libsigrok/src/hardware/asix-sigma/protocol.c

1625 lines
45 KiB
C

/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2010-2012 Håvard Espeland <gus@ping.uio.no>,
* Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
* Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* ASIX SIGMA/SIGMA2 logic analyzer driver
*/
#include <config.h>
#include "protocol.h"
/*
* The ASIX SIGMA hardware supports fixed 200MHz and 100MHz sample rates
* (by means of separate firmware images). As well as 50MHz divided by
* an integer divider in the 1..256 range (by the "typical" firmware).
* Which translates to a strict lower boundary of around 195kHz.
*
* This driver "suggests" a subset of the available rates by listing a
* few discrete values, while setter routines accept any user specified
* rate that is supported by the hardware.
*/
SR_PRIV const uint64_t samplerates[] = {
/* 50MHz and integer divider. 1/2/5 steps (where possible). */
SR_KHZ(200), SR_KHZ(500),
SR_MHZ(1), SR_MHZ(2), SR_MHZ(5),
SR_MHZ(10), SR_MHZ(25), SR_MHZ(50),
/* 100MHz/200MHz, fixed rates in special firmware. */
SR_MHZ(100), SR_MHZ(200),
};
SR_PRIV const size_t samplerates_count = ARRAY_SIZE(samplerates);
static const char *firmware_files[] = {
[SIGMA_FW_50MHZ] = "asix-sigma-50.fw", /* 50MHz, 8bit divider. */
[SIGMA_FW_100MHZ] = "asix-sigma-100.fw", /* 100MHz, fixed. */
[SIGMA_FW_200MHZ] = "asix-sigma-200.fw", /* 200MHz, fixed. */
[SIGMA_FW_SYNC] = "asix-sigma-50sync.fw", /* Sync from external pin. */
[SIGMA_FW_FREQ] = "asix-sigma-phasor.fw", /* Frequency counter. */
};
#define SIGMA_FIRMWARE_SIZE_LIMIT (256 * 1024)
static int sigma_read(struct dev_context *devc, void *buf, size_t size)
{
int ret;
ret = ftdi_read_data(&devc->ftdic, (unsigned char *)buf, size);
if (ret < 0) {
sr_err("ftdi_read_data failed: %s",
ftdi_get_error_string(&devc->ftdic));
}
return ret;
}
static int sigma_write(struct dev_context *devc, const void *buf, size_t size)
{
int ret;
ret = ftdi_write_data(&devc->ftdic, buf, size);
if (ret < 0)
sr_err("ftdi_write_data failed: %s",
ftdi_get_error_string(&devc->ftdic));
else if ((size_t) ret != size)
sr_err("ftdi_write_data did not complete write.");
return ret;
}
/*
* NOTE: We chose the buffer size to be large enough to hold any write to the
* device. We still print a message just in case.
*/
SR_PRIV int sigma_write_register(struct dev_context *devc,
uint8_t reg, uint8_t *data, size_t len)
{
uint8_t buf[80], *wrptr;
size_t idx, count;
int ret;
if (2 + 2 * len > sizeof(buf)) {
sr_err("Write buffer too small to write %zu bytes.", len);
return SR_ERR_BUG;
}
wrptr = buf;
write_u8_inc(&wrptr, REG_ADDR_LOW | (reg & 0xf));
write_u8_inc(&wrptr, REG_ADDR_HIGH | (reg >> 4));
for (idx = 0; idx < len; idx++) {
write_u8_inc(&wrptr, REG_DATA_LOW | (data[idx] & 0xf));
write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | (data[idx] >> 4));
}
count = wrptr - buf;
ret = sigma_write(devc, buf, count);
if (ret != SR_OK)
return ret;
return SR_OK;
}
SR_PRIV int sigma_set_register(struct dev_context *devc,
uint8_t reg, uint8_t value)
{
return sigma_write_register(devc, reg, &value, sizeof(value));
}
static int sigma_read_register(struct dev_context *devc,
uint8_t reg, uint8_t *data, size_t len)
{
uint8_t buf[3], *wrptr;
wrptr = buf;
write_u8_inc(&wrptr, REG_ADDR_LOW | (reg & 0xf));
write_u8_inc(&wrptr, REG_ADDR_HIGH | (reg >> 4));
write_u8_inc(&wrptr, REG_READ_ADDR);
sigma_write(devc, buf, wrptr - buf);
return sigma_read(devc, data, len);
}
static int sigma_read_pos(struct dev_context *devc,
uint32_t *stoppos, uint32_t *triggerpos)
{
/*
* Read 6 registers starting at trigger position LSB.
* Which yields two 24bit counter values.
*/
const uint8_t buf[] = {
REG_ADDR_LOW | READ_TRIGGER_POS_LOW,
REG_READ_ADDR | REG_ADDR_INC,
REG_READ_ADDR | REG_ADDR_INC,
REG_READ_ADDR | REG_ADDR_INC,
REG_READ_ADDR | REG_ADDR_INC,
REG_READ_ADDR | REG_ADDR_INC,
REG_READ_ADDR | REG_ADDR_INC,
}, *rdptr;
uint8_t result[6];
sigma_write(devc, buf, sizeof(buf));
sigma_read(devc, result, sizeof(result));
rdptr = &result[0];
*triggerpos = read_u24le_inc(&rdptr);
*stoppos = read_u24le_inc(&rdptr);
/*
* These positions consist of "the memory row" in the MSB fields,
* and "an event index" within the row in the LSB fields. Part
* of the memory row's content is sample data, another part is
* timestamps.
*
* The retrieved register values point to after the captured
* position. So they need to get decremented, and adjusted to
* cater for the timestamps when the decrement carries over to
* a different memory row.
*/
if ((--*stoppos & ROW_MASK) == ROW_MASK)
*stoppos -= CLUSTERS_PER_ROW;
if ((--*triggerpos & ROW_MASK) == ROW_MASK)
*triggerpos -= CLUSTERS_PER_ROW;
return SR_OK;
}
static int sigma_read_dram(struct dev_context *devc,
uint16_t startchunk, size_t numchunks, uint8_t *data)
{
uint8_t buf[128], *wrptr;
size_t chunk;
int sel;
gboolean is_last;
if (2 + 3 * numchunks > ARRAY_SIZE(buf)) {
sr_err("Read buffer too small to read %zu DRAM rows", numchunks);
return SR_ERR_BUG;
}
/* Communicate DRAM start address (memory row, aka samples line). */
wrptr = buf;
write_u8_inc(&wrptr, startchunk >> 8);
write_u8_inc(&wrptr, startchunk & 0xff);
sigma_write_register(devc, WRITE_MEMROW, buf, wrptr - buf);
/*
* Access DRAM content. Fetch from DRAM to FPGA's internal RAM,
* then transfer via USB. Interleave the FPGA's DRAM access and
* USB transfer, use alternating buffers (0/1) in the process.
*/
wrptr = buf;
write_u8_inc(&wrptr, REG_DRAM_BLOCK);
write_u8_inc(&wrptr, REG_DRAM_WAIT_ACK);
for (chunk = 0; chunk < numchunks; chunk++) {
sel = chunk % 2;
is_last = chunk == numchunks - 1;
if (!is_last)
write_u8_inc(&wrptr, REG_DRAM_BLOCK | REG_DRAM_SEL_BOOL(!sel));
write_u8_inc(&wrptr, REG_DRAM_BLOCK_DATA | REG_DRAM_SEL_BOOL(sel));
if (!is_last)
write_u8_inc(&wrptr, REG_DRAM_WAIT_ACK);
}
sigma_write(devc, buf, wrptr - buf);
return sigma_read(devc, data, numchunks * ROW_LENGTH_BYTES);
}
/* Upload trigger look-up tables to Sigma. */
SR_PRIV int sigma_write_trigger_lut(struct dev_context *devc,
struct triggerlut *lut)
{
int i;
uint8_t tmp[2];
uint16_t bit;
uint8_t buf[6], *wrptr, regval;
/* Transpose the table and send to Sigma. */
for (i = 0; i < 16; i++) {
bit = 1 << i;
tmp[0] = tmp[1] = 0;
if (lut->m2d[0] & bit)
tmp[0] |= 0x01;
if (lut->m2d[1] & bit)
tmp[0] |= 0x02;
if (lut->m2d[2] & bit)
tmp[0] |= 0x04;
if (lut->m2d[3] & bit)
tmp[0] |= 0x08;
if (lut->m3 & bit)
tmp[0] |= 0x10;
if (lut->m3s & bit)
tmp[0] |= 0x20;
if (lut->m4 & bit)
tmp[0] |= 0x40;
if (lut->m0d[0] & bit)
tmp[1] |= 0x01;
if (lut->m0d[1] & bit)
tmp[1] |= 0x02;
if (lut->m0d[2] & bit)
tmp[1] |= 0x04;
if (lut->m0d[3] & bit)
tmp[1] |= 0x08;
if (lut->m1d[0] & bit)
tmp[1] |= 0x10;
if (lut->m1d[1] & bit)
tmp[1] |= 0x20;
if (lut->m1d[2] & bit)
tmp[1] |= 0x40;
if (lut->m1d[3] & bit)
tmp[1] |= 0x80;
/*
* This logic seems redundant, but separates the value
* determination from the wire format, and is useful
* during future maintenance and research.
*/
wrptr = buf;
write_u8_inc(&wrptr, tmp[0]);
write_u8_inc(&wrptr, tmp[1]);
sigma_write_register(devc, WRITE_TRIGGER_SELECT, buf, wrptr - buf);
sigma_set_register(devc, WRITE_TRIGGER_SELECT2, 0x30 | i);
}
/* Send the parameters */
wrptr = buf;
regval = 0;
regval |= lut->params.selc << 6;
regval |= lut->params.selpresc << 0;
write_u8_inc(&wrptr, regval);
regval = 0;
regval |= lut->params.selinc << 6;
regval |= lut->params.selres << 4;
regval |= lut->params.sela << 2;
regval |= lut->params.selb << 0;
write_u8_inc(&wrptr, regval);
write_u16le_inc(&wrptr, lut->params.cmpb);
write_u16le_inc(&wrptr, lut->params.cmpa);
sigma_write_register(devc, WRITE_TRIGGER_SELECT, buf, wrptr - buf);
return SR_OK;
}
/*
* See Xilinx UG332 for Spartan-3 FPGA configuration. The SIGMA device
* uses FTDI bitbang mode for netlist download in slave serial mode.
* (LATER: The OMEGA device's cable contains a more capable FTDI chip
* and uses MPSSE mode for bitbang. -- Can we also use FT232H in FT245
* compatible bitbang mode? For maximum code re-use and reduced libftdi
* dependency? See section 3.5.5 of FT232H: D0 clk, D1 data (out), D2
* data (in), D3 select, D4-7 GPIOL. See section 3.5.7 for MCU FIFO.)
*
* 750kbps rate (four times the speed of sigmalogan) works well for
* netlist download. All pins except INIT_B are output pins during
* configuration download.
*
* Some pins are inverted as a byproduct of level shifting circuitry.
* That's why high CCLK level (from the cable's point of view) is idle
* from the FPGA's perspective.
*
* The vendor's literature discusses a "suicide sequence" which ends
* regular FPGA execution and should be sent before entering bitbang
* mode and sending configuration data. Set D7 and toggle D2, D3, D4
* a few times.
*/
#define BB_PIN_CCLK (1 << 0) /* D0, CCLK */
#define BB_PIN_PROG (1 << 1) /* D1, PROG */
#define BB_PIN_D2 (1 << 2) /* D2, (part of) SUICIDE */
#define BB_PIN_D3 (1 << 3) /* D3, (part of) SUICIDE */
#define BB_PIN_D4 (1 << 4) /* D4, (part of) SUICIDE (unused?) */
#define BB_PIN_INIT (1 << 5) /* D5, INIT, input pin */
#define BB_PIN_DIN (1 << 6) /* D6, DIN */
#define BB_PIN_D7 (1 << 7) /* D7, (part of) SUICIDE */
#define BB_BITRATE (750 * 1000)
#define BB_PINMASK (0xff & ~BB_PIN_INIT)
/*
* Initiate slave serial mode for configuration download. Which is done
* by pulsing PROG_B and sensing INIT_B. Make sure CCLK is idle before
* initiating the configuration download.
*
* Run a "suicide sequence" first to terminate the regular FPGA operation
* before reconfiguration. The FTDI cable is single channel, and shares
* pins which are used for data communication in FIFO mode with pins that
* are used for FPGA configuration in bitbang mode. Hardware defaults for
* unconfigured hardware, and runtime conditions after FPGA configuration
* need to cooperate such that re-configuration of the FPGA can start.
*/
static int sigma_fpga_init_bitbang_once(struct dev_context *devc)
{
const uint8_t suicide[] = {
BB_PIN_D7 | BB_PIN_D2,
BB_PIN_D7 | BB_PIN_D2,
BB_PIN_D7 | BB_PIN_D3,
BB_PIN_D7 | BB_PIN_D2,
BB_PIN_D7 | BB_PIN_D3,
BB_PIN_D7 | BB_PIN_D2,
BB_PIN_D7 | BB_PIN_D3,
BB_PIN_D7 | BB_PIN_D2,
};
const uint8_t init_array[] = {
BB_PIN_CCLK,
BB_PIN_CCLK | BB_PIN_PROG,
BB_PIN_CCLK | BB_PIN_PROG,
BB_PIN_CCLK,
BB_PIN_CCLK,
BB_PIN_CCLK,
BB_PIN_CCLK,
BB_PIN_CCLK,
BB_PIN_CCLK,
BB_PIN_CCLK,
};
int retries, ret;
uint8_t data;
/* Section 2. part 1), do the FPGA suicide. */
sigma_write(devc, suicide, sizeof(suicide));
sigma_write(devc, suicide, sizeof(suicide));
sigma_write(devc, suicide, sizeof(suicide));
sigma_write(devc, suicide, sizeof(suicide));
g_usleep(10 * 1000);
/* Section 2. part 2), pulse PROG. */
sigma_write(devc, init_array, sizeof(init_array));
g_usleep(10 * 1000);
ftdi_usb_purge_buffers(&devc->ftdic);
/* Wait until the FPGA asserts INIT_B. */
retries = 10;
while (retries--) {
ret = sigma_read(devc, &data, sizeof(data));
if (ret < 0)
return ret;
if (data & BB_PIN_INIT)
return SR_OK;
g_usleep(10 * 1000);
}
return SR_ERR_TIMEOUT;
}
/*
* This is belt and braces. Re-run the bitbang initiation sequence a few
* times should first attempts fail. Failure is rare but can happen (was
* observed during driver development).
*/
static int sigma_fpga_init_bitbang(struct dev_context *devc)
{
size_t retries;
int ret;
retries = 10;
while (retries--) {
ret = sigma_fpga_init_bitbang_once(devc);
if (ret == SR_OK)
return ret;
if (ret != SR_ERR_TIMEOUT)
return ret;
}
return ret;
}
/*
* Configure the FPGA for logic-analyzer mode.
*/
static int sigma_fpga_init_la(struct dev_context *devc)
{
uint8_t buf[16], *wrptr;
uint8_t data_55, data_aa, mode;
uint8_t result[3];
const uint8_t *rdptr;
int ret;
wrptr = buf;
/* Read ID register. */
write_u8_inc(&wrptr, REG_ADDR_LOW | (READ_ID & 0xf));
write_u8_inc(&wrptr, REG_ADDR_HIGH | (READ_ID >> 4));
write_u8_inc(&wrptr, REG_READ_ADDR);
/* Write 0x55 to scratch register, read back. */
data_55 = 0x55;
write_u8_inc(&wrptr, REG_ADDR_LOW | (WRITE_TEST & 0xf));
write_u8_inc(&wrptr, REG_DATA_LOW | (data_55 & 0xf));
write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | (data_55 >> 4));
write_u8_inc(&wrptr, REG_READ_ADDR);
/* Write 0xaa to scratch register, read back. */
data_aa = 0xaa;
write_u8_inc(&wrptr, REG_ADDR_LOW | (WRITE_TEST & 0xf));
write_u8_inc(&wrptr, REG_DATA_LOW | (data_aa & 0xf));
write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | (data_aa >> 4));
write_u8_inc(&wrptr, REG_READ_ADDR);
/* Initiate SDRAM initialization in mode register. */
mode = WMR_SDRAMINIT;
write_u8_inc(&wrptr, REG_ADDR_LOW | (WRITE_MODE & 0xf));
write_u8_inc(&wrptr, REG_DATA_LOW | (mode & 0xf));
write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | (mode >> 4));
/*
* Send the command sequence which contains 3 READ requests.
* Expect to see the corresponding 3 response bytes.
*/
sigma_write(devc, buf, wrptr - buf);
ret = sigma_read(devc, result, ARRAY_SIZE(result));
if (ret != ARRAY_SIZE(result)) {
sr_err("Insufficient start response length.");
return SR_ERR_IO;
}
rdptr = result;
if (read_u8_inc(&rdptr) != 0xa6) {
sr_err("Unexpected ID response.");
return SR_ERR_DATA;
}
if (read_u8_inc(&rdptr) != data_55) {
sr_err("Unexpected scratch read-back (55).");
return SR_ERR_DATA;
}
if (read_u8_inc(&rdptr) != data_aa) {
sr_err("Unexpected scratch read-back (aa).");
return SR_ERR_DATA;
}
return SR_OK;
}
/*
* Read the firmware from a file and transform it into a series of bitbang
* pulses used to program the FPGA. Note that the *bb_cmd must be free()'d
* by the caller of this function.
*/
static int sigma_fw_2_bitbang(struct sr_context *ctx, const char *name,
uint8_t **bb_cmd, gsize *bb_cmd_size)
{
uint8_t *firmware;
size_t file_size;
uint8_t *p;
size_t l;
uint32_t imm;
size_t bb_size;
uint8_t *bb_stream, *bbs, byte, mask, v;
/* Retrieve the on-disk firmware file content. */
firmware = sr_resource_load(ctx, SR_RESOURCE_FIRMWARE, name,
&file_size, SIGMA_FIRMWARE_SIZE_LIMIT);
if (!firmware)
return SR_ERR_IO;
/* Unscramble the file content (XOR with "random" sequence). */
p = firmware;
l = file_size;
imm = 0x3f6df2ab;
while (l--) {
imm = (imm + 0xa853753) % 177 + (imm * 0x8034052);
*p++ ^= imm & 0xff;
}
/*
* Generate a sequence of bitbang samples. With two samples per
* FPGA configuration bit, providing the level for the DIN signal
* as well as two edges for CCLK. See Xilinx UG332 for details
* ("slave serial" mode).
*
* Note that CCLK is inverted in hardware. That's why the
* respective bit is first set and then cleared in the bitbang
* sample sets. So that the DIN level will be stable when the
* data gets sampled at the rising CCLK edge, and the signals'
* setup time constraint will be met.
*
* The caller will put the FPGA into download mode, will send
* the bitbang samples, and release the allocated memory.
*/
bb_size = file_size * 8 * 2;
bb_stream = g_try_malloc(bb_size);
if (!bb_stream) {
sr_err("%s: Failed to allocate bitbang stream", __func__);
g_free(firmware);
return SR_ERR_MALLOC;
}
bbs = bb_stream;
p = firmware;
l = file_size;
while (l--) {
byte = *p++;
mask = 0x80;
while (mask) {
v = (byte & mask) ? BB_PIN_DIN : 0;
mask >>= 1;
*bbs++ = v | BB_PIN_CCLK;
*bbs++ = v;
}
}
g_free(firmware);
/* The transformation completed successfully, return the result. */
*bb_cmd = bb_stream;
*bb_cmd_size = bb_size;
return SR_OK;
}
static int upload_firmware(struct sr_context *ctx, struct dev_context *devc,
enum sigma_firmware_idx firmware_idx)
{
int ret;
uint8_t *buf;
uint8_t pins;
size_t buf_size;
const char *firmware;
/* Check for valid firmware file selection. */
if (firmware_idx >= ARRAY_SIZE(firmware_files))
return SR_ERR_ARG;
firmware = firmware_files[firmware_idx];
if (!firmware || !*firmware)
return SR_ERR_ARG;
/* Avoid downloading the same firmware multiple times. */
if (devc->firmware_idx == firmware_idx) {
sr_info("Not uploading firmware file '%s' again.", firmware);
return SR_OK;
}
devc->state.state = SIGMA_CONFIG;
/* Set the cable to bitbang mode. */
ret = ftdi_set_bitmode(&devc->ftdic, BB_PINMASK, BITMODE_BITBANG);
if (ret < 0) {
sr_err("ftdi_set_bitmode failed: %s",
ftdi_get_error_string(&devc->ftdic));
return SR_ERR;
}
ret = ftdi_set_baudrate(&devc->ftdic, BB_BITRATE);
if (ret < 0) {
sr_err("ftdi_set_baudrate failed: %s",
ftdi_get_error_string(&devc->ftdic));
return SR_ERR;
}
/* Initiate FPGA configuration mode. */
ret = sigma_fpga_init_bitbang(devc);
if (ret)
return ret;
/* Prepare wire format of the firmware image. */
ret = sigma_fw_2_bitbang(ctx, firmware, &buf, &buf_size);
if (ret != SR_OK) {
sr_err("Could not prepare file %s for download.", firmware);
return ret;
}
/* Write the FPGA netlist to the cable. */
sr_info("Uploading firmware file '%s'.", firmware);
sigma_write(devc, buf, buf_size);
g_free(buf);
/* Leave bitbang mode and discard pending input data. */
ret = ftdi_set_bitmode(&devc->ftdic, 0, BITMODE_RESET);
if (ret < 0) {
sr_err("ftdi_set_bitmode failed: %s",
ftdi_get_error_string(&devc->ftdic));
return SR_ERR;
}
ftdi_usb_purge_buffers(&devc->ftdic);
while (sigma_read(devc, &pins, sizeof(pins)) > 0)
;
/* Initialize the FPGA for logic-analyzer mode. */
ret = sigma_fpga_init_la(devc);
if (ret != SR_OK)
return ret;
/* Keep track of successful firmware download completion. */
devc->state.state = SIGMA_IDLE;
devc->firmware_idx = firmware_idx;
sr_info("Firmware uploaded.");
return SR_OK;
}
/*
* The driver supports user specified time or sample count limits. The
* device's hardware supports neither, and hardware compression prevents
* reliable detection of "fill levels" (currently reached sample counts)
* from register values during acquisition. That's why the driver needs
* to apply some heuristics:
*
* - The (optional) sample count limit and the (normalized) samplerate
* get mapped to an estimated duration for these samples' acquisition.
* - The (optional) time limit gets checked as well. The lesser of the
* two limits will terminate the data acquisition phase. The exact
* sample count limit gets enforced in session feed submission paths.
* - Some slack needs to be given to account for hardware pipelines as
* well as late storage of last chunks after compression thresholds
* are tripped. The resulting data set will span at least the caller
* specified period of time, which shall be perfectly acceptable.
*
* With RLE compression active, up to 64K sample periods can pass before
* a cluster accumulates. Which translates to 327ms at 200kHz. Add two
* times that period for good measure, one is not enough to flush the
* hardware pipeline (observation from an earlier experiment).
*/
SR_PRIV int sigma_set_acquire_timeout(struct dev_context *devc)
{
int ret;
GVariant *data;
uint64_t user_count, user_msecs;
uint64_t worst_cluster_time_ms;
uint64_t count_msecs, acquire_msecs;
sr_sw_limits_init(&devc->acq_limits);
/* Get sample count limit, convert to msecs. */
ret = sr_sw_limits_config_get(&devc->cfg_limits,
SR_CONF_LIMIT_SAMPLES, &data);
if (ret != SR_OK)
return ret;
user_count = g_variant_get_uint64(data);
g_variant_unref(data);
count_msecs = 0;
if (user_count)
count_msecs = 1000 * user_count / devc->samplerate + 1;
/* Get time limit, which is in msecs. */
ret = sr_sw_limits_config_get(&devc->cfg_limits,
SR_CONF_LIMIT_MSEC, &data);
if (ret != SR_OK)
return ret;
user_msecs = g_variant_get_uint64(data);
g_variant_unref(data);
/* Get the lesser of them, with both being optional. */
acquire_msecs = ~0ull;
if (user_count && count_msecs < acquire_msecs)
acquire_msecs = count_msecs;
if (user_msecs && user_msecs < acquire_msecs)
acquire_msecs = user_msecs;
if (acquire_msecs == ~0ull)
return SR_OK;
/* Add some slack, and use that timeout for acquisition. */
worst_cluster_time_ms = 1000 * 65536 / devc->samplerate;
acquire_msecs += 2 * worst_cluster_time_ms;
data = g_variant_new_uint64(acquire_msecs);
ret = sr_sw_limits_config_set(&devc->acq_limits,
SR_CONF_LIMIT_MSEC, data);
g_variant_unref(data);
if (ret != SR_OK)
return ret;
sr_sw_limits_acquisition_start(&devc->acq_limits);
return SR_OK;
}
/*
* Check whether a caller specified samplerate matches the device's
* hardware constraints (can be used for acquisition). Optionally yield
* a value that approximates the original spec.
*
* This routine assumes that input specs are in the 200kHz to 200MHz
* range of supported rates, and callers typically want to normalize a
* given value to the hardware capabilities. Values in the 50MHz range
* get rounded up by default, to avoid a more expensive check for the
* closest match, while higher sampling rate is always desirable during
* measurement. Input specs which exactly match hardware capabilities
* remain unaffected. Because 100/200MHz rates also limit the number of
* available channels, they are not suggested by this routine, instead
* callers need to pick them consciously.
*/
SR_PRIV int sigma_normalize_samplerate(uint64_t want_rate, uint64_t *have_rate)
{
uint64_t div, rate;
/* Accept exact matches for 100/200MHz. */
if (want_rate == SR_MHZ(200) || want_rate == SR_MHZ(100)) {
if (have_rate)
*have_rate = want_rate;
return SR_OK;
}
/* Accept 200kHz to 50MHz range, and map to near value. */
if (want_rate >= SR_KHZ(200) && want_rate <= SR_MHZ(50)) {
div = SR_MHZ(50) / want_rate;
rate = SR_MHZ(50) / div;
if (have_rate)
*have_rate = rate;
return SR_OK;
}
return SR_ERR_ARG;
}
SR_PRIV int sigma_set_samplerate(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct drv_context *drvc;
uint64_t samplerate;
int ret;
int num_channels;
devc = sdi->priv;
drvc = sdi->driver->context;
/* Accept any caller specified rate which the hardware supports. */
ret = sigma_normalize_samplerate(devc->samplerate, &samplerate);
if (ret != SR_OK)
return ret;
/*
* Depending on the samplerates of 200/100/50- MHz, specific
* firmware is required and higher rates might limit the set
* of available channels.
*/
num_channels = devc->num_channels;
if (samplerate <= SR_MHZ(50)) {
ret = upload_firmware(drvc->sr_ctx, devc, SIGMA_FW_50MHZ);
num_channels = 16;
} else if (samplerate == SR_MHZ(100)) {
ret = upload_firmware(drvc->sr_ctx, devc, SIGMA_FW_100MHZ);
num_channels = 8;
} else if (samplerate == SR_MHZ(200)) {
ret = upload_firmware(drvc->sr_ctx, devc, SIGMA_FW_200MHZ);
num_channels = 4;
}
/*
* The samplerate affects the number of available logic channels
* as well as a sample memory layout detail (the number of samples
* which the device will communicate within an "event").
*/
if (ret == SR_OK) {
devc->num_channels = num_channels;
devc->samples_per_event = 16 / devc->num_channels;
}
return ret;
}
/*
* Arrange for a session feed submit buffer. A queue where a number of
* samples gets accumulated to reduce the number of send calls. Which
* also enforces an optional sample count limit for data acquisition.
*
* The buffer holds up to CHUNK_SIZE bytes. The unit size is fixed (the
* driver provides a fixed channel layout regardless of samplerate).
*/
#define CHUNK_SIZE (4 * 1024 * 1024)
struct submit_buffer {
size_t unit_size;
size_t max_samples, curr_samples;
uint8_t *sample_data;
uint8_t *write_pointer;
struct sr_dev_inst *sdi;
struct sr_datafeed_packet packet;
struct sr_datafeed_logic logic;
};
static int alloc_submit_buffer(struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct submit_buffer *buffer;
size_t size;
devc = sdi->priv;
buffer = g_malloc0(sizeof(*buffer));
devc->buffer = buffer;
buffer->unit_size = sizeof(uint16_t);
size = CHUNK_SIZE;
size /= buffer->unit_size;
buffer->max_samples = size;
size *= buffer->unit_size;
buffer->sample_data = g_try_malloc0(size);
if (!buffer->sample_data)
return SR_ERR_MALLOC;
buffer->write_pointer = buffer->sample_data;
sr_sw_limits_init(&devc->feed_limits);
buffer->sdi = sdi;
memset(&buffer->logic, 0, sizeof(buffer->logic));
buffer->logic.unitsize = buffer->unit_size;
buffer->logic.data = buffer->sample_data;
memset(&buffer->packet, 0, sizeof(buffer->packet));
buffer->packet.type = SR_DF_LOGIC;
buffer->packet.payload = &buffer->logic;
return SR_OK;
}
static int setup_submit_limit(struct dev_context *devc)
{
struct sr_sw_limits *limits;
int ret;
GVariant *data;
uint64_t total;
limits = &devc->feed_limits;
ret = sr_sw_limits_config_get(&devc->cfg_limits,
SR_CONF_LIMIT_SAMPLES, &data);
if (ret != SR_OK)
return ret;
total = g_variant_get_uint64(data);
g_variant_unref(data);
sr_sw_limits_init(limits);
if (total) {
data = g_variant_new_uint64(total);
ret = sr_sw_limits_config_set(limits,
SR_CONF_LIMIT_SAMPLES, data);
g_variant_unref(data);
if (ret != SR_OK)
return ret;
}
sr_sw_limits_acquisition_start(limits);
return SR_OK;
}
static void free_submit_buffer(struct dev_context *devc)
{
struct submit_buffer *buffer;
if (!devc)
return;
buffer = devc->buffer;
if (!buffer)
return;
devc->buffer = NULL;
g_free(buffer->sample_data);
g_free(buffer);
}
static int flush_submit_buffer(struct dev_context *devc)
{
struct submit_buffer *buffer;
int ret;
buffer = devc->buffer;
/* Is queued sample data available? */
if (!buffer->curr_samples)
return SR_OK;
/* Submit to the session feed. */
buffer->logic.length = buffer->curr_samples * buffer->unit_size;
ret = sr_session_send(buffer->sdi, &buffer->packet);
if (ret != SR_OK)
return ret;
/* Rewind queue position. */
buffer->curr_samples = 0;
buffer->write_pointer = buffer->sample_data;
return SR_OK;
}
static int addto_submit_buffer(struct dev_context *devc,
uint16_t sample, size_t count)
{
struct submit_buffer *buffer;
struct sr_sw_limits *limits;
int ret;
buffer = devc->buffer;
limits = &devc->feed_limits;
if (sr_sw_limits_check(limits))
count = 0;
/*
* Individually accumulate and check each sample, such that
* accumulation between flushes won't exceed local storage, and
* enforcement of user specified limits is exact.
*/
while (count--) {
write_u16le_inc(&buffer->write_pointer, sample);
buffer->curr_samples++;
if (buffer->curr_samples == buffer->max_samples) {
ret = flush_submit_buffer(devc);
if (ret != SR_OK)
return ret;
}
sr_sw_limits_update_samples_read(limits, 1);
if (sr_sw_limits_check(limits))
break;
}
return SR_OK;
}
/*
* In 100 and 200 MHz mode, only a single pin rising/falling can be
* set as trigger. In other modes, two rising/falling triggers can be set,
* in addition to value/mask trigger for any number of channels.
*
* The Sigma supports complex triggers using boolean expressions, but this
* has not been implemented yet.
*/
SR_PRIV int sigma_convert_trigger(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct sr_trigger *trigger;
struct sr_trigger_stage *stage;
struct sr_trigger_match *match;
const GSList *l, *m;
int channelbit, trigger_set;
devc = sdi->priv;
memset(&devc->trigger, 0, sizeof(struct sigma_trigger));
if (!(trigger = sr_session_trigger_get(sdi->session)))
return SR_OK;
trigger_set = 0;
for (l = trigger->stages; l; l = l->next) {
stage = l->data;
for (m = stage->matches; m; m = m->next) {
match = m->data;
/* Ignore disabled channels with a trigger. */
if (!match->channel->enabled)
continue;
channelbit = 1 << match->channel->index;
if (devc->samplerate >= SR_MHZ(100)) {
/* Fast trigger support. */
if (trigger_set) {
sr_err("Only a single pin trigger is "
"supported in 100 and 200MHz mode.");
return SR_ERR;
}
if (match->match == SR_TRIGGER_FALLING) {
devc->trigger.fallingmask |= channelbit;
} else if (match->match == SR_TRIGGER_RISING) {
devc->trigger.risingmask |= channelbit;
} else {
sr_err("Only rising/falling trigger is "
"supported in 100 and 200MHz mode.");
return SR_ERR;
}
trigger_set++;
} else {
/* Simple trigger support (event). */
if (match->match == SR_TRIGGER_ONE) {
devc->trigger.simplevalue |= channelbit;
devc->trigger.simplemask |= channelbit;
} else if (match->match == SR_TRIGGER_ZERO) {
devc->trigger.simplevalue &= ~channelbit;
devc->trigger.simplemask |= channelbit;
} else if (match->match == SR_TRIGGER_FALLING) {
devc->trigger.fallingmask |= channelbit;
trigger_set++;
} else if (match->match == SR_TRIGGER_RISING) {
devc->trigger.risingmask |= channelbit;
trigger_set++;
}
/*
* Actually, Sigma supports 2 rising/falling triggers,
* but they are ORed and the current trigger syntax
* does not permit ORed triggers.
*/
if (trigger_set > 1) {
sr_err("Only 1 rising/falling trigger is supported.");
return SR_ERR;
}
}
}
}
return SR_OK;
}
/* Software trigger to determine exact trigger position. */
static int get_trigger_offset(uint8_t *samples, uint16_t last_sample,
struct sigma_trigger *t)
{
const uint8_t *rdptr;
int i;
uint16_t sample;
rdptr = samples;
sample = 0;
for (i = 0; i < 8; i++) {
if (i > 0)
last_sample = sample;
sample = read_u16le_inc(&rdptr);
/* Simple triggers. */
if ((sample & t->simplemask) != t->simplevalue)
continue;
/* Rising edge. */
if (((last_sample & t->risingmask) != 0) ||
((sample & t->risingmask) != t->risingmask))
continue;
/* Falling edge. */
if ((last_sample & t->fallingmask) != t->fallingmask ||
(sample & t->fallingmask) != 0)
continue;
break;
}
/* If we did not match, return original trigger pos. */
return i & 0x7;
}
static gboolean sample_matches_trigger(struct dev_context *devc, uint16_t sample)
{
/* TODO
* Check whether the combination of this very sample and the
* previous state match the configured trigger condition. This
* improves the resolution of the trigger marker's position.
* The hardware provided position is coarse, and may point to
* a position before the actual match.
*
* See the previous get_trigger_offset() implementation. This
* code needs to get re-used here.
*/
(void)devc;
(void)sample;
(void)get_trigger_offset;
return FALSE;
}
static int check_and_submit_sample(struct dev_context *devc,
uint16_t sample, size_t count, gboolean check_trigger)
{
gboolean triggered;
int ret;
triggered = check_trigger && sample_matches_trigger(devc, sample);
if (triggered) {
ret = flush_submit_buffer(devc);
if (ret != SR_OK)
return ret;
ret = std_session_send_df_trigger(devc->buffer->sdi);
if (ret != SR_OK)
return ret;
}
ret = addto_submit_buffer(devc, sample, count);
if (ret != SR_OK)
return ret;
return SR_OK;
}
/*
* Return the timestamp of "DRAM cluster".
*/
static uint16_t sigma_dram_cluster_ts(struct sigma_dram_cluster *cluster)
{
return read_u16le(&cluster->timestamp[0]);
}
/*
* Return one 16bit data entity of a DRAM cluster at the specified index.
*/
static uint16_t sigma_dram_cluster_data(struct sigma_dram_cluster *cl, int idx)
{
return read_u16le(&cl->samples[idx].sample[0]);
}
/*
* Deinterlace sample data that was retrieved at 100MHz samplerate.
* One 16bit item contains two samples of 8bits each. The bits of
* multiple samples are interleaved.
*/
static uint16_t sigma_deinterlace_100mhz_data(uint16_t indata, int idx)
{
uint16_t outdata;
indata >>= idx;
outdata = 0;
outdata |= (indata >> (0 * 2 - 0)) & (1 << 0);
outdata |= (indata >> (1 * 2 - 1)) & (1 << 1);
outdata |= (indata >> (2 * 2 - 2)) & (1 << 2);
outdata |= (indata >> (3 * 2 - 3)) & (1 << 3);
outdata |= (indata >> (4 * 2 - 4)) & (1 << 4);
outdata |= (indata >> (5 * 2 - 5)) & (1 << 5);
outdata |= (indata >> (6 * 2 - 6)) & (1 << 6);
outdata |= (indata >> (7 * 2 - 7)) & (1 << 7);
return outdata;
}
/*
* Deinterlace sample data that was retrieved at 200MHz samplerate.
* One 16bit item contains four samples of 4bits each. The bits of
* multiple samples are interleaved.
*/
static uint16_t sigma_deinterlace_200mhz_data(uint16_t indata, int idx)
{
uint16_t outdata;
indata >>= idx;
outdata = 0;
outdata |= (indata >> (0 * 4 - 0)) & (1 << 0);
outdata |= (indata >> (1 * 4 - 1)) & (1 << 1);
outdata |= (indata >> (2 * 4 - 2)) & (1 << 2);
outdata |= (indata >> (3 * 4 - 3)) & (1 << 3);
return outdata;
}
static void sigma_decode_dram_cluster(struct dev_context *devc,
struct sigma_dram_cluster *dram_cluster,
size_t events_in_cluster, gboolean triggered)
{
struct sigma_state *ss;
uint16_t tsdiff, ts, sample, item16;
unsigned int i;
if (!devc->use_triggers || !ASIX_SIGMA_WITH_TRIGGER)
triggered = FALSE;
/*
* If this cluster is not adjacent to the previously received
* cluster, then send the appropriate number of samples with the
* previous values to the sigrok session. This "decodes RLE".
*
* These samples cannot match the trigger since they just repeat
* the previously submitted data pattern. (This assumption holds
* for simple level and edge triggers. It would not for timed or
* counted conditions, which currently are not supported.)
*/
ss = &devc->state;
ts = sigma_dram_cluster_ts(dram_cluster);
tsdiff = ts - ss->lastts;
if (tsdiff > 0) {
size_t count;
sample = ss->lastsample;
count = tsdiff * devc->samples_per_event;
(void)check_and_submit_sample(devc, sample, count, FALSE);
}
ss->lastts = ts + EVENTS_PER_CLUSTER;
/*
* Grab sample data from the current cluster and prepare their
* submission to the session feed. Handle samplerate dependent
* memory layout of sample data. Accumulation of data chunks
* before submission is transparent to this code path, specific
* buffer depth is neither assumed nor required here.
*/
sample = 0;
for (i = 0; i < events_in_cluster; i++) {
item16 = sigma_dram_cluster_data(dram_cluster, i);
if (devc->samplerate == SR_MHZ(200)) {
sample = sigma_deinterlace_200mhz_data(item16, 0);
check_and_submit_sample(devc, sample, 1, triggered);
sample = sigma_deinterlace_200mhz_data(item16, 1);
check_and_submit_sample(devc, sample, 1, triggered);
sample = sigma_deinterlace_200mhz_data(item16, 2);
check_and_submit_sample(devc, sample, 1, triggered);
sample = sigma_deinterlace_200mhz_data(item16, 3);
check_and_submit_sample(devc, sample, 1, triggered);
} else if (devc->samplerate == SR_MHZ(100)) {
sample = sigma_deinterlace_100mhz_data(item16, 0);
check_and_submit_sample(devc, sample, 1, triggered);
sample = sigma_deinterlace_100mhz_data(item16, 1);
check_and_submit_sample(devc, sample, 1, triggered);
} else {
sample = item16;
check_and_submit_sample(devc, sample, 1, triggered);
}
}
ss->lastsample = sample;
}
/*
* Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster.
* Each event is 20ns apart, and can contain multiple samples.
*
* For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart.
* For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart.
* For 50 MHz and below, events contain one sample for each channel,
* spread 20 ns apart.
*/
static int decode_chunk_ts(struct dev_context *devc,
struct sigma_dram_line *dram_line,
size_t events_in_line, size_t trigger_event)
{
struct sigma_dram_cluster *dram_cluster;
unsigned int clusters_in_line;
unsigned int events_in_cluster;
unsigned int i;
uint32_t trigger_cluster;
clusters_in_line = events_in_line;
clusters_in_line += EVENTS_PER_CLUSTER - 1;
clusters_in_line /= EVENTS_PER_CLUSTER;
trigger_cluster = ~0;
/* Check if trigger is in this chunk. */
if (trigger_event < EVENTS_PER_ROW) {
if (devc->samplerate <= SR_MHZ(50)) {
trigger_event -= MIN(EVENTS_PER_CLUSTER - 1,
trigger_event);
}
/* Find in which cluster the trigger occurred. */
trigger_cluster = trigger_event / EVENTS_PER_CLUSTER;
}
/* For each full DRAM cluster. */
for (i = 0; i < clusters_in_line; i++) {
dram_cluster = &dram_line->cluster[i];
/* The last cluster might not be full. */
if ((i == clusters_in_line - 1) &&
(events_in_line % EVENTS_PER_CLUSTER)) {
events_in_cluster = events_in_line % EVENTS_PER_CLUSTER;
} else {
events_in_cluster = EVENTS_PER_CLUSTER;
}
sigma_decode_dram_cluster(devc, dram_cluster,
events_in_cluster, i == trigger_cluster);
}
return SR_OK;
}
static int download_capture(struct sr_dev_inst *sdi)
{
const uint32_t chunks_per_read = 32;
struct dev_context *devc;
struct sigma_dram_line *dram_line;
int bufsz;
uint32_t stoppos, triggerpos;
uint8_t modestatus;
uint32_t i;
uint32_t dl_lines_total, dl_lines_curr, dl_lines_done;
uint32_t dl_first_line, dl_line;
uint32_t dl_events_in_line;
uint32_t trg_line, trg_event;
int ret;
devc = sdi->priv;
dl_events_in_line = EVENTS_PER_ROW;
sr_info("Downloading sample data.");
devc->state.state = SIGMA_DOWNLOAD;
/*
* Ask the hardware to stop data acquisition. Reception of the
* FORCESTOP request makes the hardware "disable RLE" (store
* clusters to DRAM regardless of whether pin state changes) and
* raise the POSTTRIGGERED flag.
*/
sigma_set_register(devc, WRITE_MODE, WMR_FORCESTOP | WMR_SDRAMWRITEEN);
do {
ret = sigma_read_register(devc, READ_MODE,
&modestatus, sizeof(modestatus));
if (ret != sizeof(modestatus)) {
sr_err("Could not poll for post-trigger condition.");
return FALSE;
}
} while (!(modestatus & RMR_POSTTRIGGERED));
/* Set SDRAM Read Enable. */
sigma_set_register(devc, WRITE_MODE, WMR_SDRAMREADEN);
/* Get the current position. */
sigma_read_pos(devc, &stoppos, &triggerpos);
/* Check if trigger has fired. */
ret = sigma_read_register(devc, READ_MODE,
&modestatus, sizeof(modestatus));
if (ret != sizeof(modestatus)) {
sr_err("Could not query trigger hit.");
return FALSE;
}
trg_line = ~0;
trg_event = ~0;
if (modestatus & RMR_TRIGGERED) {
trg_line = triggerpos >> ROW_SHIFT;
trg_event = triggerpos & ROW_MASK;
}
/*
* Determine how many "DRAM lines" of 1024 bytes each we need to
* retrieve from the Sigma hardware, so that we have a complete
* set of samples. Note that the last line need not contain 64
* clusters, it might be partially filled only.
*
* When RMR_ROUND is set, the circular buffer in DRAM has wrapped
* around. Since the status of the very next line is uncertain in
* that case, we skip it and start reading from the next line.
*/
dl_first_line = 0;
dl_lines_total = (stoppos >> ROW_SHIFT) + 1;
if (modestatus & RMR_ROUND) {
dl_first_line = dl_lines_total + 1;
dl_lines_total = ROW_COUNT - 2;
}
dram_line = g_try_malloc0(chunks_per_read * sizeof(*dram_line));
if (!dram_line)
return FALSE;
ret = alloc_submit_buffer(sdi);
if (ret != SR_OK)
return FALSE;
ret = setup_submit_limit(devc);
if (ret != SR_OK)
return FALSE;
dl_lines_done = 0;
while (dl_lines_total > dl_lines_done) {
/* We can download only up-to 32 DRAM lines in one go! */
dl_lines_curr = MIN(chunks_per_read, dl_lines_total - dl_lines_done);
dl_line = dl_first_line + dl_lines_done;
dl_line %= ROW_COUNT;
bufsz = sigma_read_dram(devc, dl_line, dl_lines_curr,
(uint8_t *)dram_line);
/* TODO: Check bufsz. For now, just avoid compiler warnings. */
(void)bufsz;
/* This is the first DRAM line, so find the initial timestamp. */
if (dl_lines_done == 0) {
devc->state.lastts =
sigma_dram_cluster_ts(&dram_line[0].cluster[0]);
devc->state.lastsample = 0;
}
for (i = 0; i < dl_lines_curr; i++) {
uint32_t trigger_event = ~0;
/* The last "DRAM line" need not span its full length. */
if (dl_lines_done + i == dl_lines_total - 1)
dl_events_in_line = stoppos & ROW_MASK;
/* Test if the trigger happened on this line. */
if (dl_lines_done + i == trg_line)
trigger_event = trg_event;
decode_chunk_ts(devc, dram_line + i,
dl_events_in_line, trigger_event);
}
dl_lines_done += dl_lines_curr;
}
flush_submit_buffer(devc);
free_submit_buffer(devc);
g_free(dram_line);
std_session_send_df_end(sdi);
devc->state.state = SIGMA_IDLE;
sr_dev_acquisition_stop(sdi);
return TRUE;
}
/*
* Periodically check the Sigma status when in CAPTURE mode. This routine
* checks whether the configured sample count or sample time have passed,
* and will stop acquisition and download the acquired samples.
*/
static int sigma_capture_mode(struct sr_dev_inst *sdi)
{
struct dev_context *devc;
devc = sdi->priv;
if (sr_sw_limits_check(&devc->acq_limits))
return download_capture(sdi);
return TRUE;
}
SR_PRIV int sigma_receive_data(int fd, int revents, void *cb_data)
{
struct sr_dev_inst *sdi;
struct dev_context *devc;
(void)fd;
(void)revents;
sdi = cb_data;
devc = sdi->priv;
if (devc->state.state == SIGMA_IDLE)
return TRUE;
/*
* When the application has requested to stop the acquisition,
* then immediately start downloading sample data. Otherwise
* keep checking configured limits which will terminate the
* acquisition and initiate download.
*/
if (devc->state.state == SIGMA_STOPPING)
return download_capture(sdi);
if (devc->state.state == SIGMA_CAPTURE)
return sigma_capture_mode(sdi);
return TRUE;
}
/* Build a LUT entry used by the trigger functions. */
static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry)
{
int i, j, k, bit;
/* For each quad channel. */
for (i = 0; i < 4; i++) {
entry[i] = 0xffff;
/* For each bit in LUT. */
for (j = 0; j < 16; j++) {
/* For each channel in quad. */
for (k = 0; k < 4; k++) {
bit = 1 << (i * 4 + k);
/* Set bit in entry */
if ((mask & bit) && ((!(value & bit)) !=
(!(j & (1 << k)))))
entry[i] &= ~(1 << j);
}
}
}
}
/* Add a logical function to LUT mask. */
static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
int index, int neg, uint16_t *mask)
{
int i, j;
int x[2][2], tmp, a, b, aset, bset, rset;
memset(x, 0, 4 * sizeof(int));
/* Trigger detect condition. */
switch (oper) {
case OP_LEVEL:
x[0][1] = 1;
x[1][1] = 1;
break;
case OP_NOT:
x[0][0] = 1;
x[1][0] = 1;
break;
case OP_RISE:
x[0][1] = 1;
break;
case OP_FALL:
x[1][0] = 1;
break;
case OP_RISEFALL:
x[0][1] = 1;
x[1][0] = 1;
break;
case OP_NOTRISE:
x[1][1] = 1;
x[0][0] = 1;
x[1][0] = 1;
break;
case OP_NOTFALL:
x[1][1] = 1;
x[0][0] = 1;
x[0][1] = 1;
break;
case OP_NOTRISEFALL:
x[1][1] = 1;
x[0][0] = 1;
break;
}
/* Transpose if neg is set. */
if (neg) {
for (i = 0; i < 2; i++) {
for (j = 0; j < 2; j++) {
tmp = x[i][j];
x[i][j] = x[1 - i][1 - j];
x[1 - i][1 - j] = tmp;
}
}
}
/* Update mask with function. */
for (i = 0; i < 16; i++) {
a = (i >> (2 * index + 0)) & 1;
b = (i >> (2 * index + 1)) & 1;
aset = (*mask >> i) & 1;
bset = x[b][a];
rset = 0;
if (func == FUNC_AND || func == FUNC_NAND)
rset = aset & bset;
else if (func == FUNC_OR || func == FUNC_NOR)
rset = aset | bset;
else if (func == FUNC_XOR || func == FUNC_NXOR)
rset = aset ^ bset;
if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR)
rset = !rset;
*mask &= ~(1 << i);
if (rset)
*mask |= 1 << i;
}
}
/*
* Build trigger LUTs used by 50 MHz and lower sample rates for supporting
* simple pin change and state triggers. Only two transitions (rise/fall) can be
* set at any time, but a full mask and value can be set (0/1).
*/
SR_PRIV int sigma_build_basic_trigger(struct dev_context *devc,
struct triggerlut *lut)
{
int i,j;
uint16_t masks[2] = { 0, 0 };
memset(lut, 0, sizeof(struct triggerlut));
/* Constant for simple triggers. */
lut->m4 = 0xa000;
/* Value/mask trigger support. */
build_lut_entry(devc->trigger.simplevalue, devc->trigger.simplemask,
lut->m2d);
/* Rise/fall trigger support. */
for (i = 0, j = 0; i < 16; i++) {
if (devc->trigger.risingmask & (1 << i) ||
devc->trigger.fallingmask & (1 << i))
masks[j++] = 1 << i;
}
build_lut_entry(masks[0], masks[0], lut->m0d);
build_lut_entry(masks[1], masks[1], lut->m1d);
/* Add glue logic */
if (masks[0] || masks[1]) {
/* Transition trigger. */
if (masks[0] & devc->trigger.risingmask)
add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3);
if (masks[0] & devc->trigger.fallingmask)
add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3);
if (masks[1] & devc->trigger.risingmask)
add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3);
if (masks[1] & devc->trigger.fallingmask)
add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3);
} else {
/* Only value/mask trigger. */
lut->m3 = 0xffff;
}
/* Triggertype: event. */
lut->params.selres = 3;
return SR_OK;
}