libsigrok/src/libsigrok-internal.h

2198 lines
70 KiB
C

/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2013 Bert Vermeulen <bert@biot.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef LIBSIGROK_LIBSIGROK_INTERNAL_H
#define LIBSIGROK_LIBSIGROK_INTERNAL_H
#include "config.h"
#include <glib.h>
#ifdef HAVE_LIBHIDAPI
#include <hidapi.h>
#endif
#ifdef HAVE_LIBSERIALPORT
#include <libserialport.h>
#endif
#ifdef HAVE_LIBUSB_1_0
#include <libusb.h>
#endif
#include <stdarg.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
struct zip;
struct zip_stat;
/**
* @file
*
* libsigrok private header file, only to be used internally.
*/
/*--- Macros ----------------------------------------------------------------*/
#ifndef ARRAY_SIZE
#define ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0]))
#endif
#ifndef ARRAY_AND_SIZE
#define ARRAY_AND_SIZE(a) (a), ARRAY_SIZE(a)
#endif
#ifndef G_SOURCE_FUNC
#define G_SOURCE_FUNC(f) ((GSourceFunc) (void (*)(void)) (f)) /* Since 2.58. */
#endif
#define SR_RECEIVE_DATA_CALLBACK(f) \
((sr_receive_data_callback) (void (*)(void)) (f))
/**
* Read a 8 bits unsigned integer out of memory.
* @param x a pointer to the input memory
* @return the corresponding unsigned integer
*/
static inline uint8_t read_u8(const uint8_t *p)
{
return p[0];
}
#define R8(x) read_u8((const uint8_t *)(x))
/**
* Read a 16 bits big endian unsigned integer out of memory.
* @param x a pointer to the input memory
* @return the corresponding unsigned integer
*/
static inline uint16_t read_u16be(const uint8_t *p)
{
uint16_t u;
u = 0;
u <<= 8; u |= p[0];
u <<= 8; u |= p[1];
return u;
}
#define RB16(x) read_u16be((const uint8_t *)(x))
/**
* Read a 16 bits little endian unsigned integer out of memory.
* @param x a pointer to the input memory
* @return the corresponding unsigned integer
*/
static inline uint16_t read_u16le(const uint8_t *p)
{
uint16_t u;
u = 0;
u <<= 8; u |= p[1];
u <<= 8; u |= p[0];
return u;
}
#define RL16(x) read_u16le((const uint8_t *)(x))
/**
* Read a 16 bits big endian signed integer out of memory.
* @param x a pointer to the input memory
* @return the corresponding signed integer
*/
static inline int16_t read_i16be(const uint8_t *p)
{
uint16_t u;
int16_t i;
u = read_u16be(p);
i = (int16_t)u;
return i;
}
#define RB16S(x) read_i16be((const uint8_t *)(x))
/**
* Read a 16 bits little endian signed integer out of memory.
* @param x a pointer to the input memory
* @return the corresponding signed integer
*/
static inline int16_t read_i16le(const uint8_t *p)
{
uint16_t u;
int16_t i;
u = read_u16le(p);
i = (int16_t)u;
return i;
}
#define RL16S(x) read_i16le((const uint8_t *)(x))
/**
* Read a 24 bits little endian unsigned integer out of memory.
* @param x a pointer to the input memory
* @return the corresponding unsigned integer
*/
static inline uint32_t read_u24le(const uint8_t *p)
{
uint32_t u;
u = 0;
u <<= 8; u |= p[2];
u <<= 8; u |= p[1];
u <<= 8; u |= p[0];
return u;
}
/**
* Read a 32 bits big endian unsigned integer out of memory.
* @param x a pointer to the input memory
* @return the corresponding unsigned integer
*/
static inline uint32_t read_u32be(const uint8_t *p)
{
uint32_t u;
u = 0;
u <<= 8; u |= p[0];
u <<= 8; u |= p[1];
u <<= 8; u |= p[2];
u <<= 8; u |= p[3];
return u;
}
#define RB32(x) read_u32be((const uint8_t *)(x))
/**
* Read a 32 bits little endian unsigned integer out of memory.
* @param x a pointer to the input memory
* @return the corresponding unsigned integer
*/
static inline uint32_t read_u32le(const uint8_t *p)
{
uint32_t u;
u = 0;
u <<= 8; u |= p[3];
u <<= 8; u |= p[2];
u <<= 8; u |= p[1];
u <<= 8; u |= p[0];
return u;
}
#define RL32(x) read_u32le((const uint8_t *)(x))
/**
* Read a 32 bits big endian signed integer out of memory.
* @param x a pointer to the input memory
* @return the corresponding signed integer
*/
static inline int32_t read_i32be(const uint8_t *p)
{
uint32_t u;
int32_t i;
u = read_u32be(p);
i = (int32_t)u;
return i;
}
#define RB32S(x) read_i32be((const uint8_t *)(x))
/**
* Read a 32 bits little endian signed integer out of memory.
* @param x a pointer to the input memory
* @return the corresponding signed integer
*/
static inline int32_t read_i32le(const uint8_t *p)
{
uint32_t u;
int32_t i;
u = read_u32le(p);
i = (int32_t)u;
return i;
}
#define RL32S(x) read_i32le((const uint8_t *)(x))
/**
* Read a 64 bits big endian unsigned integer out of memory.
* @param x a pointer to the input memory
* @return the corresponding unsigned integer
*/
static inline uint64_t read_u64be(const uint8_t *p)
{
uint64_t u;
u = 0;
u <<= 8; u |= p[0];
u <<= 8; u |= p[1];
u <<= 8; u |= p[2];
u <<= 8; u |= p[3];
u <<= 8; u |= p[4];
u <<= 8; u |= p[5];
u <<= 8; u |= p[6];
u <<= 8; u |= p[7];
return u;
}
#define RB64(x) read_u64be((const uint8_t *)(x))
/**
* Read a 64 bits little endian unsigned integer out of memory.
* @param x a pointer to the input memory
* @return the corresponding unsigned integer
*/
static inline uint64_t read_u64le(const uint8_t *p)
{
uint64_t u;
u = 0;
u <<= 8; u |= p[7];
u <<= 8; u |= p[6];
u <<= 8; u |= p[5];
u <<= 8; u |= p[4];
u <<= 8; u |= p[3];
u <<= 8; u |= p[2];
u <<= 8; u |= p[1];
u <<= 8; u |= p[0];
return u;
}
#define RL64(x) read_u64le((const uint8_t *)(x))
/**
* Read a 64 bits big endian signed integer out of memory.
* @param x a pointer to the input memory
* @return the corresponding unsigned integer
*/
static inline int64_t read_i64be(const uint8_t *p)
{
uint64_t u;
int64_t i;
u = read_u64be(p);
i = (int64_t)u;
return i;
}
#define RB64S(x) read_i64be((const uint8_t *)(x))
/**
* Read a 64 bits little endian signed integer out of memory.
* @param x a pointer to the input memory
* @return the corresponding unsigned integer
*/
static inline int64_t read_i64le(const uint8_t *p)
{
uint64_t u;
int64_t i;
u = read_u64le(p);
i = (int64_t)u;
return i;
}
#define RL64S(x) read_i64le((const uint8_t *)(x))
/**
* Read a 32 bits big endian float out of memory.
* @param x a pointer to the input memory
* @return the corresponding float
*/
static inline float read_fltbe(const uint8_t *p)
{
/*
* Implementor's note: Strictly speaking the "union" trick
* is not portable. But this phrase was found to work on the
* project's supported platforms, and serve well until a more
* appropriate phrase is found.
*/
union { uint32_t u32; float flt; } u;
float f;
u.u32 = read_u32be(p);
f = u.flt;
return f;
}
#define RBFL(x) read_fltbe((const uint8_t *)(x))
/**
* Read a 32 bits little endian float out of memory.
* @param x a pointer to the input memory
* @return the corresponding float
*/
static inline float read_fltle(const uint8_t *p)
{
/*
* Implementor's note: Strictly speaking the "union" trick
* is not portable. But this phrase was found to work on the
* project's supported platforms, and serve well until a more
* appropriate phrase is found.
*/
union { uint32_t u32; float flt; } u;
float f;
u.u32 = read_u32le(p);
f = u.flt;
return f;
}
#define RLFL(x) read_fltle((const uint8_t *)(x))
/**
* Write a 8 bits unsigned integer to memory.
* @param p a pointer to the output memory
* @param x the input unsigned integer
*/
static inline void write_u8(uint8_t *p, uint8_t x)
{
p[0] = x;
}
#define W8(p, x) write_u8((uint8_t *)(p), (uint8_t)(x))
/**
* Write a 16 bits unsigned integer to memory stored as big endian.
* @param p a pointer to the output memory
* @param x the input unsigned integer
*/
static inline void write_u16be(uint8_t *p, uint16_t x)
{
p[1] = x & 0xff; x >>= 8;
p[0] = x & 0xff; x >>= 8;
}
#define WB16(p, x) write_u16be((uint8_t *)(p), (uint16_t)(x))
/**
* Write a 16 bits unsigned integer to memory stored as little endian.
* @param p a pointer to the output memory
* @param x the input unsigned integer
*/
static inline void write_u16le(uint8_t *p, uint16_t x)
{
p[0] = x & 0xff; x >>= 8;
p[1] = x & 0xff; x >>= 8;
}
#define WL16(p, x) write_u16le((uint8_t *)(p), (uint16_t)(x))
/**
* Write a 32 bits unsigned integer to memory stored as big endian.
* @param p a pointer to the output memory
* @param x the input unsigned integer
*/
static inline void write_u32be(uint8_t *p, uint32_t x)
{
p[3] = x & 0xff; x >>= 8;
p[2] = x & 0xff; x >>= 8;
p[1] = x & 0xff; x >>= 8;
p[0] = x & 0xff; x >>= 8;
}
#define WB32(p, x) write_u32be((uint8_t *)(p), (uint32_t)(x))
/**
* Write a 32 bits unsigned integer to memory stored as little endian.
* @param p a pointer to the output memory
* @param x the input unsigned integer
*/
static inline void write_u32le(uint8_t *p, uint32_t x)
{
p[0] = x & 0xff; x >>= 8;
p[1] = x & 0xff; x >>= 8;
p[2] = x & 0xff; x >>= 8;
p[3] = x & 0xff; x >>= 8;
}
#define WL32(p, x) write_u32le((uint8_t *)(p), (uint32_t)(x))
/**
* Write a 32 bits float to memory stored as big endian.
* @param p a pointer to the output memory
* @param x the input float
*/
static inline void write_fltbe(uint8_t *p, float x)
{
union { uint32_t u; float f; } u;
u.f = x;
write_u32be(p, u.u);
}
#define WBFL(p, x) write_fltbe((uint8_t *)(p), (x))
/**
* Write a 32 bits float to memory stored as little endian.
* @param p a pointer to the output memory
* @param x the input float
*/
static inline void write_fltle(uint8_t *p, float x)
{
union { uint32_t u; float f; } u;
u.f = x;
write_u32le(p, u.u);
}
#define WLFL(p, x) write_fltle((uint8_t *)(p), float (x))
/* Endianess conversion helpers with read/write position increment. */
/**
* Read unsigned 8bit integer from raw memory, increment read position.
* @param[in, out] p Pointer into byte stream.
* @return Retrieved integer value, unsigned.
*/
static inline uint8_t read_u8_inc(const uint8_t **p)
{
uint8_t v;
if (!p || !*p)
return 0;
v = read_u8(*p);
*p += sizeof(v);
return v;
}
/**
* Read unsigned 16bit integer from raw memory (big endian format), increment read position.
* @param[in, out] p Pointer into byte stream.
* @return Retrieved integer value, unsigned.
*/
static inline uint16_t read_u16be_inc(const uint8_t **p)
{
uint16_t v;
if (!p || !*p)
return 0;
v = read_u16be(*p);
*p += sizeof(v);
return v;
}
/**
* Read unsigned 16bit integer from raw memory (little endian format), increment read position.
* @param[in, out] p Pointer into byte stream.
* @return Retrieved integer value, unsigned.
*/
static inline uint16_t read_u16le_inc(const uint8_t **p)
{
uint16_t v;
if (!p || !*p)
return 0;
v = read_u16le(*p);
*p += sizeof(v);
return v;
}
/**
* Read unsigned 32bit integer from raw memory (big endian format), increment read position.
* @param[in, out] p Pointer into byte stream.
* @return Retrieved integer value, unsigned.
*/
static inline uint32_t read_u32be_inc(const uint8_t **p)
{
uint32_t v;
if (!p || !*p)
return 0;
v = read_u32be(*p);
*p += sizeof(v);
return v;
}
/**
* Read unsigned 24bit integer from raw memory (little endian format), increment read position.
* @param[in, out] p Pointer into byte stream.
* @return Retrieved integer value, unsigned.
*/
static inline uint32_t read_u24le_inc(const uint8_t **p)
{
uint32_t v;
if (!p || !*p)
return 0;
v = read_u24le(*p);
*p += 3 * sizeof(uint8_t);
return v;
}
/**
* Read unsigned 32bit integer from raw memory (little endian format), increment read position.
* @param[in, out] p Pointer into byte stream.
* @return Retrieved integer value, unsigned.
*/
static inline uint32_t read_u32le_inc(const uint8_t **p)
{
uint32_t v;
if (!p || !*p)
return 0;
v = read_u32le(*p);
*p += sizeof(v);
return v;
}
/**
* Read unsigned 64bit integer from raw memory (big endian format), increment read position.
* @param[in, out] p Pointer into byte stream.
* @return Retrieved integer value, unsigned.
*/
static inline uint64_t read_u64be_inc(const uint8_t **p)
{
uint64_t v;
if (!p || !*p)
return 0;
v = read_u64be(*p);
*p += sizeof(v);
return v;
}
/**
* Read unsigned 64bit integer from raw memory (little endian format), increment read position.
* @param[in, out] p Pointer into byte stream.
* @return Retrieved integer value, unsigned.
*/
static inline uint64_t read_u64le_inc(const uint8_t **p)
{
uint64_t v;
if (!p || !*p)
return 0;
v = read_u64le(*p);
*p += sizeof(v);
return v;
}
/**
* Write unsigned 8bit integer to raw memory, increment write position.
* @param[in, out] p Pointer into byte stream.
* @param[in] x Value to write.
*/
static inline void write_u8_inc(uint8_t **p, uint8_t x)
{
if (!p || !*p)
return;
write_u8(*p, x);
*p += sizeof(x);
}
/**
* Write unsigned 16bit big endian integer to raw memory, increment write position.
* @param[in, out] p Pointer into byte stream.
* @param[in] x Value to write.
*/
static inline void write_u16be_inc(uint8_t **p, uint16_t x)
{
if (!p || !*p)
return;
write_u16be(*p, x);
*p += sizeof(x);
}
/**
* Write unsigned 16bit little endian integer to raw memory, increment write position.
* @param[in, out] p Pointer into byte stream.
* @param[in] x Value to write.
*/
static inline void write_u16le_inc(uint8_t **p, uint16_t x)
{
if (!p || !*p)
return;
write_u16le(*p, x);
*p += sizeof(x);
}
/**
* Write unsigned 32bit big endian integer to raw memory, increment write position.
* @param[in, out] p Pointer into byte stream.
* @param[in] x Value to write.
*/
static inline void write_u32be_inc(uint8_t **p, uint32_t x)
{
if (!p || !*p)
return;
write_u32be(*p, x);
*p += sizeof(x);
}
/**
* Write unsigned 32bit little endian integer to raw memory, increment write position.
* @param[in, out] p Pointer into byte stream.
* @param[in] x Value to write.
*/
static inline void write_u32le_inc(uint8_t **p, uint32_t x)
{
if (!p || !*p)
return;
write_u32le(*p, x);
*p += sizeof(x);
}
/* Portability fixes for FreeBSD. */
#ifdef __FreeBSD__
#define LIBUSB_CLASS_APPLICATION 0xfe
#define libusb_has_capability(x) 0
#define libusb_handle_events_timeout_completed(ctx, tv, c) \
libusb_handle_events_timeout(ctx, tv)
#endif
/* Static definitions of structs ending with an all-zero entry are a
* problem when compiling with -Wmissing-field-initializers: GCC
* suppresses the warning only with { 0 }, clang wants { } */
#ifdef __clang__
#define ALL_ZERO { }
#else
#define ALL_ZERO { 0 }
#endif
#ifdef __APPLE__
#define SR_DRIVER_LIST_SECTION "__DATA,__sr_driver_list"
#else
#define SR_DRIVER_LIST_SECTION "__sr_driver_list"
#endif
/**
* Register a list of hardware drivers.
*
* This macro can be used to register multiple hardware drivers to the library.
* This is useful when a driver supports multiple similar but slightly
* different devices that require different sr_dev_driver struct definitions.
*
* For registering only a single driver see SR_REGISTER_DEV_DRIVER().
*
* Example:
* @code{c}
* #define MY_DRIVER(_name) \
* &(struct sr_dev_driver){ \
* .name = _name, \
* ...
* };
*
* SR_REGISTER_DEV_DRIVER_LIST(my_driver_infos,
* MY_DRIVER("driver 1"),
* MY_DRIVER("driver 2"),
* ...
* );
* @endcode
*
* @param name Name to use for the driver list identifier.
* @param ... Comma separated list of pointers to sr_dev_driver structs.
*/
#define SR_REGISTER_DEV_DRIVER_LIST(name, ...) \
static const struct sr_dev_driver *name[] \
__attribute__((section (SR_DRIVER_LIST_SECTION), used, \
aligned(sizeof(struct sr_dev_driver *)))) \
= { \
__VA_ARGS__ \
};
/**
* Register a hardware driver.
*
* This macro is used to register a hardware driver with the library. It has
* to be used in order to make the driver accessible to applications using the
* library.
*
* The macro invocation should be placed directly under the struct
* sr_dev_driver definition.
*
* Example:
* @code{c}
* static struct sr_dev_driver driver_info = {
* .name = "driver",
* ....
* };
* SR_REGISTER_DEV_DRIVER(driver_info);
* @endcode
*
* @param name Identifier name of sr_dev_driver struct to register.
*/
#define SR_REGISTER_DEV_DRIVER(name) \
SR_REGISTER_DEV_DRIVER_LIST(name##_list, &name);
SR_API void sr_drivers_init(struct sr_context *context);
struct sr_context {
struct sr_dev_driver **driver_list;
#ifdef HAVE_LIBUSB_1_0
libusb_context *libusb_ctx;
#endif
sr_resource_open_callback resource_open_cb;
sr_resource_close_callback resource_close_cb;
sr_resource_read_callback resource_read_cb;
void *resource_cb_data;
};
/** Input module metadata keys. */
enum sr_input_meta_keys {
/** The input filename, if there is one. */
SR_INPUT_META_FILENAME = 0x01,
/** The input file's size in bytes. */
SR_INPUT_META_FILESIZE = 0x02,
/** The first 128 bytes of the file, provided as a GString. */
SR_INPUT_META_HEADER = 0x04,
/** The module cannot identify a file without this metadata. */
SR_INPUT_META_REQUIRED = 0x80,
};
/** Input (file) module struct. */
struct sr_input {
/**
* A pointer to this input module's 'struct sr_input_module'.
*/
const struct sr_input_module *module;
GString *buf;
struct sr_dev_inst *sdi;
gboolean sdi_ready;
void *priv;
};
/** Input (file) module driver. */
struct sr_input_module {
/**
* A unique ID for this input module, suitable for use in command-line
* clients, [a-z0-9-]. Must not be NULL.
*/
const char *id;
/**
* A unique name for this input module, suitable for use in GUI
* clients, can contain UTF-8. Must not be NULL.
*/
const char *name;
/**
* A short description of the input module. Must not be NULL.
*
* This can be displayed by frontends, e.g. when selecting the input
* module for saving a file.
*/
const char *desc;
/**
* A NULL terminated array of strings containing a list of file name
* extensions typical for the input file format, or NULL if there is
* no typical extension for this file format.
*/
const char *const *exts;
/**
* Zero-terminated list of metadata items the module needs to be able
* to identify an input stream. Can be all-zero, if the module cannot
* identify streams at all, i.e. has to be forced into use.
*
* Each item is one of:
* SR_INPUT_META_FILENAME
* SR_INPUT_META_FILESIZE
* SR_INPUT_META_HEADER
*
* If the high bit (SR_INPUT META_REQUIRED) is set, the module cannot
* identify a stream without the given metadata.
*/
const uint8_t metadata[8];
/**
* Returns a NULL-terminated list of options this module can take.
* Can be NULL, if the module has no options.
*/
const struct sr_option *(*options) (void);
/**
* Check if this input module can load and parse the specified stream.
*
* @param[in] metadata Metadata the module can use to identify the stream.
* @param[out] confidence "Strength" of the detection.
* Specialized handlers can take precedence over generic/basic support.
*
* @retval SR_OK This module knows the format.
* @retval SR_ERR_NA There wasn't enough data for this module to
* positively identify the format.
* @retval SR_ERR_DATA This module knows the format, but cannot handle
* it. This means the stream is either corrupt, or indicates a
* feature that the module does not support.
* @retval SR_ERR This module does not know the format.
*
* Lower numeric values of 'confidence' mean that the input module
* stronger believes in its capability to handle this specific format.
* This way, multiple input modules can claim support for a format,
* and the application can pick the best match, or try fallbacks
* in case of errors. This approach also copes with formats that
* are unreliable to detect in the absence of magic signatures.
*/
int (*format_match) (GHashTable *metadata, unsigned int *confidence);
/**
* Initialize the input module.
*
* @retval SR_OK Success
* @retval other Negative error code.
*/
int (*init) (struct sr_input *in, GHashTable *options);
/**
* Send data to the specified input instance.
*
* When an input module instance is created with sr_input_new(), this
* function is used to feed data to the instance.
*
* As enough data gets fed into this function to completely populate
* the device instance associated with this input instance, this is
* guaranteed to return the moment it's ready. This gives the caller
* the chance to examine the device instance, attach session callbacks
* and so on.
*
* @retval SR_OK Success
* @retval other Negative error code.
*/
int (*receive) (struct sr_input *in, GString *buf);
/**
* Signal the input module no more data will come.
*
* This will cause the module to process any data it may have buffered.
* The SR_DF_END packet will also typically be sent at this time.
*/
int (*end) (struct sr_input *in);
/**
* Reset the input module's input handling structures.
*
* Causes the input module to reset its internal state so that we can
* re-send the input data from the beginning without having to
* re-create the entire input module.
*
* @retval SR_OK Success.
* @retval other Negative error code.
*/
int (*reset) (struct sr_input *in);
/**
* This function is called after the caller is finished using
* the input module, and can be used to free any internal
* resources the module may keep.
*
* This function is optional.
*
* @retval SR_OK Success
* @retval other Negative error code.
*/
void (*cleanup) (struct sr_input *in);
};
/** Output module instance. */
struct sr_output {
/** A pointer to this output's module. */
const struct sr_output_module *module;
/**
* The device for which this output module is creating output. This
* can be used by the module to find out channel names and numbers.
*/
const struct sr_dev_inst *sdi;
/**
* The name of the file that the data should be written to.
*/
const char *filename;
/**
* A generic pointer which can be used by the module to keep internal
* state between calls into its callback functions.
*
* For example, the module might store a pointer to a chunk of output
* there, and only flush it when it reaches a certain size.
*/
void *priv;
};
/** Output module driver. */
struct sr_output_module {
/**
* A unique ID for this output module, suitable for use in command-line
* clients, [a-z0-9-]. Must not be NULL.
*/
const char *id;
/**
* A unique name for this output module, suitable for use in GUI
* clients, can contain UTF-8. Must not be NULL.
*/
const char *name;
/**
* A short description of the output module. Must not be NULL.
*
* This can be displayed by frontends, e.g. when selecting the output
* module for saving a file.
*/
const char *desc;
/**
* A NULL terminated array of strings containing a list of file name
* extensions typical for the input file format, or NULL if there is
* no typical extension for this file format.
*/
const char *const *exts;
/**
* Bitfield containing flags that describe certain properties
* this output module may or may not have.
* @see sr_output_flags
*/
const uint64_t flags;
/**
* Returns a NULL-terminated list of options this module can take.
* Can be NULL, if the module has no options.
*/
const struct sr_option *(*options) (void);
/**
* This function is called once, at the beginning of an output stream.
*
* The device struct will be available in the output struct passed in,
* as well as the param field -- which may be NULL or an empty string,
* if no parameter was passed.
*
* The module can use this to initialize itself, create a struct for
* keeping state and storing it in the <code>internal</code> field.
*
* @param o Pointer to the respective 'struct sr_output'.
*
* @retval SR_OK Success
* @retval other Negative error code.
*/
int (*init) (struct sr_output *o, GHashTable *options);
/**
* This function is passed a copy of every packet in the data feed.
* Any output generated by the output module in response to the
* packet should be returned in a newly allocated GString
* <code>out</code>, which will be freed by the caller.
*
* Packets not of interest to the output module can just be ignored,
* and the <code>out</code> parameter set to NULL.
*
* @param o Pointer to the respective 'struct sr_output'.
* @param sdi The device instance that generated the packet.
* @param packet The complete packet.
* @param out A pointer where a GString * should be stored if
* the module generates output, or NULL if not.
*
* @retval SR_OK Success
* @retval other Negative error code.
*/
int (*receive) (const struct sr_output *o,
const struct sr_datafeed_packet *packet, GString **out);
/**
* This function is called after the caller is finished using
* the output module, and can be used to free any internal
* resources the module may keep.
*
* @retval SR_OK Success
* @retval other Negative error code.
*/
int (*cleanup) (struct sr_output *o);
};
/** Transform module instance. */
struct sr_transform {
/** A pointer to this transform's module. */
const struct sr_transform_module *module;
/**
* The device for which this transform module is used. This
* can be used by the module to find out channel names and numbers.
*/
const struct sr_dev_inst *sdi;
/**
* A generic pointer which can be used by the module to keep internal
* state between calls into its callback functions.
*/
void *priv;
};
struct sr_transform_module {
/**
* A unique ID for this transform module, suitable for use in
* command-line clients, [a-z0-9-]. Must not be NULL.
*/
const char *id;
/**
* A unique name for this transform module, suitable for use in GUI
* clients, can contain UTF-8. Must not be NULL.
*/
const char *name;
/**
* A short description of the transform module. Must not be NULL.
*
* This can be displayed by frontends, e.g. when selecting
* which transform module(s) to add.
*/
const char *desc;
/**
* Returns a NULL-terminated list of options this transform module
* can take. Can be NULL, if the transform module has no options.
*/
const struct sr_option *(*options) (void);
/**
* This function is called once, at the beginning of a stream.
*
* @param t Pointer to the respective 'struct sr_transform'.
* @param options Hash table of options for this transform module.
* Can be NULL if no options are to be used.
*
* @retval SR_OK Success
* @retval other Negative error code.
*/
int (*init) (struct sr_transform *t, GHashTable *options);
/**
* This function is passed a pointer to every packet in the data feed.
*
* It can either return (in packet_out) a pointer to another packet
* (possibly the exact same packet it got as input), or NULL.
*
* @param t Pointer to the respective 'struct sr_transform'.
* @param packet_in Pointer to a datafeed packet.
* @param packet_out Pointer to the resulting datafeed packet after
* this function was run. If NULL, the transform
* module intentionally didn't output a new packet.
*
* @retval SR_OK Success
* @retval other Negative error code.
*/
int (*receive) (const struct sr_transform *t,
struct sr_datafeed_packet *packet_in,
struct sr_datafeed_packet **packet_out);
/**
* This function is called after the caller is finished using
* the transform module, and can be used to free any internal
* resources the module may keep.
*
* @retval SR_OK Success
* @retval other Negative error code.
*/
int (*cleanup) (struct sr_transform *t);
};
#ifdef HAVE_LIBUSB_1_0
/** USB device instance */
struct sr_usb_dev_inst {
/** USB bus */
uint8_t bus;
/** Device address on USB bus */
uint8_t address;
/** libusb device handle */
struct libusb_device_handle *devhdl;
};
#endif
struct sr_serial_dev_inst;
#ifdef HAVE_SERIAL_COMM
struct ser_lib_functions;
struct ser_hid_chip_functions;
struct sr_bt_desc;
typedef void (*serial_rx_chunk_callback)(struct sr_serial_dev_inst *serial,
void *cb_data, const void *buf, size_t count);
struct sr_serial_dev_inst {
/** Port name, e.g. '/dev/tty42'. */
char *port;
/** Comm params for serial_set_paramstr(). */
char *serialcomm;
struct ser_lib_functions *lib_funcs;
struct {
int bit_rate;
int data_bits;
int parity_bits;
int stop_bits;
} comm_params;
GString *rcv_buffer;
serial_rx_chunk_callback rx_chunk_cb_func;
void *rx_chunk_cb_data;
#ifdef HAVE_LIBSERIALPORT
/** libserialport port handle */
struct sp_port *sp_data;
#endif
#ifdef HAVE_LIBHIDAPI
enum ser_hid_chip_t {
SER_HID_CHIP_UNKNOWN, /**!< place holder */
SER_HID_CHIP_BTC_BU86X, /**!< Brymen BU86x */
SER_HID_CHIP_SIL_CP2110, /**!< SiLabs CP2110 */
SER_HID_CHIP_VICTOR_DMM, /**!< Victor 70/86 DMM cable */
SER_HID_CHIP_WCH_CH9325, /**!< WCH CH9325 */
SER_HID_CHIP_LAST, /**!< sentinel */
} hid_chip;
struct ser_hid_chip_functions *hid_chip_funcs;
char *usb_path;
char *usb_serno;
const char *hid_path;
hid_device *hid_dev;
GSList *hid_source_args;
#endif
#ifdef HAVE_BLUETOOTH
enum ser_bt_conn_t {
SER_BT_CONN_UNKNOWN, /**!< place holder */
SER_BT_CONN_RFCOMM, /**!< BT classic, RFCOMM channel */
SER_BT_CONN_BLE122, /**!< BLE, BLE122 module, indications */
SER_BT_CONN_NRF51, /**!< BLE, Nordic nRF51, notifications */
SER_BT_CONN_CC254x, /**!< BLE, TI CC254x, notifications */
SER_BT_CONN_MAX, /**!< sentinel */
} bt_conn_type;
char *bt_addr_local;
char *bt_addr_remote;
size_t bt_rfcomm_channel;
uint16_t bt_notify_handle_read;
uint16_t bt_notify_handle_write;
uint16_t bt_notify_handle_cccd;
uint16_t bt_notify_value_cccd;
struct sr_bt_desc *bt_desc;
GSList *bt_source_args;
#endif
};
#endif
struct sr_usbtmc_dev_inst {
char *device;
int fd;
};
/* Private driver context. */
struct drv_context {
/** sigrok context */
struct sr_context *sr_ctx;
GSList *instances;
};
/*--- log.c -----------------------------------------------------------------*/
#if defined(_WIN32) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 4))
/*
* On MinGW, we need to specify the gnu_printf format flavor or GCC
* will assume non-standard Microsoft printf syntax.
*/
SR_PRIV int sr_log(int loglevel, const char *format, ...)
__attribute__((__format__ (__gnu_printf__, 2, 3)));
#else
SR_PRIV int sr_log(int loglevel, const char *format, ...) G_GNUC_PRINTF(2, 3);
#endif
/* Message logging helpers with subsystem-specific prefix string. */
#define sr_spew(...) sr_log(SR_LOG_SPEW, LOG_PREFIX ": " __VA_ARGS__)
#define sr_dbg(...) sr_log(SR_LOG_DBG, LOG_PREFIX ": " __VA_ARGS__)
#define sr_info(...) sr_log(SR_LOG_INFO, LOG_PREFIX ": " __VA_ARGS__)
#define sr_warn(...) sr_log(SR_LOG_WARN, LOG_PREFIX ": " __VA_ARGS__)
#define sr_err(...) sr_log(SR_LOG_ERR, LOG_PREFIX ": " __VA_ARGS__)
/*--- device.c --------------------------------------------------------------*/
/** Scan options supported by a driver. */
#define SR_CONF_SCAN_OPTIONS 0x7FFF0000
/** Device options for a particular device. */
#define SR_CONF_DEVICE_OPTIONS 0x7FFF0001
/** Mask for separating config keys from capabilities. */
#define SR_CONF_MASK 0x1fffffff
/** Values for the changes argument of sr_dev_driver.config_channel_set. */
enum {
/** The enabled state of the channel has been changed. */
SR_CHANNEL_SET_ENABLED = 1 << 0,
};
SR_PRIV struct sr_channel *sr_channel_new(struct sr_dev_inst *sdi,
int index, int type, gboolean enabled, const char *name);
SR_PRIV void sr_channel_free(struct sr_channel *ch);
SR_PRIV void sr_channel_free_cb(void *p);
SR_PRIV struct sr_channel *sr_next_enabled_channel(const struct sr_dev_inst *sdi,
struct sr_channel *cur_channel);
SR_PRIV gboolean sr_channels_differ(struct sr_channel *ch1, struct sr_channel *ch2);
SR_PRIV gboolean sr_channel_lists_differ(GSList *l1, GSList *l2);
/** Device instance data */
struct sr_dev_inst {
/** Device driver. */
struct sr_dev_driver *driver;
/** Device instance status. SR_ST_NOT_FOUND, etc. */
int status;
/** Device instance type. SR_INST_USB, etc. */
int inst_type;
/** Device vendor. */
char *vendor;
/** Device model. */
char *model;
/** Device version. */
char *version;
/** Serial number. */
char *serial_num;
/** Connection string to uniquely identify devices. */
char *connection_id;
/** List of channels. */
GSList *channels;
/** List of sr_channel_group structs */
GSList *channel_groups;
/** Device instance connection data (used?) */
void *conn;
/** Device instance private data (used?) */
void *priv;
/** Session to which this device is currently assigned. */
struct sr_session *session;
};
/* Generic device instances */
SR_PRIV void sr_dev_inst_free(struct sr_dev_inst *sdi);
#ifdef HAVE_LIBUSB_1_0
/* USB-specific instances */
SR_PRIV struct sr_usb_dev_inst *sr_usb_dev_inst_new(uint8_t bus,
uint8_t address, struct libusb_device_handle *hdl);
SR_PRIV void sr_usb_dev_inst_free(struct sr_usb_dev_inst *usb);
#endif
#ifdef HAVE_SERIAL_COMM
#ifndef HAVE_LIBSERIALPORT
/*
* Some identifiers which initially got provided by libserialport are
* used internally within the libsigrok serial layer's implementation,
* while libserialport no longer is the exclusive provider of serial
* communication support. Declare the identifiers here so they remain
* available across all build configurations.
*/
enum libsp_parity {
SP_PARITY_NONE = 0,
SP_PARITY_ODD = 1,
SP_PARITY_EVEN = 2,
SP_PARITY_MARK = 3,
SP_PARITY_SPACE = 4,
};
enum libsp_flowcontrol {
SP_FLOWCONTROL_NONE = 0,
SP_FLOWCONTROL_XONXOFF = 1,
SP_FLOWCONTROL_RTSCTS = 2,
SP_FLOWCONTROL_DTRDSR = 3,
};
#endif
/* Serial-specific instances */
SR_PRIV struct sr_serial_dev_inst *sr_serial_dev_inst_new(const char *port,
const char *serialcomm);
SR_PRIV void sr_serial_dev_inst_free(struct sr_serial_dev_inst *serial);
#endif
/* USBTMC-specific instances */
SR_PRIV struct sr_usbtmc_dev_inst *sr_usbtmc_dev_inst_new(const char *device);
SR_PRIV void sr_usbtmc_dev_inst_free(struct sr_usbtmc_dev_inst *usbtmc);
/*--- hwdriver.c ------------------------------------------------------------*/
SR_PRIV const GVariantType *sr_variant_type_get(int datatype);
SR_PRIV int sr_variant_type_check(uint32_t key, GVariant *data);
SR_PRIV void sr_hw_cleanup_all(const struct sr_context *ctx);
SR_PRIV struct sr_config *sr_config_new(uint32_t key, GVariant *data);
SR_PRIV void sr_config_free(struct sr_config *src);
SR_PRIV int sr_dev_acquisition_start(struct sr_dev_inst *sdi);
SR_PRIV int sr_dev_acquisition_stop(struct sr_dev_inst *sdi);
/*--- session.c -------------------------------------------------------------*/
struct sr_session {
/** Context this session exists in. */
struct sr_context *ctx;
/** List of struct sr_dev_inst pointers. */
GSList *devs;
/** List of struct sr_dev_inst pointers owned by this session. */
GSList *owned_devs;
/** List of struct datafeed_callback pointers. */
GSList *datafeed_callbacks;
GSList *transforms;
struct sr_trigger *trigger;
/** Callback to invoke on session stop. */
sr_session_stopped_callback stopped_callback;
/** User data to be passed to the session stop callback. */
void *stopped_cb_data;
/** Mutex protecting the main context pointer. */
GMutex main_mutex;
/** Context of the session main loop. */
GMainContext *main_context;
/** Registered event sources for this session. */
GHashTable *event_sources;
/** Session main loop. */
GMainLoop *main_loop;
/** ID of idle source for dispatching the session stop notification. */
unsigned int stop_check_id;
/** Whether the session has been started. */
gboolean running;
};
SR_PRIV int sr_session_source_add_internal(struct sr_session *session,
void *key, GSource *source);
SR_PRIV int sr_session_source_remove_internal(struct sr_session *session,
void *key);
SR_PRIV int sr_session_source_destroyed(struct sr_session *session,
void *key, GSource *source);
SR_PRIV int sr_session_fd_source_add(struct sr_session *session,
void *key, gintptr fd, int events, int timeout,
sr_receive_data_callback cb, void *cb_data);
SR_PRIV int sr_session_source_add(struct sr_session *session, int fd,
int events, int timeout, sr_receive_data_callback cb, void *cb_data);
SR_PRIV int sr_session_source_add_pollfd(struct sr_session *session,
GPollFD *pollfd, int timeout, sr_receive_data_callback cb,
void *cb_data);
SR_PRIV int sr_session_source_add_channel(struct sr_session *session,
GIOChannel *channel, int events, int timeout,
sr_receive_data_callback cb, void *cb_data);
SR_PRIV int sr_session_source_remove(struct sr_session *session, int fd);
SR_PRIV int sr_session_source_remove_pollfd(struct sr_session *session,
GPollFD *pollfd);
SR_PRIV int sr_session_source_remove_channel(struct sr_session *session,
GIOChannel *channel);
SR_PRIV int sr_session_send_meta(const struct sr_dev_inst *sdi,
uint32_t key, GVariant *var);
SR_PRIV int sr_session_send(const struct sr_dev_inst *sdi,
const struct sr_datafeed_packet *packet);
SR_PRIV int sr_sessionfile_check(const char *filename);
SR_PRIV struct sr_dev_inst *sr_session_prepare_sdi(const char *filename,
struct sr_session **session);
/*--- session_file.c --------------------------------------------------------*/
#if !HAVE_ZIP_DISCARD
/* Replace zip_discard() if not available. */
#define zip_discard(zip) sr_zip_discard(zip)
SR_PRIV void sr_zip_discard(struct zip *archive);
#endif
SR_PRIV GKeyFile *sr_sessionfile_read_metadata(struct zip *archive,
const struct zip_stat *entry);
/*--- analog.c --------------------------------------------------------------*/
SR_PRIV int sr_analog_init(struct sr_datafeed_analog *analog,
struct sr_analog_encoding *encoding,
struct sr_analog_meaning *meaning,
struct sr_analog_spec *spec,
int digits);
/*--- std.c -----------------------------------------------------------------*/
typedef int (*dev_close_callback)(struct sr_dev_inst *sdi);
typedef void (*std_dev_clear_callback)(void *priv);
SR_PRIV int std_init(struct sr_dev_driver *di, struct sr_context *sr_ctx);
SR_PRIV int std_cleanup(const struct sr_dev_driver *di);
SR_PRIV int std_dummy_dev_open(struct sr_dev_inst *sdi);
SR_PRIV int std_dummy_dev_close(struct sr_dev_inst *sdi);
SR_PRIV int std_dummy_dev_acquisition_start(const struct sr_dev_inst *sdi);
SR_PRIV int std_dummy_dev_acquisition_stop(struct sr_dev_inst *sdi);
#ifdef HAVE_SERIAL_COMM
SR_PRIV int std_serial_dev_open(struct sr_dev_inst *sdi);
SR_PRIV int std_serial_dev_acquisition_stop(struct sr_dev_inst *sdi);
#endif
SR_PRIV int std_session_send_df_header(const struct sr_dev_inst *sdi);
SR_PRIV int std_session_send_df_end(const struct sr_dev_inst *sdi);
SR_PRIV int std_session_send_df_trigger(const struct sr_dev_inst *sdi);
SR_PRIV int std_session_send_df_frame_begin(const struct sr_dev_inst *sdi);
SR_PRIV int std_session_send_df_frame_end(const struct sr_dev_inst *sdi);
SR_PRIV int std_dev_clear_with_callback(const struct sr_dev_driver *driver,
std_dev_clear_callback clear_private);
SR_PRIV int std_dev_clear(const struct sr_dev_driver *driver);
SR_PRIV GSList *std_dev_list(const struct sr_dev_driver *di);
SR_PRIV int std_serial_dev_close(struct sr_dev_inst *sdi);
SR_PRIV GSList *std_scan_complete(struct sr_dev_driver *di, GSList *devices);
SR_PRIV int std_opts_config_list(uint32_t key, GVariant **data,
const struct sr_dev_inst *sdi, const struct sr_channel_group *cg,
const uint32_t scanopts[], size_t scansize, const uint32_t drvopts[],
size_t drvsize, const uint32_t devopts[], size_t devsize);
extern SR_PRIV const uint32_t NO_OPTS[1];
#define STD_CONFIG_LIST(key, data, sdi, cg, scanopts, drvopts, devopts) \
std_opts_config_list(key, data, sdi, cg, ARRAY_AND_SIZE(scanopts), \
ARRAY_AND_SIZE(drvopts), ARRAY_AND_SIZE(devopts))
SR_PRIV GVariant *std_gvar_tuple_array(const uint64_t a[][2], unsigned int n);
SR_PRIV GVariant *std_gvar_tuple_rational(const struct sr_rational *r, unsigned int n);
SR_PRIV GVariant *std_gvar_samplerates(const uint64_t samplerates[], unsigned int n);
SR_PRIV GVariant *std_gvar_samplerates_steps(const uint64_t samplerates[], unsigned int n);
SR_PRIV GVariant *std_gvar_min_max_step(double min, double max, double step);
SR_PRIV GVariant *std_gvar_min_max_step_array(const double a[3]);
SR_PRIV GVariant *std_gvar_min_max_step_thresholds(const double dmin, const double dmax, const double dstep);
SR_PRIV GVariant *std_gvar_tuple_u64(uint64_t low, uint64_t high);
SR_PRIV GVariant *std_gvar_tuple_double(double low, double high);
SR_PRIV GVariant *std_gvar_array_i32(const int32_t a[], unsigned int n);
SR_PRIV GVariant *std_gvar_array_u32(const uint32_t a[], unsigned int n);
SR_PRIV GVariant *std_gvar_array_u64(const uint64_t a[], unsigned int n);
SR_PRIV GVariant *std_gvar_array_str(const char *a[], unsigned int n);
SR_PRIV GVariant *std_gvar_thresholds(const double a[][2], unsigned int n);
SR_PRIV int std_str_idx(GVariant *data, const char *a[], unsigned int n);
SR_PRIV int std_u64_idx(GVariant *data, const uint64_t a[], unsigned int n);
SR_PRIV int std_u8_idx(GVariant *data, const uint8_t a[], unsigned int n);
SR_PRIV int std_str_idx_s(const char *s, const char *a[], unsigned int n);
SR_PRIV int std_u8_idx_s(uint8_t b, const uint8_t a[], unsigned int n);
SR_PRIV int std_u64_tuple_idx(GVariant *data, const uint64_t a[][2], unsigned int n);
SR_PRIV int std_double_tuple_idx(GVariant *data, const double a[][2], unsigned int n);
SR_PRIV int std_double_tuple_idx_d0(const double d, const double a[][2], unsigned int n);
SR_PRIV int std_cg_idx(const struct sr_channel_group *cg, struct sr_channel_group *a[], unsigned int n);
SR_PRIV int std_dummy_set_params(struct sr_serial_dev_inst *serial,
int baudrate, int bits, int parity, int stopbits,
int flowcontrol, int rts, int dtr);
/*--- resource.c ------------------------------------------------------------*/
SR_PRIV int64_t sr_file_get_size(FILE *file);
SR_PRIV int sr_resource_open(struct sr_context *ctx,
struct sr_resource *res, int type, const char *name)
G_GNUC_WARN_UNUSED_RESULT;
SR_PRIV int sr_resource_close(struct sr_context *ctx,
struct sr_resource *res);
SR_PRIV gssize sr_resource_read(struct sr_context *ctx,
const struct sr_resource *res, void *buf, size_t count)
G_GNUC_WARN_UNUSED_RESULT;
SR_PRIV void *sr_resource_load(struct sr_context *ctx, int type,
const char *name, size_t *size, size_t max_size)
G_GNUC_MALLOC G_GNUC_WARN_UNUSED_RESULT;
/*--- strutil.c -------------------------------------------------------------*/
SR_PRIV int sr_atol(const char *str, long *ret);
SR_PRIV int sr_atol_base(const char *str, long *ret, char **end, int base);
SR_PRIV int sr_atoi(const char *str, int *ret);
SR_PRIV int sr_atod(const char *str, double *ret);
SR_PRIV int sr_atof(const char *str, float *ret);
SR_PRIV int sr_atod_ascii(const char *str, double *ret);
SR_PRIV int sr_atof_ascii(const char *str, float *ret);
SR_PRIV GString *sr_hexdump_new(const uint8_t *data, const size_t len);
SR_PRIV void sr_hexdump_free(GString *s);
/*--- soft-trigger.c --------------------------------------------------------*/
struct soft_trigger_logic {
const struct sr_dev_inst *sdi;
const struct sr_trigger *trigger;
int count;
int unitsize;
int cur_stage;
uint8_t *prev_sample;
uint8_t *pre_trigger_buffer;
uint8_t *pre_trigger_head;
int pre_trigger_size;
int pre_trigger_fill;
};
SR_PRIV int logic_channel_unitsize(GSList *channels);
SR_PRIV struct soft_trigger_logic *soft_trigger_logic_new(
const struct sr_dev_inst *sdi, struct sr_trigger *trigger,
int pre_trigger_samples);
SR_PRIV void soft_trigger_logic_free(struct soft_trigger_logic *st);
SR_PRIV int soft_trigger_logic_check(struct soft_trigger_logic *st, uint8_t *buf,
int len, int *pre_trigger_samples);
/*--- serial.c --------------------------------------------------------------*/
#ifdef HAVE_SERIAL_COMM
enum {
SERIAL_RDWR = 1,
SERIAL_RDONLY = 2,
};
typedef gboolean (*packet_valid_callback)(const uint8_t *buf);
typedef GSList *(*sr_ser_list_append_t)(GSList *devs, const char *name,
const char *desc);
typedef GSList *(*sr_ser_find_append_t)(GSList *devs, const char *name);
SR_PRIV int serial_open(struct sr_serial_dev_inst *serial, int flags);
SR_PRIV int serial_close(struct sr_serial_dev_inst *serial);
SR_PRIV int serial_flush(struct sr_serial_dev_inst *serial);
SR_PRIV int serial_drain(struct sr_serial_dev_inst *serial);
SR_PRIV size_t serial_has_receive_data(struct sr_serial_dev_inst *serial);
SR_PRIV int serial_write_blocking(struct sr_serial_dev_inst *serial,
const void *buf, size_t count, unsigned int timeout_ms);
SR_PRIV int serial_write_nonblocking(struct sr_serial_dev_inst *serial,
const void *buf, size_t count);
SR_PRIV int serial_read_blocking(struct sr_serial_dev_inst *serial, void *buf,
size_t count, unsigned int timeout_ms);
SR_PRIV int serial_read_nonblocking(struct sr_serial_dev_inst *serial, void *buf,
size_t count);
SR_PRIV int serial_set_read_chunk_cb(struct sr_serial_dev_inst *serial,
serial_rx_chunk_callback cb, void *cb_data);
SR_PRIV int serial_set_params(struct sr_serial_dev_inst *serial, int baudrate,
int bits, int parity, int stopbits, int flowcontrol, int rts, int dtr);
SR_PRIV int serial_set_paramstr(struct sr_serial_dev_inst *serial,
const char *paramstr);
SR_PRIV int serial_readline(struct sr_serial_dev_inst *serial, char **buf,
int *buflen, gint64 timeout_ms);
SR_PRIV int serial_stream_detect(struct sr_serial_dev_inst *serial,
uint8_t *buf, size_t *buflen,
size_t packet_size,
packet_valid_callback is_valid,
uint64_t timeout_ms);
SR_PRIV int sr_serial_extract_options(GSList *options, const char **serial_device,
const char **serial_options);
SR_PRIV int serial_source_add(struct sr_session *session,
struct sr_serial_dev_inst *serial, int events, int timeout,
sr_receive_data_callback cb, void *cb_data);
SR_PRIV int serial_source_remove(struct sr_session *session,
struct sr_serial_dev_inst *serial);
SR_PRIV GSList *sr_serial_find_usb(uint16_t vendor_id, uint16_t product_id);
SR_PRIV int serial_timeout(struct sr_serial_dev_inst *port, int num_bytes);
SR_PRIV void sr_ser_discard_queued_data(struct sr_serial_dev_inst *serial);
SR_PRIV size_t sr_ser_has_queued_data(struct sr_serial_dev_inst *serial);
SR_PRIV void sr_ser_queue_rx_data(struct sr_serial_dev_inst *serial,
const uint8_t *data, size_t len);
SR_PRIV size_t sr_ser_unqueue_rx_data(struct sr_serial_dev_inst *serial,
uint8_t *data, size_t len);
struct ser_lib_functions {
int (*open)(struct sr_serial_dev_inst *serial, int flags);
int (*close)(struct sr_serial_dev_inst *serial);
int (*flush)(struct sr_serial_dev_inst *serial);
int (*drain)(struct sr_serial_dev_inst *serial);
int (*write)(struct sr_serial_dev_inst *serial,
const void *buf, size_t count,
int nonblocking, unsigned int timeout_ms);
int (*read)(struct sr_serial_dev_inst *serial,
void *buf, size_t count,
int nonblocking, unsigned int timeout_ms);
int (*set_params)(struct sr_serial_dev_inst *serial,
int baudrate, int bits, int parity, int stopbits,
int flowcontrol, int rts, int dtr);
int (*setup_source_add)(struct sr_session *session,
struct sr_serial_dev_inst *serial,
int events, int timeout,
sr_receive_data_callback cb, void *cb_data);
int (*setup_source_remove)(struct sr_session *session,
struct sr_serial_dev_inst *serial);
GSList *(*list)(GSList *list, sr_ser_list_append_t append);
GSList *(*find_usb)(GSList *list, sr_ser_find_append_t append,
uint16_t vendor_id, uint16_t product_id);
int (*get_frame_format)(struct sr_serial_dev_inst *serial,
int *baud, int *bits);
size_t (*get_rx_avail)(struct sr_serial_dev_inst *serial);
};
extern SR_PRIV struct ser_lib_functions *ser_lib_funcs_libsp;
SR_PRIV int ser_name_is_hid(struct sr_serial_dev_inst *serial);
extern SR_PRIV struct ser_lib_functions *ser_lib_funcs_hid;
SR_PRIV int ser_name_is_bt(struct sr_serial_dev_inst *serial);
extern SR_PRIV struct ser_lib_functions *ser_lib_funcs_bt;
#ifdef HAVE_LIBHIDAPI
struct vid_pid_item {
uint16_t vid, pid;
};
struct ser_hid_chip_functions {
const char *chipname;
const char *chipdesc;
const struct vid_pid_item *vid_pid_items;
const int max_bytes_per_request;
int (*set_params)(struct sr_serial_dev_inst *serial,
int baudrate, int bits, int parity, int stopbits,
int flowcontrol, int rts, int dtr);
int (*read_bytes)(struct sr_serial_dev_inst *serial,
uint8_t *data, int space, unsigned int timeout);
int (*write_bytes)(struct sr_serial_dev_inst *serial,
const uint8_t *data, int space);
int (*flush)(struct sr_serial_dev_inst *serial);
int (*drain)(struct sr_serial_dev_inst *serial);
};
extern SR_PRIV struct ser_hid_chip_functions *ser_hid_chip_funcs_bu86x;
extern SR_PRIV struct ser_hid_chip_functions *ser_hid_chip_funcs_ch9325;
extern SR_PRIV struct ser_hid_chip_functions *ser_hid_chip_funcs_cp2110;
extern SR_PRIV struct ser_hid_chip_functions *ser_hid_chip_funcs_victor;
SR_PRIV const char *ser_hid_chip_find_name_vid_pid(uint16_t vid, uint16_t pid);
#endif
#endif
/*--- bt/ API ---------------------------------------------------------------*/
#ifdef HAVE_BLUETOOTH
SR_PRIV const char *sr_bt_adapter_get_address(size_t idx);
struct sr_bt_desc;
typedef void (*sr_bt_scan_cb)(void *cb_data, const char *addr, const char *name);
typedef int (*sr_bt_data_cb)(void *cb_data, uint8_t *data, size_t dlen);
SR_PRIV struct sr_bt_desc *sr_bt_desc_new(void);
SR_PRIV void sr_bt_desc_free(struct sr_bt_desc *desc);
SR_PRIV int sr_bt_config_cb_scan(struct sr_bt_desc *desc,
sr_bt_scan_cb cb, void *cb_data);
SR_PRIV int sr_bt_config_cb_data(struct sr_bt_desc *desc,
sr_bt_data_cb cb, void *cb_data);
SR_PRIV int sr_bt_config_addr_local(struct sr_bt_desc *desc, const char *addr);
SR_PRIV int sr_bt_config_addr_remote(struct sr_bt_desc *desc, const char *addr);
SR_PRIV int sr_bt_config_rfcomm(struct sr_bt_desc *desc, size_t channel);
SR_PRIV int sr_bt_config_notify(struct sr_bt_desc *desc,
uint16_t read_handle, uint16_t write_handle,
uint16_t cccd_handle, uint16_t cccd_value);
SR_PRIV int sr_bt_scan_le(struct sr_bt_desc *desc, int duration);
SR_PRIV int sr_bt_scan_bt(struct sr_bt_desc *desc, int duration);
SR_PRIV int sr_bt_connect_ble(struct sr_bt_desc *desc);
SR_PRIV int sr_bt_connect_rfcomm(struct sr_bt_desc *desc);
SR_PRIV void sr_bt_disconnect(struct sr_bt_desc *desc);
SR_PRIV ssize_t sr_bt_read(struct sr_bt_desc *desc,
void *data, size_t len);
SR_PRIV ssize_t sr_bt_write(struct sr_bt_desc *desc,
const void *data, size_t len);
SR_PRIV int sr_bt_start_notify(struct sr_bt_desc *desc);
SR_PRIV int sr_bt_check_notify(struct sr_bt_desc *desc);
#endif
/*--- ezusb.c ---------------------------------------------------------------*/
#ifdef HAVE_LIBUSB_1_0
SR_PRIV int ezusb_reset(struct libusb_device_handle *hdl, int set_clear);
SR_PRIV int ezusb_install_firmware(struct sr_context *ctx, libusb_device_handle *hdl,
const char *name);
SR_PRIV int ezusb_upload_firmware(struct sr_context *ctx, libusb_device *dev,
int configuration, const char *name);
#endif
/*--- usb.c -----------------------------------------------------------------*/
#ifdef HAVE_LIBUSB_1_0
SR_PRIV GSList *sr_usb_find(libusb_context *usb_ctx, const char *conn);
SR_PRIV int sr_usb_open(libusb_context *usb_ctx, struct sr_usb_dev_inst *usb);
SR_PRIV void sr_usb_close(struct sr_usb_dev_inst *usb);
SR_PRIV int usb_source_add(struct sr_session *session, struct sr_context *ctx,
int timeout, sr_receive_data_callback cb, void *cb_data);
SR_PRIV int usb_source_remove(struct sr_session *session, struct sr_context *ctx);
SR_PRIV int usb_get_port_path(libusb_device *dev, char *path, int path_len);
SR_PRIV gboolean usb_match_manuf_prod(libusb_device *dev,
const char *manufacturer, const char *product);
#endif
/*--- modbus/modbus.c -------------------------------------------------------*/
struct sr_modbus_dev_inst {
const char *name;
const char *prefix;
int priv_size;
GSList *(*scan)(int modbusaddr);
int (*dev_inst_new)(void *priv, const char *resource,
char **params, const char *serialcomm, int modbusaddr);
int (*open)(void *priv);
int (*source_add)(struct sr_session *session, void *priv, int events,
int timeout, sr_receive_data_callback cb, void *cb_data);
int (*source_remove)(struct sr_session *session, void *priv);
int (*send)(void *priv, const uint8_t *buffer, int buffer_size);
int (*read_begin)(void *priv, uint8_t *function_code);
int (*read_data)(void *priv, uint8_t *buf, int maxlen);
int (*read_end)(void *priv);
int (*close)(void *priv);
void (*free)(void *priv);
unsigned int read_timeout_ms;
void *priv;
};
SR_PRIV GSList *sr_modbus_scan(struct drv_context *drvc, GSList *options,
struct sr_dev_inst *(*probe_device)(struct sr_modbus_dev_inst *modbus));
SR_PRIV struct sr_modbus_dev_inst *modbus_dev_inst_new(const char *resource,
const char *serialcomm, int modbusaddr);
SR_PRIV int sr_modbus_open(struct sr_modbus_dev_inst *modbus);
SR_PRIV int sr_modbus_source_add(struct sr_session *session,
struct sr_modbus_dev_inst *modbus, int events, int timeout,
sr_receive_data_callback cb, void *cb_data);
SR_PRIV int sr_modbus_source_remove(struct sr_session *session,
struct sr_modbus_dev_inst *modbus);
SR_PRIV int sr_modbus_request(struct sr_modbus_dev_inst *modbus,
uint8_t *request, int request_size);
SR_PRIV int sr_modbus_reply(struct sr_modbus_dev_inst *modbus,
uint8_t *reply, int reply_size);
SR_PRIV int sr_modbus_request_reply(struct sr_modbus_dev_inst *modbus,
uint8_t *request, int request_size,
uint8_t *reply, int reply_size);
SR_PRIV int sr_modbus_read_coils(struct sr_modbus_dev_inst *modbus,
int address, int nb_coils, uint8_t *coils);
SR_PRIV int sr_modbus_read_holding_registers(struct sr_modbus_dev_inst *modbus,
int address, int nb_registers,
uint16_t *registers);
SR_PRIV int sr_modbus_write_coil(struct sr_modbus_dev_inst *modbus,
int address, int value);
SR_PRIV int sr_modbus_write_multiple_registers(struct sr_modbus_dev_inst*modbus,
int address, int nb_registers,
uint16_t *registers);
SR_PRIV int sr_modbus_close(struct sr_modbus_dev_inst *modbus);
SR_PRIV void sr_modbus_free(struct sr_modbus_dev_inst *modbus);
/*--- dmm/es519xx.c ---------------------------------------------------------*/
/**
* All 11-byte es519xx chips repeat each block twice for each conversion cycle
* so always read 2 blocks at a time.
*/
#define ES519XX_11B_PACKET_SIZE (11 * 2)
#define ES519XX_14B_PACKET_SIZE 14
struct es519xx_info {
gboolean is_judge, is_voltage, is_auto, is_micro, is_current;
gboolean is_milli, is_resistance, is_continuity, is_diode;
gboolean is_frequency, is_rpm, is_capacitance, is_duty_cycle;
gboolean is_temperature, is_celsius, is_fahrenheit;
gboolean is_adp0, is_adp1, is_adp2, is_adp3;
gboolean is_sign, is_batt, is_ol, is_pmax, is_pmin, is_apo;
gboolean is_dc, is_ac, is_vahz, is_min, is_max, is_rel, is_hold;
gboolean is_digit4, is_ul, is_vasel, is_vbar, is_lpf1, is_lpf0, is_rmr;
uint32_t baudrate;
int packet_size;
gboolean alt_functions, fivedigits, clampmeter, selectable_lpf;
int digits;
};
SR_PRIV gboolean sr_es519xx_2400_11b_packet_valid(const uint8_t *buf);
SR_PRIV int sr_es519xx_2400_11b_parse(const uint8_t *buf, float *floatval,
struct sr_datafeed_analog *analog, void *info);
SR_PRIV gboolean sr_es519xx_2400_11b_altfn_packet_valid(const uint8_t *buf);
SR_PRIV int sr_es519xx_2400_11b_altfn_parse(const uint8_t *buf,
float *floatval, struct sr_datafeed_analog *analog, void *info);
SR_PRIV gboolean sr_es519xx_19200_11b_5digits_packet_valid(const uint8_t *buf);
SR_PRIV int sr_es519xx_19200_11b_5digits_parse(const uint8_t *buf,
float *floatval, struct sr_datafeed_analog *analog, void *info);
SR_PRIV gboolean sr_es519xx_19200_11b_clamp_packet_valid(const uint8_t *buf);
SR_PRIV int sr_es519xx_19200_11b_clamp_parse(const uint8_t *buf,
float *floatval, struct sr_datafeed_analog *analog, void *info);
SR_PRIV gboolean sr_es519xx_19200_11b_packet_valid(const uint8_t *buf);
SR_PRIV int sr_es519xx_19200_11b_parse(const uint8_t *buf, float *floatval,
struct sr_datafeed_analog *analog, void *info);
SR_PRIV gboolean sr_es519xx_19200_14b_packet_valid(const uint8_t *buf);
SR_PRIV int sr_es519xx_19200_14b_parse(const uint8_t *buf, float *floatval,
struct sr_datafeed_analog *analog, void *info);
SR_PRIV gboolean sr_es519xx_19200_14b_sel_lpf_packet_valid(const uint8_t *buf);
SR_PRIV int sr_es519xx_19200_14b_sel_lpf_parse(const uint8_t *buf,
float *floatval, struct sr_datafeed_analog *analog, void *info);
/*--- dmm/fs9922.c ----------------------------------------------------------*/
#define FS9922_PACKET_SIZE 14
struct fs9922_info {
gboolean is_auto, is_dc, is_ac, is_rel, is_hold, is_bpn, is_z1, is_z2;
gboolean is_max, is_min, is_apo, is_bat, is_nano, is_z3, is_micro;
gboolean is_milli, is_kilo, is_mega, is_beep, is_diode, is_percent;
gboolean is_z4, is_volt, is_ampere, is_ohm, is_hfe, is_hertz, is_farad;
gboolean is_celsius, is_fahrenheit;
int bargraph_sign, bargraph_value;
};
SR_PRIV gboolean sr_fs9922_packet_valid(const uint8_t *buf);
SR_PRIV int sr_fs9922_parse(const uint8_t *buf, float *floatval,
struct sr_datafeed_analog *analog, void *info);
SR_PRIV void sr_fs9922_z1_diode(struct sr_datafeed_analog *analog, void *info);
/*--- dmm/fs9721.c ----------------------------------------------------------*/
#define FS9721_PACKET_SIZE 14
struct fs9721_info {
gboolean is_ac, is_dc, is_auto, is_rs232, is_micro, is_nano, is_kilo;
gboolean is_diode, is_milli, is_percent, is_mega, is_beep, is_farad;
gboolean is_ohm, is_rel, is_hold, is_ampere, is_volt, is_hz, is_bat;
gboolean is_c2c1_11, is_c2c1_10, is_c2c1_01, is_c2c1_00, is_sign;
};
SR_PRIV gboolean sr_fs9721_packet_valid(const uint8_t *buf);
SR_PRIV int sr_fs9721_parse(const uint8_t *buf, float *floatval,
struct sr_datafeed_analog *analog, void *info);
SR_PRIV void sr_fs9721_00_temp_c(struct sr_datafeed_analog *analog, void *info);
SR_PRIV void sr_fs9721_01_temp_c(struct sr_datafeed_analog *analog, void *info);
SR_PRIV void sr_fs9721_10_temp_c(struct sr_datafeed_analog *analog, void *info);
SR_PRIV void sr_fs9721_01_10_temp_f_c(struct sr_datafeed_analog *analog, void *info);
SR_PRIV void sr_fs9721_max_c_min(struct sr_datafeed_analog *analog, void *info);
/*--- dmm/ms2115b.c ---------------------------------------------------------*/
#define MS2115B_PACKET_SIZE 9
enum ms2115b_display {
MS2115B_DISPLAY_MAIN,
MS2115B_DISPLAY_SUB,
MS2115B_DISPLAY_COUNT,
};
struct ms2115b_info {
/* Selected channel. */
size_t ch_idx;
gboolean is_ac, is_dc, is_auto;
gboolean is_diode, is_beep, is_farad;
gboolean is_ohm, is_ampere, is_volt, is_hz;
gboolean is_duty_cycle, is_percent;
};
extern SR_PRIV const char *ms2115b_channel_formats[];
SR_PRIV gboolean sr_ms2115b_packet_valid(const uint8_t *buf);
SR_PRIV int sr_ms2115b_parse(const uint8_t *buf, float *floatval,
struct sr_datafeed_analog *analog, void *info);
/*--- dmm/ms8250d.c ---------------------------------------------------------*/
#define MS8250D_PACKET_SIZE 18
struct ms8250d_info {
gboolean is_ac, is_dc, is_auto, is_rs232, is_micro, is_nano, is_kilo;
gboolean is_diode, is_milli, is_percent, is_mega, is_beep, is_farad;
gboolean is_ohm, is_rel, is_hold, is_ampere, is_volt, is_hz, is_bat;
gboolean is_ncv, is_min, is_max, is_sign, is_autotimer;
};
SR_PRIV gboolean sr_ms8250d_packet_valid(const uint8_t *buf);
SR_PRIV int sr_ms8250d_parse(const uint8_t *buf, float *floatval,
struct sr_datafeed_analog *analog, void *info);
/*--- dmm/dtm0660.c ---------------------------------------------------------*/
#define DTM0660_PACKET_SIZE 15
struct dtm0660_info {
gboolean is_ac, is_dc, is_auto, is_rs232, is_micro, is_nano, is_kilo;
gboolean is_diode, is_milli, is_percent, is_mega, is_beep, is_farad;
gboolean is_ohm, is_rel, is_hold, is_ampere, is_volt, is_hz, is_bat;
gboolean is_degf, is_degc, is_c2c1_01, is_c2c1_00, is_apo, is_min;
gboolean is_minmax, is_max, is_sign;
};
SR_PRIV gboolean sr_dtm0660_packet_valid(const uint8_t *buf);
SR_PRIV int sr_dtm0660_parse(const uint8_t *buf, float *floatval,
struct sr_datafeed_analog *analog, void *info);
/*--- dmm/m2110.c -----------------------------------------------------------*/
#define BBCGM_M2110_PACKET_SIZE 9
/* Dummy info struct. The parser does not use it. */
struct m2110_info { int dummy; };
SR_PRIV gboolean sr_m2110_packet_valid(const uint8_t *buf);
SR_PRIV int sr_m2110_parse(const uint8_t *buf, float *floatval,
struct sr_datafeed_analog *analog, void *info);
/*--- dmm/metex14.c ---------------------------------------------------------*/
#define METEX14_PACKET_SIZE 14
struct metex14_info {
size_t ch_idx;
gboolean is_ac, is_dc, is_resistance, is_capacity, is_temperature;
gboolean is_diode, is_frequency, is_ampere, is_volt, is_farad;
gboolean is_hertz, is_ohm, is_celsius, is_fahrenheit, is_watt;
gboolean is_pico, is_nano, is_micro, is_milli, is_kilo, is_mega;
gboolean is_gain, is_decibel, is_power, is_decibel_mw, is_power_factor;
gboolean is_hfe, is_unitless, is_logic, is_min, is_max, is_avg;
};
#ifdef HAVE_SERIAL_COMM
SR_PRIV int sr_metex14_packet_request(struct sr_serial_dev_inst *serial);
#endif
SR_PRIV gboolean sr_metex14_packet_valid(const uint8_t *buf);
SR_PRIV int sr_metex14_parse(const uint8_t *buf, float *floatval,
struct sr_datafeed_analog *analog, void *info);
SR_PRIV gboolean sr_metex14_4packets_valid(const uint8_t *buf);
SR_PRIV int sr_metex14_4packets_parse(const uint8_t *buf, float *floatval,
struct sr_datafeed_analog *analog, void *info);
/*--- dmm/rs9lcd.c ----------------------------------------------------------*/
#define RS9LCD_PACKET_SIZE 9
/* Dummy info struct. The parser does not use it. */
struct rs9lcd_info { int dummy; };
SR_PRIV gboolean sr_rs9lcd_packet_valid(const uint8_t *buf);
SR_PRIV int sr_rs9lcd_parse(const uint8_t *buf, float *floatval,
struct sr_datafeed_analog *analog, void *info);
/*--- dmm/bm25x.c -----------------------------------------------------------*/
#define BRYMEN_BM25X_PACKET_SIZE 15
/* Dummy info struct. The parser does not use it. */
struct bm25x_info { int dummy; };
SR_PRIV gboolean sr_brymen_bm25x_packet_valid(const uint8_t *buf);
SR_PRIV int sr_brymen_bm25x_parse(const uint8_t *buf, float *floatval,
struct sr_datafeed_analog *analog, void *info);
/*--- dmm/bm86x.c -----------------------------------------------------------*/
#define BRYMEN_BM86X_PACKET_SIZE 24
#define BRYMEN_BM86X_DISPLAY_COUNT 2
struct brymen_bm86x_info { size_t ch_idx; };
#ifdef HAVE_SERIAL_COMM
SR_PRIV int sr_brymen_bm86x_packet_request(struct sr_serial_dev_inst *serial);
#endif
SR_PRIV gboolean sr_brymen_bm86x_packet_valid(const uint8_t *buf);
SR_PRIV int sr_brymen_bm86x_parse(const uint8_t *buf, float *floatval,
struct sr_datafeed_analog *analog, void *info);
/*--- dmm/ut71x.c -----------------------------------------------------------*/
#define UT71X_PACKET_SIZE 11
struct ut71x_info {
gboolean is_voltage, is_resistance, is_capacitance, is_temperature;
gboolean is_celsius, is_fahrenheit, is_current, is_continuity;
gboolean is_diode, is_frequency, is_duty_cycle, is_dc, is_ac;
gboolean is_auto, is_manual, is_sign, is_power, is_loop_current;
};
SR_PRIV gboolean sr_ut71x_packet_valid(const uint8_t *buf);
SR_PRIV int sr_ut71x_parse(const uint8_t *buf, float *floatval,
struct sr_datafeed_analog *analog, void *info);
/*--- dmm/vc870.c -----------------------------------------------------------*/
#define VC870_PACKET_SIZE 23
struct vc870_info {
gboolean is_voltage, is_dc, is_ac, is_temperature, is_resistance;
gboolean is_continuity, is_capacitance, is_diode, is_loop_current;
gboolean is_current, is_micro, is_milli, is_power;
gboolean is_power_factor_freq, is_power_apparent_power, is_v_a_rms_value;
gboolean is_sign2, is_sign1, is_batt, is_ol1, is_max, is_min;
gboolean is_maxmin, is_rel, is_ol2, is_open, is_manu, is_hold;
gboolean is_light, is_usb, is_warning, is_auto_power, is_misplug_warn;
gboolean is_lo, is_hi, is_open2;
gboolean is_frequency, is_dual_display, is_auto;
};
SR_PRIV gboolean sr_vc870_packet_valid(const uint8_t *buf);
SR_PRIV int sr_vc870_parse(const uint8_t *buf, float *floatval,
struct sr_datafeed_analog *analog, void *info);
/*--- dmm/vc96.c ------------------------------------------------------------*/
#define VC96_PACKET_SIZE 13
struct vc96_info {
size_t ch_idx;
gboolean is_ac, is_dc, is_resistance, is_diode, is_ampere, is_volt;
gboolean is_ohm, is_micro, is_milli, is_kilo, is_mega, is_hfe;
gboolean is_unitless;
};
SR_PRIV gboolean sr_vc96_packet_valid(const uint8_t *buf);
SR_PRIV int sr_vc96_parse(const uint8_t *buf, float *floatval,
struct sr_datafeed_analog *analog, void *info);
/*--- lcr/es51919.c ---------------------------------------------------------*/
/* Acquisition details which apply to all supported serial-lcr devices. */
struct lcr_parse_info {
size_t ch_idx;
uint64_t output_freq;
const char *circuit_model;
};
#define ES51919_PACKET_SIZE 17
#define ES51919_CHANNEL_COUNT 2
#define ES51919_COMM_PARAM "9600/8n1/rts=1/dtr=1"
SR_PRIV int es51919_config_get(uint32_t key, GVariant **data,
const struct sr_dev_inst *sdi, const struct sr_channel_group *cg);
SR_PRIV int es51919_config_set(uint32_t key, GVariant *data,
const struct sr_dev_inst *sdi, const struct sr_channel_group *cg);
SR_PRIV int es51919_config_list(uint32_t key, GVariant **data,
const struct sr_dev_inst *sdi, const struct sr_channel_group *cg);
SR_PRIV gboolean es51919_packet_valid(const uint8_t *pkt);
SR_PRIV int es51919_packet_parse(const uint8_t *pkt, float *floatval,
struct sr_datafeed_analog *analog, void *info);
/*--- lcr/vc4080.c ----------------------------------------------------------*/
/* Note: Also uses 'struct lcr_parse_info' from es51919 above. */
#define VC4080_PACKET_SIZE 39
#define VC4080_COMM_PARAM "1200/8n1"
#define VC4080_WITH_DQ_CHANS 0 /* Enable separate D/Q channels? */
enum vc4080_display {
VC4080_DISPLAY_PRIMARY,
VC4080_DISPLAY_SECONDARY,
#if VC4080_WITH_DQ_CHANS
VC4080_DISPLAY_D_VALUE,
VC4080_DISPLAY_Q_VALUE,
#endif
VC4080_CHANNEL_COUNT,
};
extern SR_PRIV const char *vc4080_channel_formats[VC4080_CHANNEL_COUNT];
SR_PRIV int vc4080_config_list(uint32_t key, GVariant **data,
const struct sr_dev_inst *sdi, const struct sr_channel_group *cg);
SR_PRIV int vc4080_packet_request(struct sr_serial_dev_inst *serial);
SR_PRIV gboolean vc4080_packet_valid(const uint8_t *pkt);
SR_PRIV int vc4080_packet_parse(const uint8_t *pkt, float *floatval,
struct sr_datafeed_analog *analog, void *info);
/*--- dmm/ut372.c -----------------------------------------------------------*/
#define UT372_PACKET_SIZE 27
struct ut372_info {
int dummy;
};
SR_PRIV gboolean sr_ut372_packet_valid(const uint8_t *buf);
SR_PRIV int sr_ut372_parse(const uint8_t *buf, float *floatval,
struct sr_datafeed_analog *analog, void *info);
/*--- dmm/asycii.c ----------------------------------------------------------*/
#define ASYCII_PACKET_SIZE 16
struct asycii_info {
gboolean is_ac, is_dc, is_ac_and_dc;
gboolean is_resistance, is_capacitance, is_diode, is_gain;
gboolean is_frequency, is_duty_cycle, is_duty_pos, is_duty_neg;
gboolean is_pulse_width, is_period_pos, is_period_neg;
gboolean is_pulse_count, is_count_pos, is_count_neg;
gboolean is_ampere, is_volt, is_volt_ampere, is_farad, is_ohm;
gboolean is_hertz, is_percent, is_seconds, is_decibel;
gboolean is_pico, is_nano, is_micro, is_milli, is_kilo, is_mega;
gboolean is_unitless;
gboolean is_peak_min, is_peak_max;
gboolean is_invalid;
};
#ifdef HAVE_SERIAL_COMM
SR_PRIV int sr_asycii_packet_request(struct sr_serial_dev_inst *serial);
#endif
SR_PRIV gboolean sr_asycii_packet_valid(const uint8_t *buf);
SR_PRIV int sr_asycii_parse(const uint8_t *buf, float *floatval,
struct sr_datafeed_analog *analog, void *info);
/*--- dmm/eev121gw.c --------------------------------------------------------*/
#define EEV121GW_PACKET_SIZE 19
enum eev121gw_display {
EEV121GW_DISPLAY_MAIN,
EEV121GW_DISPLAY_SUB,
EEV121GW_DISPLAY_BAR,
EEV121GW_DISPLAY_COUNT,
};
struct eev121gw_info {
/* Selected channel. */
size_t ch_idx;
/*
* Measured value, number and sign/overflow flags, scale factor
* and significant digits.
*/
uint32_t uint_value;
gboolean is_ofl, is_neg;
int factor, digits;
/* Currently active mode (meter's function). */
gboolean is_ac, is_dc, is_voltage, is_current, is_power, is_gain;
gboolean is_resistance, is_capacitance, is_diode, is_temperature;
gboolean is_continuity, is_frequency, is_period, is_duty_cycle;
/* Quantities associated with mode/function. */
gboolean is_ampere, is_volt, is_volt_ampere, is_dbm;
gboolean is_ohm, is_farad, is_celsius, is_fahrenheit;
gboolean is_hertz, is_seconds, is_percent, is_loop_current;
gboolean is_unitless, is_logic;
/* Other indicators. */
gboolean is_min, is_max, is_avg, is_1ms_peak, is_rel, is_hold;
gboolean is_low_pass, is_mem, is_bt, is_auto_range, is_test;
gboolean is_auto_poweroff, is_low_batt;
};
extern SR_PRIV const char *eev121gw_channel_formats[];
SR_PRIV gboolean sr_eev121gw_packet_valid(const uint8_t *buf);
SR_PRIV int sr_eev121gw_3displays_parse(const uint8_t *buf, float *floatval,
struct sr_datafeed_analog *analog, void *info);
/*--- scale/kern.c ----------------------------------------------------------*/
struct kern_info {
gboolean is_gram, is_carat, is_ounce, is_pound, is_troy_ounce;
gboolean is_pennyweight, is_grain, is_tael, is_momme, is_tola;
gboolean is_percentage, is_piece, is_unstable, is_stable, is_error;
int buflen;
};
SR_PRIV gboolean sr_kern_packet_valid(const uint8_t *buf);
SR_PRIV int sr_kern_parse(const uint8_t *buf, float *floatval,
struct sr_datafeed_analog *analog, void *info);
/*--- sw_limits.c -----------------------------------------------------------*/
struct sr_sw_limits {
uint64_t limit_samples;
uint64_t limit_frames;
uint64_t limit_msec;
uint64_t samples_read;
uint64_t frames_read;
uint64_t start_time;
};
SR_PRIV int sr_sw_limits_config_get(struct sr_sw_limits *limits, uint32_t key,
GVariant **data);
SR_PRIV int sr_sw_limits_config_set(struct sr_sw_limits *limits, uint32_t key,
GVariant *data);
SR_PRIV void sr_sw_limits_acquisition_start(struct sr_sw_limits *limits);
SR_PRIV gboolean sr_sw_limits_check(struct sr_sw_limits *limits);
SR_PRIV void sr_sw_limits_update_samples_read(struct sr_sw_limits *limits,
uint64_t samples_read);
SR_PRIV void sr_sw_limits_update_frames_read(struct sr_sw_limits *limits,
uint64_t frames_read);
SR_PRIV void sr_sw_limits_init(struct sr_sw_limits *limits);
#endif