libsigrok/src/hardware/agilent-dmm/protocol.c

1046 lines
31 KiB
C

/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2012 Bert Vermeulen <bert@biot.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <glib.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <limits.h>
#include <math.h>
#include <libsigrok/libsigrok.h>
#include "libsigrok-internal.h"
#include "protocol.h"
#define JOB_TIMEOUT 300
#define INFINITE_INTERVAL INT_MAX
#define SAMPLERATE_INTERVAL -1
static const struct agdmm_job *job_current(const struct dev_context *devc)
{
return &devc->jobs[devc->current_job];
}
static void job_done(struct dev_context *devc)
{
devc->job_running = FALSE;
}
static void job_again(struct dev_context *devc)
{
devc->job_again = TRUE;
}
static gboolean job_is_running(const struct dev_context *devc)
{
return devc->job_running;
}
static gboolean job_in_interval(const struct dev_context *devc)
{
int64_t job_start = devc->jobs_start[devc->current_job];
int64_t now = g_get_monotonic_time() / 1000;
int interval = job_current(devc)->interval;
if (interval == SAMPLERATE_INTERVAL)
interval = 1000 / devc->cur_samplerate;
return (now - job_start) < interval || interval == INFINITE_INTERVAL;
}
static gboolean job_has_timeout(const struct dev_context *devc)
{
int64_t job_start = devc->jobs_start[devc->current_job];
int64_t now = g_get_monotonic_time() / 1000;
return job_is_running(devc) && (now - job_start) > JOB_TIMEOUT;
}
static const struct agdmm_job *job_next(struct dev_context *devc)
{
int current_job = devc->current_job;
do {
devc->current_job++;
if (!job_current(devc)->send)
devc->current_job = 0;
} while (job_in_interval(devc) && devc->current_job != current_job);
return job_current(devc);
}
static void job_run_again(const struct sr_dev_inst *sdi)
{
struct dev_context *devc = sdi->priv;
devc->job_again = FALSE;
devc->job_running = TRUE;
if (job_current(devc)->send(sdi) == SR_ERR_NA)
job_done(devc);
}
static void job_run(const struct sr_dev_inst *sdi)
{
struct dev_context *devc = sdi->priv;
int64_t now = g_get_monotonic_time() / 1000;
devc->jobs_start[devc->current_job] = now;
job_run_again(sdi);
}
static void dispatch(const struct sr_dev_inst *sdi)
{
struct dev_context *devc = sdi->priv;
if (devc->job_again) {
job_run_again(sdi);
return;
}
if (!job_is_running(devc))
job_next(devc);
else if (job_has_timeout(devc))
job_done(devc);
if (!job_is_running(devc) && !job_in_interval(devc))
job_run(sdi);
}
static gboolean receive_line(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
const struct agdmm_recv *recvs, *recv;
GRegex *reg;
GMatchInfo *match;
gboolean stop = FALSE;
int i;
devc = sdi->priv;
/* Strip CRLF */
while (devc->buflen) {
if (*(devc->buf + devc->buflen - 1) == '\r'
|| *(devc->buf + devc->buflen - 1) == '\n')
*(devc->buf + --devc->buflen) = '\0';
else
break;
}
sr_spew("Received '%s'.", devc->buf);
recv = NULL;
recvs = devc->profile->recvs;
for (i = 0; (&recvs[i])->recv_regex; i++) {
reg = g_regex_new((&recvs[i])->recv_regex, 0, 0, NULL);
if (g_regex_match(reg, (char *)devc->buf, 0, &match)) {
recv = &recvs[i];
break;
}
g_match_info_unref(match);
g_regex_unref(reg);
}
if (recv) {
enum job_type type = recv->recv(sdi, match);
if (type == job_current(devc)->type)
job_done(devc);
else if (type == JOB_AGAIN)
job_again(devc);
else if (type == JOB_STOP)
stop = TRUE;
g_match_info_unref(match);
g_regex_unref(reg);
} else
sr_dbg("Unknown line '%s'.", devc->buf);
/* Done with this. */
devc->buflen = 0;
return stop;
}
SR_PRIV int agdmm_receive_data(int fd, int revents, void *cb_data)
{
struct sr_dev_inst *sdi;
struct dev_context *devc;
struct sr_serial_dev_inst *serial;
gboolean stop = FALSE;
int len;
(void)fd;
if (!(sdi = cb_data))
return TRUE;
if (!(devc = sdi->priv))
return TRUE;
serial = sdi->conn;
if (revents == G_IO_IN) {
/* Serial data arrived. */
while (AGDMM_BUFSIZE - devc->buflen - 1 > 0) {
len = serial_read_nonblocking(serial, devc->buf + devc->buflen, 1);
if (len < 1)
break;
devc->buflen += len;
*(devc->buf + devc->buflen) = '\0';
if (*(devc->buf + devc->buflen - 1) == '\n') {
/* End of line */
stop = receive_line(sdi);
break;
}
}
}
if (sr_sw_limits_check(&devc->limits) || stop)
sr_dev_acquisition_stop(sdi);
else
dispatch(sdi);
return TRUE;
}
static int agdmm_send(const struct sr_dev_inst *sdi, const char *cmd, ...)
{
struct sr_serial_dev_inst *serial;
va_list args;
char buf[32];
serial = sdi->conn;
va_start(args, cmd);
vsnprintf(buf, sizeof(buf) - 3, cmd, args);
va_end(args);
sr_spew("Sending '%s'.", buf);
if (!strncmp(buf, "*IDN?", 5))
strcat(buf, "\r\n");
else
strcat(buf, "\n\r\n");
if (serial_write_blocking(serial, buf, strlen(buf), SERIAL_WRITE_TIMEOUT_MS) < (int)strlen(buf)) {
sr_err("Failed to send.");
return SR_ERR;
}
return SR_OK;
}
static int send_stat(const struct sr_dev_inst *sdi)
{
return agdmm_send(sdi, "STAT?");
}
static int recv_stat_u123x(const struct sr_dev_inst *sdi, GMatchInfo *match)
{
struct dev_context *devc;
char *s;
devc = sdi->priv;
s = g_match_info_fetch(match, 1);
sr_spew("STAT response '%s'.", s);
/* Max, Min or Avg mode -- no way to tell which, so we'll
* set both flags to denote it's not a normal measurement. */
if (s[0] == '1')
devc->cur_mqflags[0] |= SR_MQFLAG_MAX | SR_MQFLAG_MIN;
else
devc->cur_mqflags[0] &= ~(SR_MQFLAG_MAX | SR_MQFLAG_MIN);
if (s[1] == '1')
devc->cur_mqflags[0] |= SR_MQFLAG_RELATIVE;
else
devc->cur_mqflags[0] &= ~SR_MQFLAG_RELATIVE;
/* Triggered or auto hold modes. */
if (s[2] == '1' || s[3] == '1')
devc->cur_mqflags[0] |= SR_MQFLAG_HOLD;
else
devc->cur_mqflags[0] &= ~SR_MQFLAG_HOLD;
/* Temp/aux mode. */
if (s[7] == '1')
devc->mode_tempaux = TRUE;
else
devc->mode_tempaux = FALSE;
/* Continuity mode. */
if (s[16] == '1')
devc->mode_continuity = TRUE;
else
devc->mode_continuity = FALSE;
g_free(s);
return JOB_STAT;
}
static int recv_stat_u124x(const struct sr_dev_inst *sdi, GMatchInfo *match)
{
struct dev_context *devc;
char *s;
devc = sdi->priv;
s = g_match_info_fetch(match, 1);
sr_spew("STAT response '%s'.", s);
/* Max, Min or Avg mode -- no way to tell which, so we'll
* set both flags to denote it's not a normal measurement. */
if (s[0] == '1')
devc->cur_mqflags[0] |= SR_MQFLAG_MAX | SR_MQFLAG_MIN;
else
devc->cur_mqflags[0] &= ~(SR_MQFLAG_MAX | SR_MQFLAG_MIN);
if (s[1] == '1')
devc->cur_mqflags[0] |= SR_MQFLAG_RELATIVE;
else
devc->cur_mqflags[0] &= ~SR_MQFLAG_RELATIVE;
/* Hold mode. */
if (s[7] == '1')
devc->cur_mqflags[0] |= SR_MQFLAG_HOLD;
else
devc->cur_mqflags[0] &= ~SR_MQFLAG_HOLD;
g_free(s);
return JOB_STAT;
}
static int recv_stat_u124xc(const struct sr_dev_inst *sdi, GMatchInfo *match)
{
struct dev_context *devc;
char *s;
devc = sdi->priv;
s = g_match_info_fetch(match, 1);
sr_spew("STAT response '%s'.", s);
/* Max, Min or Avg mode -- no way to tell which, so we'll
* set both flags to denote it's not a normal measurement. */
if (s[0] == '1')
devc->cur_mqflags[0] |= SR_MQFLAG_MAX | SR_MQFLAG_MIN | SR_MQFLAG_AVG;
else
devc->cur_mqflags[0] &= ~(SR_MQFLAG_MAX | SR_MQFLAG_MIN | SR_MQFLAG_AVG);
/* Null function. */
if (s[1] == '1')
devc->cur_mqflags[0] |= SR_MQFLAG_RELATIVE;
else
devc->cur_mqflags[0] &= ~SR_MQFLAG_RELATIVE;
/* Triggered or auto hold modes. */
if (s[7] == '1' || s[11] == '1')
devc->cur_mqflags[0] |= SR_MQFLAG_HOLD;
else
devc->cur_mqflags[0] &= ~SR_MQFLAG_HOLD;
g_free(s);
return JOB_STAT;
}
static int recv_stat_u125x(const struct sr_dev_inst *sdi, GMatchInfo *match)
{
struct dev_context *devc;
char *s;
devc = sdi->priv;
s = g_match_info_fetch(match, 1);
sr_spew("STAT response '%s'.", s);
/* dBm/dBV modes. */
if ((s[2] & ~0x20) == 'M')
devc->mode_dbm_dbv = devc->cur_unit[0] = SR_UNIT_DECIBEL_MW;
else if ((s[2] & ~0x20) == 'V')
devc->mode_dbm_dbv = devc->cur_unit[0] = SR_UNIT_DECIBEL_VOLT;
else
devc->mode_dbm_dbv = 0;
/* Peak hold mode. */
if (s[4] == '1')
devc->cur_mqflags[0] |= SR_MQFLAG_MAX;
else
devc->cur_mqflags[0] &= ~SR_MQFLAG_MAX;
/* Triggered hold mode. */
if (s[7] == '1')
devc->cur_mqflags[0] |= SR_MQFLAG_HOLD;
else
devc->cur_mqflags[0] &= ~SR_MQFLAG_HOLD;
g_free(s);
return JOB_STAT;
}
static int recv_stat_u128x(const struct sr_dev_inst *sdi, GMatchInfo *match)
{
struct dev_context *devc;
char *s;
devc = sdi->priv;
s = g_match_info_fetch(match, 1);
sr_spew("STAT response '%s'.", s);
/* Max, Min or Avg mode -- no way to tell which, so we'll
* set both flags to denote it's not a normal measurement. */
if (s[0] == '1')
devc->cur_mqflags[0] |= SR_MQFLAG_MAX | SR_MQFLAG_MIN | SR_MQFLAG_AVG;
else
devc->cur_mqflags[0] &= ~(SR_MQFLAG_MAX | SR_MQFLAG_MIN | SR_MQFLAG_AVG);
/* dBm/dBV modes. */
if ((s[2] & ~0x20) == 'M')
devc->mode_dbm_dbv = devc->cur_unit[0] = SR_UNIT_DECIBEL_MW;
else if ((s[2] & ~0x20) == 'V')
devc->mode_dbm_dbv = devc->cur_unit[0] = SR_UNIT_DECIBEL_VOLT;
else
devc->mode_dbm_dbv = 0;
/* Peak hold mode. */
if (s[4] == '4')
devc->cur_mqflags[0] |= SR_MQFLAG_MAX;
else
devc->cur_mqflags[0] &= ~SR_MQFLAG_MAX;
/* Null function. */
if (s[1] == '1')
devc->cur_mqflags[0] |= SR_MQFLAG_RELATIVE;
else
devc->cur_mqflags[0] &= ~SR_MQFLAG_RELATIVE;
/* Triggered or auto hold modes. */
if (s[7] == '1' || s[11] == '1')
devc->cur_mqflags[0] |= SR_MQFLAG_HOLD;
else
devc->cur_mqflags[0] &= ~SR_MQFLAG_HOLD;
g_free(s);
return JOB_STAT;
}
static int send_fetc(const struct sr_dev_inst *sdi)
{
struct dev_context *devc = sdi->priv;
if (devc->mode_squarewave)
return SR_ERR_NA;
if (devc->cur_channel->index > 0)
return agdmm_send(sdi, "FETC? @%d", devc->cur_channel->index + 1);
else
return agdmm_send(sdi, "FETC?");
}
static int recv_fetc(const struct sr_dev_inst *sdi, GMatchInfo *match)
{
struct dev_context *devc;
struct sr_datafeed_packet packet;
struct sr_datafeed_analog analog;
struct sr_analog_encoding encoding;
struct sr_analog_meaning meaning;
struct sr_analog_spec spec;
struct sr_channel *prev_chan;
float fvalue;
const char *s;
char *mstr;
int i, exp;
sr_spew("FETC reply '%s'.", g_match_info_get_string(match));
devc = sdi->priv;
i = devc->cur_channel->index;
if (devc->cur_mq[i] == -1)
/* This detects when channel P2 is reporting TEMP as an identical
* copy of channel P3. In this case, we just skip P2. */
goto skip_value;
s = g_match_info_get_string(match);
if (!strcmp(s, "-9.90000000E+37") || !strcmp(s, "+9.90000000E+37")) {
/* An invalid measurement shows up on the display as "O.L", but
* comes through like this. Since comparing 38-digit floats
* is rather problematic, we'll cut through this here. */
fvalue = NAN;
} else {
mstr = g_match_info_fetch(match, 1);
if (sr_atof_ascii(mstr, &fvalue) != SR_OK) {
g_free(mstr);
sr_dbg("Invalid float.");
return SR_ERR;
}
g_free(mstr);
if (devc->cur_exponent[i] != 0)
fvalue *= powf(10, devc->cur_exponent[i]);
}
if (devc->cur_unit[i] == SR_UNIT_DECIBEL_MW ||
devc->cur_unit[i] == SR_UNIT_DECIBEL_VOLT ||
devc->cur_unit[i] == SR_UNIT_PERCENTAGE) {
mstr = g_match_info_fetch(match, 2);
if (mstr && sr_atoi(mstr, &exp) == SR_OK) {
devc->cur_digits[i] = MIN(4 - exp, devc->cur_digits[i]);
devc->cur_encoding[i] = MIN(5 - exp, devc->cur_encoding[i]);
}
g_free(mstr);
}
sr_analog_init(&analog, &encoding, &meaning, &spec,
devc->cur_digits[i] - devc->cur_exponent[i]);
analog.meaning->mq = devc->cur_mq[i];
analog.meaning->unit = devc->cur_unit[i];
analog.meaning->mqflags = devc->cur_mqflags[i];
analog.meaning->channels = g_slist_append(NULL, devc->cur_channel);
analog.num_samples = 1;
analog.data = &fvalue;
encoding.digits = devc->cur_encoding[i] - devc->cur_exponent[i];
packet.type = SR_DF_ANALOG;
packet.payload = &analog;
sr_session_send(sdi, &packet);
g_slist_free(analog.meaning->channels);
sr_sw_limits_update_samples_read(&devc->limits, 1);
skip_value:
prev_chan = devc->cur_channel;
devc->cur_channel = sr_next_enabled_channel(sdi, devc->cur_channel);
if (devc->cur_channel->index > prev_chan->index)
return JOB_AGAIN;
else
return JOB_FETC;
}
static int send_conf(const struct sr_dev_inst *sdi)
{
struct dev_context *devc = sdi->priv;
/* Do not try to send CONF? for internal temperature channel. */
if (devc->cur_conf->index >= MIN(devc->profile->nb_channels, 2))
return SR_ERR_NA;
if (devc->cur_conf->index > 0)
return agdmm_send(sdi, "CONF? @%d", devc->cur_conf->index + 1);
else
return agdmm_send(sdi, "CONF?");
}
static int recv_conf_u123x(const struct sr_dev_inst *sdi, GMatchInfo *match)
{
struct dev_context *devc;
char *mstr, *rstr;
int i, resolution;
sr_spew("CONF? response '%s'.", g_match_info_get_string(match));
devc = sdi->priv;
i = devc->cur_conf->index;
rstr = g_match_info_fetch(match, 2);
if (rstr)
sr_atoi(rstr, &resolution);
g_free(rstr);
mstr = g_match_info_fetch(match, 1);
if (!strcmp(mstr, "V")) {
devc->cur_mq[i] = SR_MQ_VOLTAGE;
devc->cur_unit[i] = SR_UNIT_VOLT;
devc->cur_mqflags[i] = 0;
devc->cur_exponent[i] = 0;
devc->cur_digits[i] = 4 - resolution;
} else if (!strcmp(mstr, "MV")) {
if (devc->mode_tempaux) {
devc->cur_mq[i] = SR_MQ_TEMPERATURE;
/* No way to detect whether Fahrenheit or Celsius
* is used, so we'll just default to Celsius. */
devc->cur_unit[i] = SR_UNIT_CELSIUS;
devc->cur_mqflags[i] = 0;
devc->cur_exponent[i] = 0;
devc->cur_digits[i] = 1;
} else {
devc->cur_mq[i] = SR_MQ_VOLTAGE;
devc->cur_unit[i] = SR_UNIT_VOLT;
devc->cur_mqflags[i] = 0;
devc->cur_exponent[i] = -3;
devc->cur_digits[i] = 5 - resolution;
}
} else if (!strcmp(mstr, "A")) {
devc->cur_mq[i] = SR_MQ_CURRENT;
devc->cur_unit[i] = SR_UNIT_AMPERE;
devc->cur_mqflags[i] = 0;
devc->cur_exponent[i] = 0;
devc->cur_digits[i] = 3 - resolution;
} else if (!strcmp(mstr, "UA")) {
devc->cur_mq[i] = SR_MQ_CURRENT;
devc->cur_unit[i] = SR_UNIT_AMPERE;
devc->cur_mqflags[i] = 0;
devc->cur_exponent[i] = -6;
devc->cur_digits[i] = 8 - resolution;
} else if (!strcmp(mstr, "FREQ")) {
devc->cur_mq[i] = SR_MQ_FREQUENCY;
devc->cur_unit[i] = SR_UNIT_HERTZ;
devc->cur_mqflags[i] = 0;
devc->cur_exponent[i] = 0;
devc->cur_digits[i] = 2 - resolution;
} else if (!strcmp(mstr, "RES")) {
if (devc->mode_continuity) {
devc->cur_mq[i] = SR_MQ_CONTINUITY;
devc->cur_unit[i] = SR_UNIT_BOOLEAN;
} else {
devc->cur_mq[i] = SR_MQ_RESISTANCE;
devc->cur_unit[i] = SR_UNIT_OHM;
}
devc->cur_mqflags[i] = 0;
devc->cur_exponent[i] = 0;
devc->cur_digits[i] = 1 - resolution;
} else if (!strcmp(mstr, "DIOD")) {
devc->cur_mq[i] = SR_MQ_VOLTAGE;
devc->cur_unit[i] = SR_UNIT_VOLT;
devc->cur_mqflags[i] = SR_MQFLAG_DIODE | SR_MQFLAG_DC;
devc->cur_exponent[i] = 0;
devc->cur_digits[i] = 3;
} else if (!strcmp(mstr, "CAP")) {
devc->cur_mq[i] = SR_MQ_CAPACITANCE;
devc->cur_unit[i] = SR_UNIT_FARAD;
devc->cur_mqflags[i] = 0;
devc->cur_exponent[i] = 0;
devc->cur_digits[i] = 9 - resolution;
} else
sr_dbg("Unknown first argument.");
g_free(mstr);
/* This is based on guess, supposing similarity with other models. */
devc->cur_encoding[i] = devc->cur_digits[i] + 1;
if (g_match_info_get_match_count(match) == 4) {
mstr = g_match_info_fetch(match, 3);
/* Third value, if present, is always AC or DC. */
if (!strcmp(mstr, "AC")) {
devc->cur_mqflags[i] |= SR_MQFLAG_AC;
if (devc->cur_mq[i] == SR_MQ_VOLTAGE)
devc->cur_mqflags[i] |= SR_MQFLAG_RMS;
} else if (!strcmp(mstr, "DC")) {
devc->cur_mqflags[i] |= SR_MQFLAG_DC;
} else {
sr_dbg("Unknown first argument '%s'.", mstr);
}
g_free(mstr);
} else
devc->cur_mqflags[i] &= ~(SR_MQFLAG_AC | SR_MQFLAG_DC);
return JOB_CONF;
}
static int recv_conf_u124x_5x(const struct sr_dev_inst *sdi, GMatchInfo *match)
{
struct dev_context *devc;
char *mstr, *rstr, *m2;
int i, resolution;
sr_spew("CONF? response '%s'.", g_match_info_get_string(match));
devc = sdi->priv;
i = devc->cur_conf->index;
devc->mode_squarewave = 0;
rstr = g_match_info_fetch(match, 4);
if (rstr && sr_atoi(rstr, &resolution) == SR_OK) {
devc->cur_digits[i] = -resolution;
devc->cur_encoding[i] = -resolution + 1;
}
g_free(rstr);
mstr = g_match_info_fetch(match, 1);
if (!strncmp(mstr, "VOLT", 4)) {
devc->cur_mq[i] = SR_MQ_VOLTAGE;
devc->cur_unit[i] = SR_UNIT_VOLT;
devc->cur_mqflags[i] = 0;
devc->cur_exponent[i] = 0;
if (i == 0 && devc->mode_dbm_dbv) {
devc->cur_unit[i] = devc->mode_dbm_dbv;
devc->cur_digits[i] = 3;
devc->cur_encoding[i] = 4;
}
if (mstr[4] == ':') {
if (!strncmp(mstr + 5, "ACDC", 4)) {
/* AC + DC offset */
devc->cur_mqflags[i] |= SR_MQFLAG_AC | SR_MQFLAG_DC | SR_MQFLAG_RMS;
} else if (!strncmp(mstr + 5, "AC", 2)) {
devc->cur_mqflags[i] |= SR_MQFLAG_AC | SR_MQFLAG_RMS;
} else if (!strncmp(mstr + 5, "DC", 2)) {
devc->cur_mqflags[i] |= SR_MQFLAG_DC;
} else if (!strncmp(mstr + 5, "HRAT", 4)) {
devc->cur_mq[i] = SR_MQ_HARMONIC_RATIO;
devc->cur_unit[i] = SR_UNIT_PERCENTAGE;
devc->cur_digits[i] = 2;
devc->cur_encoding[i] = 3;
}
} else
devc->cur_mqflags[i] |= SR_MQFLAG_DC;
} else if (!strncmp(mstr, "CURR", 4)) {
devc->cur_mq[i] = SR_MQ_CURRENT;
devc->cur_unit[i] = SR_UNIT_AMPERE;
devc->cur_mqflags[i] = 0;
devc->cur_exponent[i] = 0;
if (mstr[4] == ':') {
if (!strncmp(mstr + 5, "ACDC", 4)) {
/* AC + DC offset */
devc->cur_mqflags[i] |= SR_MQFLAG_AC | SR_MQFLAG_DC | SR_MQFLAG_RMS;
} else if (!strncmp(mstr + 5, "AC", 2)) {
devc->cur_mqflags[i] |= SR_MQFLAG_AC | SR_MQFLAG_RMS;
} else if (!strncmp(mstr + 5, "DC", 2)) {
devc->cur_mqflags[i] |= SR_MQFLAG_DC;
}
} else
devc->cur_mqflags[i] |= SR_MQFLAG_DC;
} else if (!strcmp(mstr, "RES")) {
devc->cur_mq[i] = SR_MQ_RESISTANCE;
devc->cur_unit[i] = SR_UNIT_OHM;
devc->cur_mqflags[i] = 0;
devc->cur_exponent[i] = 0;
} else if (!strcmp(mstr, "COND")) {
devc->cur_mq[i] = SR_MQ_CONDUCTANCE;
devc->cur_unit[i] = SR_UNIT_SIEMENS;
devc->cur_mqflags[i] = 0;
devc->cur_exponent[i] = 0;
} else if (!strcmp(mstr, "CAP")) {
devc->cur_mq[i] = SR_MQ_CAPACITANCE;
devc->cur_unit[i] = SR_UNIT_FARAD;
devc->cur_mqflags[i] = 0;
devc->cur_exponent[i] = 0;
} else if (!strncmp(mstr, "FREQ", 4) || !strncmp(mstr, "FC1", 3)) {
devc->cur_mq[i] = SR_MQ_FREQUENCY;
devc->cur_unit[i] = SR_UNIT_HERTZ;
devc->cur_mqflags[i] = 0;
devc->cur_exponent[i] = 0;
} else if (!strncmp(mstr, "PULS:PWID", 9)) {
devc->cur_mq[i] = SR_MQ_PULSE_WIDTH;
devc->cur_unit[i] = SR_UNIT_SECOND;
devc->cur_mqflags[i] = 0;
devc->cur_exponent[i] = 0;
devc->cur_encoding[i] = MIN(devc->cur_encoding[i], 6);
} else if (!strncmp(mstr, "PULS:PDUT", 9)) {
devc->cur_mq[i] = SR_MQ_DUTY_CYCLE;
devc->cur_unit[i] = SR_UNIT_PERCENTAGE;
devc->cur_mqflags[i] = 0;
devc->cur_exponent[i] = 0;
devc->cur_digits[i] = 3;
devc->cur_encoding[i] = 4;
} else if (!strcmp(mstr, "CONT")) {
devc->cur_mq[i] = SR_MQ_CONTINUITY;
devc->cur_unit[i] = SR_UNIT_OHM;
devc->cur_mqflags[i] = 0;
devc->cur_exponent[i] = 0;
} else if (!strcmp(mstr, "DIOD")) {
devc->cur_mq[i] = SR_MQ_VOLTAGE;
devc->cur_unit[i] = SR_UNIT_VOLT;
devc->cur_mqflags[i] = SR_MQFLAG_DIODE | SR_MQFLAG_DC;
devc->cur_exponent[i] = 0;
if (devc->profile->model == KEYSIGHT_U1281 ||
devc->profile->model == KEYSIGHT_U1282) {
devc->cur_digits[i] = 4;
devc->cur_encoding[i] = 5;
} else {
devc->cur_digits[i] = 3;
devc->cur_encoding[i] = 4;
}
} else if (!strncmp(mstr, "T1", 2) || !strncmp(mstr, "T2", 2) ||
!strncmp(mstr, "TEMP", 4)) {
devc->cur_mq[i] = SR_MQ_TEMPERATURE;
m2 = g_match_info_fetch(match, 2);
if (!m2 && devc->profile->nb_channels == 3)
/*
* TEMP without param is for secondary display (channel P2)
* and is identical to channel P3, so discard it.
*/
devc->cur_mq[i] = -1;
else if (m2 && !strcmp(m2, "FAR"))
devc->cur_unit[i] = SR_UNIT_FAHRENHEIT;
else
devc->cur_unit[i] = SR_UNIT_CELSIUS;
g_free(m2);
devc->cur_mqflags[i] = 0;
devc->cur_exponent[i] = 0;
devc->cur_digits[i] = 1;
devc->cur_encoding[i] = 2;
} else if (!strcmp(mstr, "SCOU")) {
/*
* Switch counter, not supported. Not sure what values
* come from FETC in this mode, or how they would map
* into libsigrok.
*/
} else if (!strncmp(mstr, "CPER:", 5)) {
devc->cur_mq[i] = SR_MQ_CURRENT;
devc->cur_unit[i] = SR_UNIT_PERCENTAGE;
devc->cur_mqflags[i] = 0;
devc->cur_exponent[i] = 0;
devc->cur_digits[i] = 2;
devc->cur_encoding[i] = 3;
} else if (!strcmp(mstr, "SQU")) {
/*
* Square wave output, not supported. FETC just return
* an error in this mode, so don't even call it.
*/
devc->mode_squarewave = 1;
} else if (!strcmp(mstr, "NCV")) {
devc->cur_mq[i] = SR_MQ_VOLTAGE;
devc->cur_unit[i] = SR_UNIT_VOLT;
devc->cur_mqflags[i] = SR_MQFLAG_AC;
if (devc->profile->model == KEYSIGHT_U1281 ||
devc->profile->model == KEYSIGHT_U1282) {
devc->cur_exponent[i] = -3;
devc->cur_digits[i] = -1;
devc->cur_encoding[i] = 0;
} else {
devc->cur_exponent[i] = 0;
devc->cur_digits[i] = 2;
devc->cur_encoding[i] = 3;
}
} else {
sr_dbg("Unknown first argument '%s'.", mstr);
}
g_free(mstr);
struct sr_channel *prev_conf = devc->cur_conf;
devc->cur_conf = sr_next_enabled_channel(sdi, devc->cur_conf);
if (devc->cur_conf->index >= MIN(devc->profile->nb_channels, 2))
devc->cur_conf = sr_next_enabled_channel(sdi, devc->cur_conf);
if (devc->cur_conf->index > prev_conf->index)
return JOB_AGAIN;
else
return JOB_CONF;
}
static int send_log(const struct sr_dev_inst *sdi)
{
const char *source[] = { "LOG:HAND", "LOG:TRIG", "LOG:AUTO", "LOG:EXPO" };
struct dev_context *devc = sdi->priv;
return agdmm_send(sdi, "%s %d",
source[devc->data_source - 1], devc->cur_sample);
}
static int recv_log(const struct sr_dev_inst *sdi, GMatchInfo *match,
const int mqs[], const int units[], const int exponents[],
unsigned int num_functions)
{
struct dev_context *devc;
struct sr_datafeed_packet packet;
struct sr_datafeed_analog analog;
struct sr_analog_encoding encoding;
struct sr_analog_meaning meaning;
struct sr_analog_spec spec;
char *mstr;
unsigned function;
int value, negative, overload, exponent, alternate_unit, mq, unit;
int mqflags = 0;
float fvalue;
sr_spew("LOG response '%s'.", g_match_info_get_string(match));
devc = sdi->priv;
mstr = g_match_info_fetch(match, 2);
if (sr_atoi(mstr, (int*)&function) != SR_OK || function >= num_functions) {
g_free(mstr);
sr_dbg("Invalid function.");
return SR_ERR;
}
g_free(mstr);
mstr = g_match_info_fetch(match, 3);
if (sr_atoi(mstr, &value) != SR_OK) {
g_free(mstr);
sr_dbg("Invalid value.");
return SR_ERR;
}
g_free(mstr);
mstr = g_match_info_fetch(match, 1);
negative = mstr[7] & 2 ? -1 : 1;
overload = mstr[8] & 4;
exponent = (mstr[9] & 0xF) + exponents[function];
alternate_unit = mstr[10] & 1;
if (mstr[ 8] & 1) mqflags |= SR_MQFLAG_DC;
if (mstr[ 8] & 2) mqflags |= SR_MQFLAG_AC;
if (mstr[11] & 4) mqflags |= SR_MQFLAG_RELATIVE;
if (mstr[12] & 1) mqflags |= SR_MQFLAG_AVG;
if (mstr[12] & 2) mqflags |= SR_MQFLAG_MIN;
if (mstr[12] & 4) mqflags |= SR_MQFLAG_MAX;
if (function == 5) mqflags |= SR_MQFLAG_DIODE | SR_MQFLAG_DC;
g_free(mstr);
mq = mqs[function];
unit = units[function];
if (alternate_unit) {
if (mq == SR_MQ_RESISTANCE)
mq = SR_MQ_CONTINUITY;
if (unit == SR_UNIT_DECIBEL_MW)
unit = SR_UNIT_DECIBEL_VOLT;
if (unit == SR_UNIT_CELSIUS) {
unit = SR_UNIT_FAHRENHEIT;
if (devc->profile->model == KEYSIGHT_U1281 ||
devc->profile->model == KEYSIGHT_U1282)
exponent--;
}
}
if (overload)
fvalue = NAN;
else
fvalue = negative * value * powf(10, exponent);
sr_analog_init(&analog, &encoding, &meaning, &spec, -exponent);
analog.meaning->mq = mq;
analog.meaning->unit = unit;
analog.meaning->mqflags = mqflags;
analog.meaning->channels = g_slist_append(NULL, devc->cur_channel);
analog.num_samples = 1;
analog.data = &fvalue;
packet.type = SR_DF_ANALOG;
packet.payload = &analog;
sr_session_send(sdi, &packet);
g_slist_free(analog.meaning->channels);
sr_sw_limits_update_samples_read(&devc->limits, 1);
devc->cur_sample++;
return JOB_LOG;
}
static int recv_log_u124xc(const struct sr_dev_inst *sdi, GMatchInfo *match)
{
static const int mqs[] = { SR_MQ_VOLTAGE, SR_MQ_VOLTAGE, SR_MQ_CURRENT, SR_MQ_CURRENT, SR_MQ_RESISTANCE, SR_MQ_VOLTAGE, SR_MQ_TEMPERATURE, SR_MQ_CAPACITANCE, SR_MQ_FREQUENCY, SR_MQ_HARMONIC_RATIO, SR_MQ_CURRENT };
static const int units[] = { SR_UNIT_VOLT, SR_UNIT_VOLT, SR_UNIT_AMPERE, SR_UNIT_AMPERE, SR_UNIT_OHM, SR_UNIT_VOLT, SR_UNIT_CELSIUS, SR_UNIT_FARAD, SR_UNIT_HERTZ, SR_UNIT_PERCENTAGE, SR_UNIT_PERCENTAGE };
static const int exponents[] = { -5, -4, -7, -3, -2, -3, -1, -10, -2, -2, -2 };
return recv_log(sdi, match, mqs, units, exponents, ARRAY_SIZE(mqs));
}
static int recv_log_u128x(const struct sr_dev_inst *sdi, GMatchInfo *match)
{
static const int mqs[] = { SR_MQ_VOLTAGE, SR_MQ_VOLTAGE, SR_MQ_CURRENT, SR_MQ_CURRENT, SR_MQ_RESISTANCE, SR_MQ_VOLTAGE, SR_MQ_TEMPERATURE, SR_MQ_CAPACITANCE, SR_MQ_FREQUENCY, SR_MQ_DUTY_CYCLE, SR_MQ_PULSE_WIDTH, SR_MQ_VOLTAGE, SR_MQ_CURRENT, SR_MQ_CONDUCTANCE };
static const int units[] = { SR_UNIT_VOLT, SR_UNIT_VOLT, SR_UNIT_AMPERE, SR_UNIT_AMPERE, SR_UNIT_OHM, SR_UNIT_VOLT, SR_UNIT_CELSIUS, SR_UNIT_FARAD, SR_UNIT_HERTZ, SR_UNIT_PERCENTAGE, SR_UNIT_SECOND, SR_UNIT_DECIBEL_MW, SR_UNIT_PERCENTAGE, SR_UNIT_SIEMENS };
static const int exponents[] = { -6, -4, -9, -4, -3, -4, -1, -12, -3, -3, -6, -3, -2, -11 };
return recv_log(sdi, match, mqs, units, exponents, ARRAY_SIZE(mqs));
}
/* This comes in whenever the rotary switch is changed to a new position.
* We could use it to determine the major measurement mode, but we already
* have the output of CONF? for that, which is more detailed. However
* we do need to catch this here, or it'll show up in some other output. */
static int recv_switch(const struct sr_dev_inst *sdi, GMatchInfo *match)
{
struct dev_context *devc = sdi->priv;
sr_spew("Switch '%s'.", g_match_info_get_string(match));
devc->current_job = 0;
devc->job_running = FALSE;
memset(devc->jobs_start, 0, sizeof(devc->jobs_start));
devc->cur_mq[0] = -1;
if (devc->profile->nb_channels > 2)
devc->cur_mq[1] = -1;
return SR_OK;
}
static int recv_err(const struct sr_dev_inst *sdi, GMatchInfo *match)
{
struct dev_context *devc = sdi->priv;
(void) match;
if (devc->data_source != DATA_SOURCE_LIVE)
return JOB_STOP; /* In log mode, stop acquisition after receiving *E. */
else
return JOB_AGAIN;
}
/* Poll CONF/STAT at 1Hz and values at samplerate. */
SR_PRIV const struct agdmm_job agdmm_jobs_live[] = {
{ JOB_FETC, SAMPLERATE_INTERVAL, send_fetc },
{ JOB_CONF, 1000, send_conf },
{ JOB_STAT, 1000, send_stat },
ALL_ZERO
};
/* Poll LOG as fast as possible. */
SR_PRIV const struct agdmm_job agdmm_jobs_log[] = {
{ JOB_LOG, 0, send_log },
ALL_ZERO
};
SR_PRIV const struct agdmm_recv agdmm_recvs_u123x[] = {
{ "^\"(\\d\\d.{18}\\d)\"$", recv_stat_u123x },
{ "^\\*([0-9])$", recv_switch },
{ "^([-+][0-9]\\.[0-9]{8}E[-+][0-9]{2})$", recv_fetc },
{ "^\"(V|MV|A|UA|FREQ),(\\d),(AC|DC)\"$", recv_conf_u123x },
{ "^\"(RES|CAP),(\\d)\"$", recv_conf_u123x},
{ "^\"(DIOD)\"$", recv_conf_u123x },
ALL_ZERO
};
SR_PRIV const struct agdmm_recv agdmm_recvs_u124x[] = {
{ "^\"(\\d\\d.{18}\\d)\"$", recv_stat_u124x },
{ "^\\*([0-9])$", recv_switch },
{ "^([-+][0-9]\\.[0-9]{8}E[-+][0-9]{2})$", recv_fetc },
{ "^\"(VOLT|CURR|RES|CAP|FREQ) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x },
{ "^\"(VOLT:[ACD]+) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x },
{ "^\"(CURR:[ACD]+) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x },
{ "^\"(CPER:[40]-20mA) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x },
{ "^\"(T[0-9]:[A-Z]+) ([A-Z]+)\"$", recv_conf_u124x_5x },
{ "^\"(DIOD)\"$", recv_conf_u124x_5x },
ALL_ZERO
};
SR_PRIV const struct agdmm_recv agdmm_recvs_u124xc[] = {
{ "^\"(\\d\\d.{18}\\d)\"$", recv_stat_u124xc },
{ "^\\*([0-9])$", recv_switch },
{ "^([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))$", recv_fetc },
{ "^\"(VOLT|VOLT:AC|VOLT:HRAT|CURR|CURR:AC|RES|CONT|CAP|FREQ|FREQ:AC) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x },
{ "^\"(CPER:[40]-20mA) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x },
{ "^\"(TEMP:[A-Z]+) ([A-Z]+)\"$", recv_conf_u124x_5x },
{ "^\"(NCV) (HI|LO)\"$", recv_conf_u124x_5x },
{ "^\"(DIOD|TEMP)\"$", recv_conf_u124x_5x },
{ "^\"((\\d{2})(\\d{5})\\d{7})\"$", recv_log_u124xc },
{ "^\\*E$", recv_err },
ALL_ZERO
};
SR_PRIV const struct agdmm_recv agdmm_recvs_u125x[] = {
{ "^\"(\\d\\d.{18}\\d)\"$", recv_stat_u125x },
{ "^\\*([0-9])$", recv_switch },
{ "^([-+][0-9]\\.[0-9]{8}E[-+][0-9]{2})$", recv_fetc },
{ "^\"(VOLT|CURR|RES|CAP|FREQ) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x },
{ "^\"(VOLT:[ACD]+) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x },
{ "^\"(CURR:[ACD]+) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x },
{ "^\"(CPER:[40]-20mA) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x },
{ "^\"(T[0-9]:[A-Z]+) ([A-Z]+)\"$", recv_conf_u124x_5x },
{ "^\"(DIOD)\"$", recv_conf_u124x_5x },
ALL_ZERO
};
SR_PRIV const struct agdmm_recv agdmm_recvs_u128x[] = {
{ "^\"(\\d\\d.{18}\\d)\"$", recv_stat_u128x },
{ "^\\*([0-9])$", recv_switch },
{ "^([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))$", recv_fetc },
{ "^\"(VOLT|CURR|RES|CONT|COND|CAP|FREQ|FC1|FC100) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x },
{ "^\"(VOLT:[ACD]+) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x },
{ "^\"(CURR:[ACD]+) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x },
{ "^\"(FREQ:[ACD]+) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x },
{ "^\"(CPER:[40]-20mA) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x },
{ "^\"(PULS:PWID|PULS:PWID:[ACD]+) ([-+][0-9\\.E\\-+]+),([-+][0-9]\\.[0-9]{8}E([-+][0-9]{2}))\"$", recv_conf_u124x_5x },
{ "^\"(TEMP:[A-Z]+) ([A-Z]+)\"$", recv_conf_u124x_5x },
{ "^\"(NCV) (HIGH|LOW)\"$", recv_conf_u124x_5x },
{ "^\"(DIOD|SQU|PULS:PDUT|TEMP)\"$", recv_conf_u124x_5x },
{ "^\"((\\d{2})(\\d{5})\\d{7})\"$", recv_log_u128x },
{ "^\\*E$", recv_err },
ALL_ZERO
};