SIGMA"
#define USB_MODEL_VERSION ""
#define FIRMWARE FIRMWARE_DIR "/asix-sigma-200.firmware"
static GSList *device_instances = NULL;
// XXX These should be per device
static struct ftdi_context ftdic;
static uint64_t cur_samplerate = MHZ(200);
static uint32_t limit_msec = 0;
static struct timeval start_tv;
static uint64_t supported_samplerates[] = {
MHZ(200),
0,
};
static struct samplerates samplerates = {
MHZ(200),
MHZ(200),
0,
supported_samplerates,
};
static int capabilities[] = {
HWCAP_LOGIC_ANALYZER,
HWCAP_SAMPLERATE,
/* These are really implemented in the driver, not the hardware. */
HWCAP_LIMIT_MSEC,
0,
};
static int sigma_read(void* buf, size_t size)
{
int ret;
ret = ftdi_read_data(&ftdic, (unsigned char*) buf, size);
if (ret < 0) {
g_warning("ftdi_read_data failed: %s",
ftdi_get_error_string(&ftdic));
}
return ret;
}
static int sigma_write(void* buf, size_t size)
{
int ret;
ret = ftdi_write_data(&ftdic, (unsigned char*) buf, size);
if (ret < 0) {
g_warning("ftdi_write_data failed: %s",
ftdi_get_error_string(&ftdic));
}
else if ((size_t) ret != size) {
g_warning("ftdi_write_data did not complete write\n");
}
return ret;
}
static int sigma_write_register(uint8_t reg, uint8_t *data, size_t len)
{
size_t i;
uint8_t buf[len + 2];
int idx = 0;
buf[idx++] = REG_ADDR_LOW | (reg & 0xf);
buf[idx++] = REG_ADDR_HIGH | (reg >> 4);
for (i=0; i<len; ++i) {
buf[idx++] = REG_DATA_LOW | (data[i] & 0xf);
buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4);
}
return sigma_write(buf, idx);
}
static int sigma_set_register(uint8_t reg, uint8_t value)
{
return sigma_write_register(reg, &value, 1);
}
static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len)
{
uint8_t buf[3];
buf[0] = REG_ADDR_LOW | (reg & 0xf);
buf[1] = REG_ADDR_HIGH | (reg >> 4);
buf[2] = REG_READ_ADDR;
sigma_write(buf, sizeof(buf));
return sigma_read(data, len);
}
static uint8_t sigma_get_register(uint8_t reg)
{
uint8_t value;
if (1 != sigma_read_register(reg, &value, 1)) {
g_warning("Sigma_get_register: 1 byte expected");
return 0;
}
return value;
}
static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos)
{
uint8_t buf[] = {
REG_ADDR_LOW | READ_TRIGGER_POS_LOW,
REG_READ_ADDR | NEXT_REG,
REG_READ_ADDR | NEXT_REG,
REG_READ_ADDR | NEXT_REG,
REG_READ_ADDR | NEXT_REG,
REG_READ_ADDR | NEXT_REG,
REG_READ_ADDR | NEXT_REG,
};
uint8_t result[6];
sigma_write(buf, sizeof(buf));
sigma_read(result, sizeof(result));
*triggerpos = result[0] | (result[1] << 8) | (result[2] << 16);
*stoppos = result[3] | (result[4] << 8) | (result[5] << 16);
return 1;
}
static int sigma_read_dram(uint16_t startchunk, size_t numchunks, uint8_t *data)
{
size_t i;
uint8_t buf[4096];
int idx = 0;
/* Send the startchunk. Index start with 1 */
buf[0] = startchunk >> 8;
buf[1] = startchunk & 0xff;
sigma_write_register(WRITE_MEMROW, buf, 2);
/* Read the DRAM */
buf[idx++] = REG_DRAM_BLOCK;
buf[idx++] = REG_DRAM_WAIT_ACK;
for (i = 0; i < numchunks; ++i) {
/* Alternate bit to copy from dram to cache */
if (i != numchunks-1)
buf[idx++] = REG_DRAM_BLOCK | (((i+1) % 2) << 4);
buf[idx++] = REG_DRAM_BLOCK_DATA | ((i % 2) << 4);
if (i != numchunks-1)
buf[idx++] = REG_DRAM_WAIT_ACK;
}
sigma_write(buf, idx);
return sigma_read(data, numchunks * CHUNK_SIZE);
}
/* Generate the bitbang stream for programming the FPGA */
static int bin2bitbang(const char *filename,
unsigned char **buf, size_t* buf_size)
{
FILE *f = fopen(filename, "r");
long file_size;
unsigned long offset = 0;
unsigned char *p;
uint8_t *compressed_buf, *firmware;
uLongf csize, fwsize;
const int buffer_size = 65536;
size_t i;
int c, ret;
if (!f) {
g_warning("fopen(\"%s\", \"r\")", filename);
return -1;
}
if (-1 == fseek(f, 0, SEEK_END)) {
g_warning("fseek on %s failed", filename);
fclose(f);
return -1;
}
file_size = ftell(f);
fseek(f, 0, SEEK_SET);
compressed_buf = g_malloc(file_size);
firmware = g_malloc(buffer_size);
if (!compressed_buf || !firmware) {
g_warning("Error allocating buffers");
return -1;
}
uint32_t imm = 0x3f6df2ab;
csize = 0;
while ((c = getc(f)) != EOF) {
imm = (imm + 0xa853753) % 177 + (imm * 0x8034052);
compressed_buf[csize++] = c ^ imm;
}
fclose(f);
fwsize = buffer_size;
ret = uncompress(firmware, &fwsize, compressed_buf, csize);
if (ret < 0) {
g_free(compressed_buf);
g_free(firmware);
g_warning("Could not unpack Sigma firmware. (Error %d)\n", ret);
return -1;
}
g_free(compressed_buf);
*buf_size = fwsize * 2 * 8;
*buf = p = (unsigned char*) g_malloc(*buf_size);
if (!p) {
g_warning("Error allocating buffers");
return -1;
}
for (i = 0; i < fwsize; ++i) {
int bit;
for (bit = 7; bit >= 0; --bit) {
int v = firmware[i] & 1 << bit ? 0x40 : 0x00;
p[offset++] = v | 0x01;
p[offset++] = v;
}
}
g_free(firmware);
if (offset != *buf_size) {
g_free(*buf);
g_warning("Error reading firmware %s "
"offset=%ld, file_size=%ld, buf_size=%zd\n",
filename, offset, file_size, *buf_size);
return -1;
}
return 0;
}
static int hw_init(char *deviceinfo)
{
struct sigrok_device_instance *sdi;
deviceinfo = deviceinfo;
ftdi_init(&ftdic);
/* Look for SIGMAs */
if (ftdi_usb_open_desc(&ftdic, USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL) < 0)
return 0;
/* Register SIGMA device */
sdi = sigrok_device_instance_new(0, ST_INITIALIZING,
USB_VENDOR_NAME, USB_MODEL_NAME, USB_MODEL_VERSION);
if (!sdi)
return 0;
device_instances = g_slist_append(device_instances, sdi);
/* We will open the device again when we need it */
ftdi_usb_close(&ftdic);
return 1;
}
static int hw_opendev(int device_index)
{
int ret;
unsigned char *buf;
unsigned char pins;
size_t buf_size;
struct sigrok_device_instance *sdi;
unsigned char result[32];
/* Make sure it's an ASIX SIGMA */
if ((ret = ftdi_usb_open_desc(&ftdic,
USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
g_warning("ftdi_usb_open failed: %s",
ftdi_get_error_string(&ftdic));
return 0;
}
if ((ret = ftdi_set_bitmode(&ftdic, 0xdf, BITMODE_BITBANG)) < 0) {
g_warning("ftdi_set_bitmode failed: %s",
ftdi_get_error_string(&ftdic));
return 0;
}
/* Four times the speed of sigmalogan - Works well */
if ((ret = ftdi_set_baudrate(&ftdic, 750000)) < 0) {
g_warning("ftdi_set_baudrate failed: %s",
ftdi_get_error_string(&ftdic));
return 0;
}
/* Force the FPGA to reboot */
unsigned char suicide[] = {
0x84, 0x84, 0x88, 0x84, 0x88, 0x84, 0x88, 0x84,
};
sigma_write(suicide, sizeof(suicide));
sigma_write(suicide, sizeof(suicide));
sigma_write(suicide, sizeof(suicide));
sigma_write(suicide, sizeof(suicide));
/* Prepare to upload firmware (FPGA specific) */
unsigned char init[] = {
0x03, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01
};
sigma_write(init, sizeof(init));
ftdi_usb_purge_buffers(&ftdic);
/* Wait until the FPGA asserts INIT_B */
while (1) {
ret = sigma_read(result, 1);
if (result[0] & 0x20)
break;
}
/* Prepare firmware */
if (-1 == bin2bitbang(FIRMWARE, &buf, &buf_size)) {
g_warning("An error occured while reading the firmware: %s",
FIRMWARE);
return SIGROK_ERR;
}
/* Upload firmare */
sigma_write(buf, buf_size);
g_free(buf);
if ((ret = ftdi_set_bitmode(&ftdic, 0x00, BITMODE_RESET)) < 0) {
g_warning("ftdi_set_bitmode failed: %s",
ftdi_get_error_string(&ftdic));
return SIGROK_ERR;
}
ftdi_usb_purge_buffers(&ftdic);
/* Discard garbage */
while (1 == sigma_read(&pins, 1))
;
/* Initialize the logic analyzer mode */
unsigned char logic_mode_start[] = {
0x00, 0x40, 0x0f, 0x25, 0x35, 0x40,
0x2a, 0x3a, 0x40, 0x03, 0x20, 0x38
};
sigma_write(logic_mode_start, sizeof(logic_mode_start));
/* Expect a 3 byte reply */
ret = sigma_read(result, 3);
if (ret != 3 ||
result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa) {
g_warning("Sigma configuration failed. Invalid reply received.");
return SIGROK_ERR;
}
/* Works like a charm */
if (!(sdi = get_sigrok_device_instance(device_instances, device_index)))
return SIGROK_ERR;
sdi->status = ST_ACTIVE;
g_message("Firmware uploaded");
return SIGROK_OK;
}
static void hw_closedev(int device_index)
{
device_index = device_index;
ftdi_usb_close(&ftdic);
}
static void hw_cleanup(void)
{
}
static void *hw_get_device_info(int device_index, int device_info_id)
{
struct sigrok_device_instance *sdi;
void *info = NULL;
if (!(sdi = get_sigrok_device_instance(device_instances, device_index))) {
fprintf(stderr, "It's NULL.\n");
return NULL;
}
switch (device_info_id) {
case DI_INSTANCE:
info = sdi;
break;
case DI_NUM_PROBES:
info = GINT_TO_POINTER(4);
break;
case DI_SAMPLERATES:
info = &samplerates;
break;
case DI_TRIGGER_TYPES:
info = 0;//TRIGGER_TYPES;
break;
case DI_CUR_SAMPLERATE:
info = &cur_samplerate;
break;
}
return info;
}
static int hw_get_status(int device_index)
{
struct sigrok_device_instance *sdi;
sdi = get_sigrok_device_instance(device_instances, device_index);
if (sdi)
return sdi->status;
else
return ST_NOT_FOUND;
}
static int *hw_get_capabilities(void)
{
return capabilities;
}
static int hw_set_configuration(int device_index, int capability, void *value)
{
struct sigrok_device_instance *sdi;
int ret;
uint64_t *tmp_u64;
if (!(sdi = get_sigrok_device_instance(device_instances, device_index)))
return SIGROK_ERR;
if (capability == HWCAP_SAMPLERATE) {
tmp_u64 = (uint64_t*) value;
/* Only 200 MHz implemented */
ret = SIGROK_OK;
} else if (capability == HWCAP_PROBECONFIG) {
ret = SIGROK_OK;
} else if (capability == HWCAP_LIMIT_MSEC) {
limit_msec = strtoull(value, NULL, 10);
ret = SIGROK_OK;
} else {
ret = SIGROK_ERR;
}
return ret;
}
/*
Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster.
Each event is 20ns apart, and can contain multiple samples.
For 200 MHz, an event contains 4 samples for each channel, spread 5 ns apart
*/
static int decode_chunk_ts(uint8_t *buf, uint16_t *lastts,
uint8_t *lastsample, void *user_data)
{
const int samples_per_event = 4;
uint16_t tsdiff;
uint16_t ts;
uint8_t samples[65536 * samples_per_event];
struct datafeed_packet packet;
int i, j, k;
size_t n = 0;
int clustersize = EVENTS_PER_CLUSTER * samples_per_event; /* 4 for 200 MHz */
/* For each ts */
for (i = 0; i < 64; ++i) {
ts = *(uint16_t*) &buf[i*16];
tsdiff = ts - *lastts;
*lastts = ts;
/* Pad last sample up to current point */
int numpad = tsdiff * samples_per_event - clustersize;
if (numpad > 0) {
memset(samples, *lastsample,
tsdiff*samples_per_event - clustersize);
n = tsdiff*samples_per_event - clustersize;
}
uint16_t *event = (uint16_t*) &buf[i*16+2];
/* For each sample in cluster */
for (j = 0; j < 7; ++j) {
for (k = 0; k < samples_per_event; ++k) {
/* Extract samples from bytestream.
Samples are packed together in a short */
samples[n++] =
((!!(event[j] & (1 << (k+0x0)))) << 0) |
((!!(event[j] & (1 << (k+0x4)))) << 1) |
((!!(event[j] & (1 << (k+0x8)))) << 2) |
((!!(event[j] & (1 << (k+0xc)))) << 3);
}
}
*lastsample = samples[n-1];
/* Send to sigrok */
size_t sent = 0;
while (sent < n) {
int tosend = MIN(4096, n-sent);
packet.type = DF_LOGIC8;
packet.length = tosend;
packet.payload = samples+sent;
session_bus(user_data, &packet);
sent += tosend;
}
}
return 0;
}
static int receive_data(int fd, int revents, void *user_data)
{
struct datafeed_packet packet;
const int chunks_per_read = 32;
unsigned char buf[chunks_per_read * CHUNK_SIZE];
int bufsz;
uint32_t triggerpos, stoppos;
int numchunks;
struct timeval tv;
uint32_t running_msec;
uint16_t lastts = 0;
uint8_t lastsample = 0;
int curchunk, i;
fd = fd;
revents = revents;
/* Get the current position */
sigma_read_pos(&stoppos, &triggerpos);
numchunks = stoppos / 512;
/* Check if the has expired, or memory is full */
gettimeofday(&tv, 0);
running_msec = (tv.tv_sec - start_tv.tv_sec) * 1000 +
(tv.tv_usec - start_tv.tv_usec) / 1000;
if (running_msec < limit_msec && numchunks < 32767)
return FALSE;
/* Stop Acqusition */
sigma_set_register(WRITE_MODE, 0x11);
/* Set SDRAM Read Enable */
sigma_set_register(WRITE_MODE, 0x02);
/* Get the current position */
sigma_read_pos(&stoppos, &triggerpos);
/* Download sample data */
for (curchunk = 0; curchunk < numchunks;) {
int newchunks = MIN(chunks_per_read, numchunks - curchunk);
g_message("Downloading sample data: %.0f %%",
100.0 * curchunk / numchunks);
bufsz = sigma_read_dram(curchunk, newchunks, buf);
/* Find first ts */
if (curchunk == 0) {
lastts = *(uint16_t*) buf - 1;
}
/* Decode chunks and send them to sigrok */
for (i = 0; i < newchunks; ++i) {
decode_chunk_ts(buf + (i * CHUNK_SIZE),
&lastts, &lastsample, user_data);
}
curchunk += newchunks;
}
/* End of data */
packet.type = DF_END;
packet.length = 0;
session_bus(user_data, &packet);
return TRUE;
}
static int hw_start_acquisition(int device_index, gpointer session_device_id)
{
struct sigrok_device_instance *sdi;
struct datafeed_packet packet;
struct datafeed_header header;
session_device_id = session_device_id;
if (!(sdi = get_sigrok_device_instance(device_instances, device_index)))
return SIGROK_ERR;
device_index = device_index;
/* Setup trigger (by trigger-in) */
sigma_set_register(WRITE_TRIGGER_SELECT1, 0x20);
/* More trigger setup */
uint8_t trigger_option[2] = { 0x38, 0x00 };
sigma_write_register(WRITE_TRIGGER_OPTION,
trigger_option, sizeof(trigger_option));
/* Trigger normal (falling edge) */
sigma_set_register(WRITE_TRIGGER_SELECT1, 0x08);
/* Enable pins (200 MHz, 4 pins) */
sigma_set_register(WRITE_CLOCK_SELECT, 0xf0);
/* Setup maximum post trigger time */
sigma_set_register(WRITE_POST_TRIGGER, 0xff);
/* Start Acqusition (Software trigger start) */
gettimeofday(&start_tv, 0);
sigma_set_register(WRITE_MODE, 0x0d);
/* Add capture source */
source_add(0, G_IO_IN, 10, receive_data, session_device_id);
receive_data(0, 1, session_device_id);
/* Send header packet to the session bus. */
packet.type = DF_HEADER;
packet.length = sizeof(struct datafeed_header);
packet.payload = &header;
header.feed_version = 1;
gettimeofday(&header.starttime, NULL);
header.samplerate = cur_samplerate;
header.protocol_id = PROTO_RAW;
header.num_probes = 4;
session_bus(session_device_id, &packet);
return SIGROK_OK;
}
static void hw_stop_acquisition(int device_index, gpointer session_device_id)
{
device_index = device_index;
session_device_id = session_device_id;
/* Stop Acqusition */
sigma_set_register(WRITE_MODE, 0x11);
// XXX Set some state to indicate that data should be sent to sigrok
// Now, we just wait for timeout
}
struct device_plugin asix_sigma_plugin_info = {
"asix-sigma",
1,
hw_init,
hw_cleanup,
hw_opendev,
hw_closedev,
hw_get_device_info,
hw_get_status,
hw_get_capabilities,
hw_set_configuration,
hw_start_acquisition,
hw_stop_acquisition
};
// vim:noexpandtab:ts=8 sts=8 sw=8