libsigrok/hardware/ikalogic-scanaplus/protocol.c

371 lines
9.8 KiB
C

/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2013 Uwe Hermann <uwe@hermann-uwe.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "protocol.h"
/*
* Logic level thresholds.
*
* For each of the two channel groups (1-4 and 5-9), the logic level
* threshold can be set independently.
*
* The threshold can be set to values that are usable for systems with
* different voltage levels, e.g. for 1.8V or 3.3V systems.
*
* The actual threshold value is always the middle of the values below.
* E.g. for a system voltage level of 1.8V, the threshold is at 0.9V. That
* means that values <= 0.9V are considered to be a logic 0/low, and
* values > 0.9V are considered to be a logic 1/high.
*
* - 1.2V system: threshold = 0.6V
* - 1.5V system: threshold = 0.75V
* - 1.8V system: threshold = 0.9V
* - 2.8V system: threshold = 1.4V
* - 3.3V system: threshold = 1.65V
*/
#define THRESHOLD_1_2V_SYSTEM 0x2e
#define THRESHOLD_1_5V_SYSTEM 0x39
#define THRESHOLD_1_8V_SYSTEM 0x45
#define THRESHOLD_2_8V_SYSTEM 0x6c
#define THRESHOLD_3_3V_SYSTEM 0x7f
static int scanaplus_write(struct dev_context *devc, uint8_t *buf, int size)
{
int i, bytes_written;
GString *s;
/* Note: Caller checks devc, devc->ftdic, buf, size. */
s = g_string_sized_new(100);
g_string_printf(s, "Writing %d bytes: ", size);
for (i = 0; i < size; i++)
g_string_append_printf(s, "0x%02x ", buf[i]);
sr_spew("%s", s->str);
g_string_free(s, TRUE);
bytes_written = ftdi_write_data(devc->ftdic, buf, size);
if (bytes_written < 0) {
sr_err("Failed to write FTDI data (%d): %s.",
bytes_written, ftdi_get_error_string(devc->ftdic));
} else if (bytes_written != size) {
sr_err("FTDI write error, only %d/%d bytes written: %s.",
bytes_written, size, ftdi_get_error_string(devc->ftdic));
}
return bytes_written;
}
SR_PRIV int scanaplus_close(struct dev_context *devc)
{
int ret;
/* Note: Caller checks devc and devc->ftdic. */
if ((ret = ftdi_usb_close(devc->ftdic)) < 0) {
sr_err("Failed to close FTDI device (%d): %s.",
ret, ftdi_get_error_string(devc->ftdic));
return SR_ERR;
}
return SR_OK;
}
static void scanaplus_uncompress_block(struct dev_context *devc,
uint64_t num_bytes)
{
uint64_t i, j;
uint8_t num_samples, low, high;
for (i = 0; i < num_bytes; i += 2) {
num_samples = devc->compressed_buf[i + 0] >> 1;
low = devc->compressed_buf[i + 0] & (1 << 0);
high = devc->compressed_buf[i + 1];
for (j = 0; j < num_samples; j++) {
devc->sample_buf[devc->bytes_received++] = high;
devc->sample_buf[devc->bytes_received++] = low;
}
}
}
static void send_samples(struct dev_context *devc, uint64_t samples_to_send)
{
struct sr_datafeed_packet packet;
struct sr_datafeed_logic logic;
sr_spew("Sending %" PRIu64 " samples.", samples_to_send);
packet.type = SR_DF_LOGIC;
packet.payload = &logic;
logic.length = samples_to_send * 2;
logic.unitsize = 2; /* We need 2 bytes for 9 probes. */
logic.data = devc->sample_buf;
sr_session_send(devc->cb_data, &packet);
devc->samples_sent += samples_to_send;
devc->bytes_received -= samples_to_send * 2;
}
SR_PRIV int scanaplus_get_device_id(struct dev_context *devc)
{
int ret;
uint16_t val1, val2;
/* FTDI EEPROM indices 16+17 contain the 3 device ID bytes. */
if ((ret = ftdi_read_eeprom_location(devc->ftdic, 16, &val1)) < 0) {
sr_err("Failed to read EEPROM index 16 (%d): %s.",
ret, ftdi_get_error_string(devc->ftdic));
return SR_ERR;
}
if ((ret = ftdi_read_eeprom_location(devc->ftdic, 17, &val2)) < 0) {
sr_err("Failed to read EEPROM index 17 (%d): %s.",
ret, ftdi_get_error_string(devc->ftdic));
return SR_ERR;
}
/*
* Note: Bit 7 of the three bytes must not be used, apparently.
*
* Even though the three bits can be either 0 or 1 (we've seen both
* in actual ScanaPLUS devices), the device ID as sent to the FPGA
* has bit 7 of each byte zero'd out.
*
* It is unknown whether bit 7 of these bytes has any meaning,
* whether it's used somewhere, or whether it can be simply ignored.
*/
devc->devid[0] = ((val1 >> 0) & 0xff) & ~(1 << 7);
devc->devid[1] = ((val1 >> 8) & 0xff) & ~(1 << 7);
devc->devid[2] = ((val2 >> 0) & 0xff) & ~(1 << 7);
return SR_OK;
}
static int scanaplus_clear_device_id(struct dev_context *devc)
{
uint8_t buf[2];
buf[0] = 0x8c;
buf[1] = 0x00;
if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0)
return SR_ERR;
buf[0] = 0x8e;
buf[1] = 0x00;
if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0)
return SR_ERR;
buf[0] = 0x8f;
buf[1] = 0x00;
if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0)
return SR_ERR;
return SR_OK;
}
static int scanaplus_send_device_id(struct dev_context *devc)
{
uint8_t buf[2];
buf[0] = 0x8c;
buf[1] = devc->devid[0];
if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0)
return SR_ERR;
buf[0] = 0x8e;
buf[1] = devc->devid[1];
if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0)
return SR_ERR;
buf[0] = 0x8f;
buf[1] = devc->devid[2];
if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0)
return SR_ERR;
return SR_OK;
}
SR_PRIV int scanaplus_init(struct dev_context *devc)
{
int i;
uint8_t buf[8];
buf[0] = 0x88;
buf[1] = 0x41;
if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0)
return SR_ERR;
buf[0] = 0x89;
buf[1] = 0x64;
buf[2] = 0x8a;
buf[3] = 0x64;
if (scanaplus_write(devc, (uint8_t *)&buf, 4) < 0)
return SR_ERR;
buf[0] = 0x88;
buf[1] = 0x41;
if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0)
return SR_ERR;
buf[0] = 0x88;
buf[1] = 0x40;
if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0)
return SR_ERR;
buf[0] = 0x8d;
buf[1] = 0x01;
buf[2] = 0x8d;
buf[3] = 0x05;
buf[4] = 0x8d;
buf[5] = 0x01;
buf[6] = 0x8d;
buf[7] = 0x02;
if (scanaplus_write(devc, (uint8_t *)&buf, 8) < 0)
return SR_ERR;
for (i = 0; i < 57; i++) {
buf[0] = 0x8d;
buf[1] = 0x06;
if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0)
return SR_ERR;
buf[0] = 0x8d;
buf[1] = 0x02;
if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0)
return SR_ERR;
}
if (scanaplus_send_device_id(devc) < 0)
return SR_ERR;
buf[0] = 0x88;
buf[1] = 0x40;
if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0)
return SR_ERR;
return SR_OK;
}
SR_PRIV int scanaplus_start_acquisition(struct dev_context *devc)
{
uint8_t buf[4];
/* Threshold and differential probe settings not yet implemented. */
buf[0] = 0x89;
buf[1] = 0x7f; /* Logic level threshold for probes 1-4. */
buf[2] = 0x8a;
buf[3] = 0x7f; /* Logic level threshold for probes 5-9. */
if (scanaplus_write(devc, (uint8_t *)&buf, 4) < 0)
return SR_ERR;
buf[0] = 0x88;
buf[1] = 0x40; /* Special config of probes 5/6 and 7/8. */
/* 0x40: normal, 0x50: ch56 diff, 0x48: ch78 diff, 0x58: ch5678 diff */
if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0)
return SR_ERR;
if (scanaplus_clear_device_id(devc) < 0)
return SR_ERR;
if (scanaplus_send_device_id(devc) < 0)
return SR_ERR;
return SR_OK;
}
SR_PRIV int scanaplus_receive_data(int fd, int revents, void *cb_data)
{
int bytes_read;
struct sr_dev_inst *sdi;
struct dev_context *devc;
uint64_t max, n;
(void)fd;
(void)revents;
if (!(sdi = cb_data))
return TRUE;
if (!(devc = sdi->priv))
return TRUE;
if (!devc->ftdic)
return TRUE;
/* Get a block of data. */
bytes_read = ftdi_read_data(devc->ftdic, devc->compressed_buf,
COMPRESSED_BUF_SIZE);
if (bytes_read < 0) {
sr_err("Failed to read FTDI data (%d): %s.",
bytes_read, ftdi_get_error_string(devc->ftdic));
sdi->driver->dev_acquisition_stop(sdi, sdi);
return FALSE;
}
if (bytes_read == 0) {
sr_spew("Received 0 bytes, nothing to do.");
return TRUE;
}
/*
* After a ScanaPLUS acquisition starts, a bunch of samples will be
* returned as all-zero, no matter which signals are actually present
* on the probes. This is probably due to the FPGA reconfiguring some
* of its internal state/config during this time.
*
* As far as we know there is apparently no way for the PC-side to
* know when this "reconfiguration" starts or ends. The FTDI chip
* will return all-zero "dummy" samples during this time, which is
* indistinguishable from actual all-zero samples.
*
* We currently simply ignore the first 64kB of data after an
* acquisition starts. Empirical tests have shown that the
* "reconfigure" time is a lot less than that usually.
*/
if (devc->compressed_bytes_ignored < COMPRESSED_BUF_SIZE) {
/* Ignore the first 64kB of data of every acquisition. */
sr_spew("Ignoring first 64kB chunk of data.");
devc->compressed_bytes_ignored += COMPRESSED_BUF_SIZE;
return TRUE;
}
/* TODO: Handle bytes_read which is not a multiple of 2? */
scanaplus_uncompress_block(devc, bytes_read);
n = devc->samples_sent + (devc->bytes_received / 2);
max = (SR_MHZ(100) / 1000) * devc->limit_msec;
if (devc->limit_samples && (n >= devc->limit_samples)) {
send_samples(devc, devc->limit_samples - devc->samples_sent);
sr_info("Requested number of samples reached.");
sdi->driver->dev_acquisition_stop(sdi, cb_data);
return TRUE;
} else if (devc->limit_msec && (n >= max)) {
send_samples(devc, max - devc->samples_sent);
sr_info("Requested time limit reached.");
sdi->driver->dev_acquisition_stop(sdi, cb_data);
return TRUE;
} else {
send_samples(devc, devc->bytes_received / 2);
}
return TRUE;
}