1625 lines
45 KiB
C
1625 lines
45 KiB
C
/*
|
|
* This file is part of the libsigrok project.
|
|
*
|
|
* Copyright (C) 2010-2012 Håvard Espeland <gus@ping.uio.no>,
|
|
* Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
|
|
* Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/*
|
|
* ASIX SIGMA/SIGMA2 logic analyzer driver
|
|
*/
|
|
|
|
#include <config.h>
|
|
#include "protocol.h"
|
|
|
|
/*
|
|
* The ASIX SIGMA hardware supports fixed 200MHz and 100MHz sample rates
|
|
* (by means of separate firmware images). As well as 50MHz divided by
|
|
* an integer divider in the 1..256 range (by the "typical" firmware).
|
|
* Which translates to a strict lower boundary of around 195kHz.
|
|
*
|
|
* This driver "suggests" a subset of the available rates by listing a
|
|
* few discrete values, while setter routines accept any user specified
|
|
* rate that is supported by the hardware.
|
|
*/
|
|
SR_PRIV const uint64_t samplerates[] = {
|
|
/* 50MHz and integer divider. 1/2/5 steps (where possible). */
|
|
SR_KHZ(200), SR_KHZ(500),
|
|
SR_MHZ(1), SR_MHZ(2), SR_MHZ(5),
|
|
SR_MHZ(10), SR_MHZ(25), SR_MHZ(50),
|
|
/* 100MHz/200MHz, fixed rates in special firmware. */
|
|
SR_MHZ(100), SR_MHZ(200),
|
|
};
|
|
|
|
SR_PRIV const size_t samplerates_count = ARRAY_SIZE(samplerates);
|
|
|
|
static const char *firmware_files[] = {
|
|
[SIGMA_FW_50MHZ] = "asix-sigma-50.fw", /* 50MHz, 8bit divider. */
|
|
[SIGMA_FW_100MHZ] = "asix-sigma-100.fw", /* 100MHz, fixed. */
|
|
[SIGMA_FW_200MHZ] = "asix-sigma-200.fw", /* 200MHz, fixed. */
|
|
[SIGMA_FW_SYNC] = "asix-sigma-50sync.fw", /* Sync from external pin. */
|
|
[SIGMA_FW_FREQ] = "asix-sigma-phasor.fw", /* Frequency counter. */
|
|
};
|
|
|
|
#define SIGMA_FIRMWARE_SIZE_LIMIT (256 * 1024)
|
|
|
|
static int sigma_read(struct dev_context *devc, void *buf, size_t size)
|
|
{
|
|
int ret;
|
|
|
|
ret = ftdi_read_data(&devc->ftdic, (unsigned char *)buf, size);
|
|
if (ret < 0) {
|
|
sr_err("ftdi_read_data failed: %s",
|
|
ftdi_get_error_string(&devc->ftdic));
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int sigma_write(struct dev_context *devc, const void *buf, size_t size)
|
|
{
|
|
int ret;
|
|
|
|
ret = ftdi_write_data(&devc->ftdic, buf, size);
|
|
if (ret < 0)
|
|
sr_err("ftdi_write_data failed: %s",
|
|
ftdi_get_error_string(&devc->ftdic));
|
|
else if ((size_t) ret != size)
|
|
sr_err("ftdi_write_data did not complete write.");
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* NOTE: We chose the buffer size to be large enough to hold any write to the
|
|
* device. We still print a message just in case.
|
|
*/
|
|
SR_PRIV int sigma_write_register(struct dev_context *devc,
|
|
uint8_t reg, uint8_t *data, size_t len)
|
|
{
|
|
uint8_t buf[80], *wrptr;
|
|
size_t idx, count;
|
|
int ret;
|
|
|
|
if (2 + 2 * len > sizeof(buf)) {
|
|
sr_err("Write buffer too small to write %zu bytes.", len);
|
|
return SR_ERR_BUG;
|
|
}
|
|
|
|
wrptr = buf;
|
|
write_u8_inc(&wrptr, REG_ADDR_LOW | (reg & 0xf));
|
|
write_u8_inc(&wrptr, REG_ADDR_HIGH | (reg >> 4));
|
|
for (idx = 0; idx < len; idx++) {
|
|
write_u8_inc(&wrptr, REG_DATA_LOW | (data[idx] & 0xf));
|
|
write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | (data[idx] >> 4));
|
|
}
|
|
count = wrptr - buf;
|
|
ret = sigma_write(devc, buf, count);
|
|
if (ret != SR_OK)
|
|
return ret;
|
|
|
|
return SR_OK;
|
|
}
|
|
|
|
SR_PRIV int sigma_set_register(struct dev_context *devc,
|
|
uint8_t reg, uint8_t value)
|
|
{
|
|
return sigma_write_register(devc, reg, &value, sizeof(value));
|
|
}
|
|
|
|
static int sigma_read_register(struct dev_context *devc,
|
|
uint8_t reg, uint8_t *data, size_t len)
|
|
{
|
|
uint8_t buf[3], *wrptr;
|
|
|
|
wrptr = buf;
|
|
write_u8_inc(&wrptr, REG_ADDR_LOW | (reg & 0xf));
|
|
write_u8_inc(&wrptr, REG_ADDR_HIGH | (reg >> 4));
|
|
write_u8_inc(&wrptr, REG_READ_ADDR);
|
|
sigma_write(devc, buf, wrptr - buf);
|
|
|
|
return sigma_read(devc, data, len);
|
|
}
|
|
|
|
static int sigma_read_pos(struct dev_context *devc,
|
|
uint32_t *stoppos, uint32_t *triggerpos)
|
|
{
|
|
/*
|
|
* Read 6 registers starting at trigger position LSB.
|
|
* Which yields two 24bit counter values.
|
|
*/
|
|
const uint8_t buf[] = {
|
|
REG_ADDR_LOW | READ_TRIGGER_POS_LOW,
|
|
REG_READ_ADDR | REG_ADDR_INC,
|
|
REG_READ_ADDR | REG_ADDR_INC,
|
|
REG_READ_ADDR | REG_ADDR_INC,
|
|
REG_READ_ADDR | REG_ADDR_INC,
|
|
REG_READ_ADDR | REG_ADDR_INC,
|
|
REG_READ_ADDR | REG_ADDR_INC,
|
|
}, *rdptr;
|
|
uint8_t result[6];
|
|
|
|
sigma_write(devc, buf, sizeof(buf));
|
|
|
|
sigma_read(devc, result, sizeof(result));
|
|
|
|
rdptr = &result[0];
|
|
*triggerpos = read_u24le_inc(&rdptr);
|
|
*stoppos = read_u24le_inc(&rdptr);
|
|
|
|
/*
|
|
* These positions consist of "the memory row" in the MSB fields,
|
|
* and "an event index" within the row in the LSB fields. Part
|
|
* of the memory row's content is sample data, another part is
|
|
* timestamps.
|
|
*
|
|
* The retrieved register values point to after the captured
|
|
* position. So they need to get decremented, and adjusted to
|
|
* cater for the timestamps when the decrement carries over to
|
|
* a different memory row.
|
|
*/
|
|
if ((--*stoppos & ROW_MASK) == ROW_MASK)
|
|
*stoppos -= CLUSTERS_PER_ROW;
|
|
if ((--*triggerpos & ROW_MASK) == ROW_MASK)
|
|
*triggerpos -= CLUSTERS_PER_ROW;
|
|
|
|
return SR_OK;
|
|
}
|
|
|
|
static int sigma_read_dram(struct dev_context *devc,
|
|
uint16_t startchunk, size_t numchunks, uint8_t *data)
|
|
{
|
|
uint8_t buf[128], *wrptr;
|
|
size_t chunk;
|
|
int sel;
|
|
gboolean is_last;
|
|
|
|
if (2 + 3 * numchunks > ARRAY_SIZE(buf)) {
|
|
sr_err("Read buffer too small to read %zu DRAM rows", numchunks);
|
|
return SR_ERR_BUG;
|
|
}
|
|
|
|
/* Communicate DRAM start address (memory row, aka samples line). */
|
|
wrptr = buf;
|
|
write_u8_inc(&wrptr, startchunk >> 8);
|
|
write_u8_inc(&wrptr, startchunk & 0xff);
|
|
sigma_write_register(devc, WRITE_MEMROW, buf, wrptr - buf);
|
|
|
|
/*
|
|
* Access DRAM content. Fetch from DRAM to FPGA's internal RAM,
|
|
* then transfer via USB. Interleave the FPGA's DRAM access and
|
|
* USB transfer, use alternating buffers (0/1) in the process.
|
|
*/
|
|
wrptr = buf;
|
|
write_u8_inc(&wrptr, REG_DRAM_BLOCK);
|
|
write_u8_inc(&wrptr, REG_DRAM_WAIT_ACK);
|
|
for (chunk = 0; chunk < numchunks; chunk++) {
|
|
sel = chunk % 2;
|
|
is_last = chunk == numchunks - 1;
|
|
if (!is_last)
|
|
write_u8_inc(&wrptr, REG_DRAM_BLOCK | REG_DRAM_SEL_BOOL(!sel));
|
|
write_u8_inc(&wrptr, REG_DRAM_BLOCK_DATA | REG_DRAM_SEL_BOOL(sel));
|
|
if (!is_last)
|
|
write_u8_inc(&wrptr, REG_DRAM_WAIT_ACK);
|
|
}
|
|
sigma_write(devc, buf, wrptr - buf);
|
|
|
|
return sigma_read(devc, data, numchunks * ROW_LENGTH_BYTES);
|
|
}
|
|
|
|
/* Upload trigger look-up tables to Sigma. */
|
|
SR_PRIV int sigma_write_trigger_lut(struct dev_context *devc,
|
|
struct triggerlut *lut)
|
|
{
|
|
int i;
|
|
uint8_t tmp[2];
|
|
uint16_t bit;
|
|
uint8_t buf[6], *wrptr, regval;
|
|
|
|
/* Transpose the table and send to Sigma. */
|
|
for (i = 0; i < 16; i++) {
|
|
bit = 1 << i;
|
|
|
|
tmp[0] = tmp[1] = 0;
|
|
|
|
if (lut->m2d[0] & bit)
|
|
tmp[0] |= 0x01;
|
|
if (lut->m2d[1] & bit)
|
|
tmp[0] |= 0x02;
|
|
if (lut->m2d[2] & bit)
|
|
tmp[0] |= 0x04;
|
|
if (lut->m2d[3] & bit)
|
|
tmp[0] |= 0x08;
|
|
|
|
if (lut->m3 & bit)
|
|
tmp[0] |= 0x10;
|
|
if (lut->m3s & bit)
|
|
tmp[0] |= 0x20;
|
|
if (lut->m4 & bit)
|
|
tmp[0] |= 0x40;
|
|
|
|
if (lut->m0d[0] & bit)
|
|
tmp[1] |= 0x01;
|
|
if (lut->m0d[1] & bit)
|
|
tmp[1] |= 0x02;
|
|
if (lut->m0d[2] & bit)
|
|
tmp[1] |= 0x04;
|
|
if (lut->m0d[3] & bit)
|
|
tmp[1] |= 0x08;
|
|
|
|
if (lut->m1d[0] & bit)
|
|
tmp[1] |= 0x10;
|
|
if (lut->m1d[1] & bit)
|
|
tmp[1] |= 0x20;
|
|
if (lut->m1d[2] & bit)
|
|
tmp[1] |= 0x40;
|
|
if (lut->m1d[3] & bit)
|
|
tmp[1] |= 0x80;
|
|
|
|
/*
|
|
* This logic seems redundant, but separates the value
|
|
* determination from the wire format, and is useful
|
|
* during future maintenance and research.
|
|
*/
|
|
wrptr = buf;
|
|
write_u8_inc(&wrptr, tmp[0]);
|
|
write_u8_inc(&wrptr, tmp[1]);
|
|
sigma_write_register(devc, WRITE_TRIGGER_SELECT, buf, wrptr - buf);
|
|
sigma_set_register(devc, WRITE_TRIGGER_SELECT2, 0x30 | i);
|
|
}
|
|
|
|
/* Send the parameters */
|
|
wrptr = buf;
|
|
regval = 0;
|
|
regval |= lut->params.selc << 6;
|
|
regval |= lut->params.selpresc << 0;
|
|
write_u8_inc(&wrptr, regval);
|
|
regval = 0;
|
|
regval |= lut->params.selinc << 6;
|
|
regval |= lut->params.selres << 4;
|
|
regval |= lut->params.sela << 2;
|
|
regval |= lut->params.selb << 0;
|
|
write_u8_inc(&wrptr, regval);
|
|
write_u16le_inc(&wrptr, lut->params.cmpb);
|
|
write_u16le_inc(&wrptr, lut->params.cmpa);
|
|
sigma_write_register(devc, WRITE_TRIGGER_SELECT, buf, wrptr - buf);
|
|
|
|
return SR_OK;
|
|
}
|
|
|
|
/*
|
|
* See Xilinx UG332 for Spartan-3 FPGA configuration. The SIGMA device
|
|
* uses FTDI bitbang mode for netlist download in slave serial mode.
|
|
* (LATER: The OMEGA device's cable contains a more capable FTDI chip
|
|
* and uses MPSSE mode for bitbang. -- Can we also use FT232H in FT245
|
|
* compatible bitbang mode? For maximum code re-use and reduced libftdi
|
|
* dependency? See section 3.5.5 of FT232H: D0 clk, D1 data (out), D2
|
|
* data (in), D3 select, D4-7 GPIOL. See section 3.5.7 for MCU FIFO.)
|
|
*
|
|
* 750kbps rate (four times the speed of sigmalogan) works well for
|
|
* netlist download. All pins except INIT_B are output pins during
|
|
* configuration download.
|
|
*
|
|
* Some pins are inverted as a byproduct of level shifting circuitry.
|
|
* That's why high CCLK level (from the cable's point of view) is idle
|
|
* from the FPGA's perspective.
|
|
*
|
|
* The vendor's literature discusses a "suicide sequence" which ends
|
|
* regular FPGA execution and should be sent before entering bitbang
|
|
* mode and sending configuration data. Set D7 and toggle D2, D3, D4
|
|
* a few times.
|
|
*/
|
|
#define BB_PIN_CCLK (1 << 0) /* D0, CCLK */
|
|
#define BB_PIN_PROG (1 << 1) /* D1, PROG */
|
|
#define BB_PIN_D2 (1 << 2) /* D2, (part of) SUICIDE */
|
|
#define BB_PIN_D3 (1 << 3) /* D3, (part of) SUICIDE */
|
|
#define BB_PIN_D4 (1 << 4) /* D4, (part of) SUICIDE (unused?) */
|
|
#define BB_PIN_INIT (1 << 5) /* D5, INIT, input pin */
|
|
#define BB_PIN_DIN (1 << 6) /* D6, DIN */
|
|
#define BB_PIN_D7 (1 << 7) /* D7, (part of) SUICIDE */
|
|
|
|
#define BB_BITRATE (750 * 1000)
|
|
#define BB_PINMASK (0xff & ~BB_PIN_INIT)
|
|
|
|
/*
|
|
* Initiate slave serial mode for configuration download. Which is done
|
|
* by pulsing PROG_B and sensing INIT_B. Make sure CCLK is idle before
|
|
* initiating the configuration download.
|
|
*
|
|
* Run a "suicide sequence" first to terminate the regular FPGA operation
|
|
* before reconfiguration. The FTDI cable is single channel, and shares
|
|
* pins which are used for data communication in FIFO mode with pins that
|
|
* are used for FPGA configuration in bitbang mode. Hardware defaults for
|
|
* unconfigured hardware, and runtime conditions after FPGA configuration
|
|
* need to cooperate such that re-configuration of the FPGA can start.
|
|
*/
|
|
static int sigma_fpga_init_bitbang_once(struct dev_context *devc)
|
|
{
|
|
const uint8_t suicide[] = {
|
|
BB_PIN_D7 | BB_PIN_D2,
|
|
BB_PIN_D7 | BB_PIN_D2,
|
|
BB_PIN_D7 | BB_PIN_D3,
|
|
BB_PIN_D7 | BB_PIN_D2,
|
|
BB_PIN_D7 | BB_PIN_D3,
|
|
BB_PIN_D7 | BB_PIN_D2,
|
|
BB_PIN_D7 | BB_PIN_D3,
|
|
BB_PIN_D7 | BB_PIN_D2,
|
|
};
|
|
const uint8_t init_array[] = {
|
|
BB_PIN_CCLK,
|
|
BB_PIN_CCLK | BB_PIN_PROG,
|
|
BB_PIN_CCLK | BB_PIN_PROG,
|
|
BB_PIN_CCLK,
|
|
BB_PIN_CCLK,
|
|
BB_PIN_CCLK,
|
|
BB_PIN_CCLK,
|
|
BB_PIN_CCLK,
|
|
BB_PIN_CCLK,
|
|
BB_PIN_CCLK,
|
|
};
|
|
int retries, ret;
|
|
uint8_t data;
|
|
|
|
/* Section 2. part 1), do the FPGA suicide. */
|
|
sigma_write(devc, suicide, sizeof(suicide));
|
|
sigma_write(devc, suicide, sizeof(suicide));
|
|
sigma_write(devc, suicide, sizeof(suicide));
|
|
sigma_write(devc, suicide, sizeof(suicide));
|
|
g_usleep(10 * 1000);
|
|
|
|
/* Section 2. part 2), pulse PROG. */
|
|
sigma_write(devc, init_array, sizeof(init_array));
|
|
g_usleep(10 * 1000);
|
|
ftdi_usb_purge_buffers(&devc->ftdic);
|
|
|
|
/* Wait until the FPGA asserts INIT_B. */
|
|
retries = 10;
|
|
while (retries--) {
|
|
ret = sigma_read(devc, &data, sizeof(data));
|
|
if (ret < 0)
|
|
return ret;
|
|
if (data & BB_PIN_INIT)
|
|
return SR_OK;
|
|
g_usleep(10 * 1000);
|
|
}
|
|
|
|
return SR_ERR_TIMEOUT;
|
|
}
|
|
|
|
/*
|
|
* This is belt and braces. Re-run the bitbang initiation sequence a few
|
|
* times should first attempts fail. Failure is rare but can happen (was
|
|
* observed during driver development).
|
|
*/
|
|
static int sigma_fpga_init_bitbang(struct dev_context *devc)
|
|
{
|
|
size_t retries;
|
|
int ret;
|
|
|
|
retries = 10;
|
|
while (retries--) {
|
|
ret = sigma_fpga_init_bitbang_once(devc);
|
|
if (ret == SR_OK)
|
|
return ret;
|
|
if (ret != SR_ERR_TIMEOUT)
|
|
return ret;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Configure the FPGA for logic-analyzer mode.
|
|
*/
|
|
static int sigma_fpga_init_la(struct dev_context *devc)
|
|
{
|
|
uint8_t buf[16], *wrptr;
|
|
uint8_t data_55, data_aa, mode;
|
|
uint8_t result[3];
|
|
const uint8_t *rdptr;
|
|
int ret;
|
|
|
|
wrptr = buf;
|
|
|
|
/* Read ID register. */
|
|
write_u8_inc(&wrptr, REG_ADDR_LOW | (READ_ID & 0xf));
|
|
write_u8_inc(&wrptr, REG_ADDR_HIGH | (READ_ID >> 4));
|
|
write_u8_inc(&wrptr, REG_READ_ADDR);
|
|
|
|
/* Write 0x55 to scratch register, read back. */
|
|
data_55 = 0x55;
|
|
write_u8_inc(&wrptr, REG_ADDR_LOW | (WRITE_TEST & 0xf));
|
|
write_u8_inc(&wrptr, REG_DATA_LOW | (data_55 & 0xf));
|
|
write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | (data_55 >> 4));
|
|
write_u8_inc(&wrptr, REG_READ_ADDR);
|
|
|
|
/* Write 0xaa to scratch register, read back. */
|
|
data_aa = 0xaa;
|
|
write_u8_inc(&wrptr, REG_ADDR_LOW | (WRITE_TEST & 0xf));
|
|
write_u8_inc(&wrptr, REG_DATA_LOW | (data_aa & 0xf));
|
|
write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | (data_aa >> 4));
|
|
write_u8_inc(&wrptr, REG_READ_ADDR);
|
|
|
|
/* Initiate SDRAM initialization in mode register. */
|
|
mode = WMR_SDRAMINIT;
|
|
write_u8_inc(&wrptr, REG_ADDR_LOW | (WRITE_MODE & 0xf));
|
|
write_u8_inc(&wrptr, REG_DATA_LOW | (mode & 0xf));
|
|
write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | (mode >> 4));
|
|
|
|
/*
|
|
* Send the command sequence which contains 3 READ requests.
|
|
* Expect to see the corresponding 3 response bytes.
|
|
*/
|
|
sigma_write(devc, buf, wrptr - buf);
|
|
ret = sigma_read(devc, result, ARRAY_SIZE(result));
|
|
if (ret != ARRAY_SIZE(result)) {
|
|
sr_err("Insufficient start response length.");
|
|
return SR_ERR_IO;
|
|
}
|
|
rdptr = result;
|
|
if (read_u8_inc(&rdptr) != 0xa6) {
|
|
sr_err("Unexpected ID response.");
|
|
return SR_ERR_DATA;
|
|
}
|
|
if (read_u8_inc(&rdptr) != data_55) {
|
|
sr_err("Unexpected scratch read-back (55).");
|
|
return SR_ERR_DATA;
|
|
}
|
|
if (read_u8_inc(&rdptr) != data_aa) {
|
|
sr_err("Unexpected scratch read-back (aa).");
|
|
return SR_ERR_DATA;
|
|
}
|
|
|
|
return SR_OK;
|
|
}
|
|
|
|
/*
|
|
* Read the firmware from a file and transform it into a series of bitbang
|
|
* pulses used to program the FPGA. Note that the *bb_cmd must be free()'d
|
|
* by the caller of this function.
|
|
*/
|
|
static int sigma_fw_2_bitbang(struct sr_context *ctx, const char *name,
|
|
uint8_t **bb_cmd, gsize *bb_cmd_size)
|
|
{
|
|
uint8_t *firmware;
|
|
size_t file_size;
|
|
uint8_t *p;
|
|
size_t l;
|
|
uint32_t imm;
|
|
size_t bb_size;
|
|
uint8_t *bb_stream, *bbs, byte, mask, v;
|
|
|
|
/* Retrieve the on-disk firmware file content. */
|
|
firmware = sr_resource_load(ctx, SR_RESOURCE_FIRMWARE, name,
|
|
&file_size, SIGMA_FIRMWARE_SIZE_LIMIT);
|
|
if (!firmware)
|
|
return SR_ERR_IO;
|
|
|
|
/* Unscramble the file content (XOR with "random" sequence). */
|
|
p = firmware;
|
|
l = file_size;
|
|
imm = 0x3f6df2ab;
|
|
while (l--) {
|
|
imm = (imm + 0xa853753) % 177 + (imm * 0x8034052);
|
|
*p++ ^= imm & 0xff;
|
|
}
|
|
|
|
/*
|
|
* Generate a sequence of bitbang samples. With two samples per
|
|
* FPGA configuration bit, providing the level for the DIN signal
|
|
* as well as two edges for CCLK. See Xilinx UG332 for details
|
|
* ("slave serial" mode).
|
|
*
|
|
* Note that CCLK is inverted in hardware. That's why the
|
|
* respective bit is first set and then cleared in the bitbang
|
|
* sample sets. So that the DIN level will be stable when the
|
|
* data gets sampled at the rising CCLK edge, and the signals'
|
|
* setup time constraint will be met.
|
|
*
|
|
* The caller will put the FPGA into download mode, will send
|
|
* the bitbang samples, and release the allocated memory.
|
|
*/
|
|
bb_size = file_size * 8 * 2;
|
|
bb_stream = g_try_malloc(bb_size);
|
|
if (!bb_stream) {
|
|
sr_err("%s: Failed to allocate bitbang stream", __func__);
|
|
g_free(firmware);
|
|
return SR_ERR_MALLOC;
|
|
}
|
|
bbs = bb_stream;
|
|
p = firmware;
|
|
l = file_size;
|
|
while (l--) {
|
|
byte = *p++;
|
|
mask = 0x80;
|
|
while (mask) {
|
|
v = (byte & mask) ? BB_PIN_DIN : 0;
|
|
mask >>= 1;
|
|
*bbs++ = v | BB_PIN_CCLK;
|
|
*bbs++ = v;
|
|
}
|
|
}
|
|
g_free(firmware);
|
|
|
|
/* The transformation completed successfully, return the result. */
|
|
*bb_cmd = bb_stream;
|
|
*bb_cmd_size = bb_size;
|
|
|
|
return SR_OK;
|
|
}
|
|
|
|
static int upload_firmware(struct sr_context *ctx, struct dev_context *devc,
|
|
enum sigma_firmware_idx firmware_idx)
|
|
{
|
|
int ret;
|
|
uint8_t *buf;
|
|
uint8_t pins;
|
|
size_t buf_size;
|
|
const char *firmware;
|
|
|
|
/* Check for valid firmware file selection. */
|
|
if (firmware_idx >= ARRAY_SIZE(firmware_files))
|
|
return SR_ERR_ARG;
|
|
firmware = firmware_files[firmware_idx];
|
|
if (!firmware || !*firmware)
|
|
return SR_ERR_ARG;
|
|
|
|
/* Avoid downloading the same firmware multiple times. */
|
|
if (devc->firmware_idx == firmware_idx) {
|
|
sr_info("Not uploading firmware file '%s' again.", firmware);
|
|
return SR_OK;
|
|
}
|
|
|
|
devc->state.state = SIGMA_CONFIG;
|
|
|
|
/* Set the cable to bitbang mode. */
|
|
ret = ftdi_set_bitmode(&devc->ftdic, BB_PINMASK, BITMODE_BITBANG);
|
|
if (ret < 0) {
|
|
sr_err("ftdi_set_bitmode failed: %s",
|
|
ftdi_get_error_string(&devc->ftdic));
|
|
return SR_ERR;
|
|
}
|
|
ret = ftdi_set_baudrate(&devc->ftdic, BB_BITRATE);
|
|
if (ret < 0) {
|
|
sr_err("ftdi_set_baudrate failed: %s",
|
|
ftdi_get_error_string(&devc->ftdic));
|
|
return SR_ERR;
|
|
}
|
|
|
|
/* Initiate FPGA configuration mode. */
|
|
ret = sigma_fpga_init_bitbang(devc);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Prepare wire format of the firmware image. */
|
|
ret = sigma_fw_2_bitbang(ctx, firmware, &buf, &buf_size);
|
|
if (ret != SR_OK) {
|
|
sr_err("Could not prepare file %s for download.", firmware);
|
|
return ret;
|
|
}
|
|
|
|
/* Write the FPGA netlist to the cable. */
|
|
sr_info("Uploading firmware file '%s'.", firmware);
|
|
sigma_write(devc, buf, buf_size);
|
|
|
|
g_free(buf);
|
|
|
|
/* Leave bitbang mode and discard pending input data. */
|
|
ret = ftdi_set_bitmode(&devc->ftdic, 0, BITMODE_RESET);
|
|
if (ret < 0) {
|
|
sr_err("ftdi_set_bitmode failed: %s",
|
|
ftdi_get_error_string(&devc->ftdic));
|
|
return SR_ERR;
|
|
}
|
|
ftdi_usb_purge_buffers(&devc->ftdic);
|
|
while (sigma_read(devc, &pins, sizeof(pins)) > 0)
|
|
;
|
|
|
|
/* Initialize the FPGA for logic-analyzer mode. */
|
|
ret = sigma_fpga_init_la(devc);
|
|
if (ret != SR_OK)
|
|
return ret;
|
|
|
|
/* Keep track of successful firmware download completion. */
|
|
devc->state.state = SIGMA_IDLE;
|
|
devc->firmware_idx = firmware_idx;
|
|
sr_info("Firmware uploaded.");
|
|
|
|
return SR_OK;
|
|
}
|
|
|
|
/*
|
|
* The driver supports user specified time or sample count limits. The
|
|
* device's hardware supports neither, and hardware compression prevents
|
|
* reliable detection of "fill levels" (currently reached sample counts)
|
|
* from register values during acquisition. That's why the driver needs
|
|
* to apply some heuristics:
|
|
*
|
|
* - The (optional) sample count limit and the (normalized) samplerate
|
|
* get mapped to an estimated duration for these samples' acquisition.
|
|
* - The (optional) time limit gets checked as well. The lesser of the
|
|
* two limits will terminate the data acquisition phase. The exact
|
|
* sample count limit gets enforced in session feed submission paths.
|
|
* - Some slack needs to be given to account for hardware pipelines as
|
|
* well as late storage of last chunks after compression thresholds
|
|
* are tripped. The resulting data set will span at least the caller
|
|
* specified period of time, which shall be perfectly acceptable.
|
|
*
|
|
* With RLE compression active, up to 64K sample periods can pass before
|
|
* a cluster accumulates. Which translates to 327ms at 200kHz. Add two
|
|
* times that period for good measure, one is not enough to flush the
|
|
* hardware pipeline (observation from an earlier experiment).
|
|
*/
|
|
SR_PRIV int sigma_set_acquire_timeout(struct dev_context *devc)
|
|
{
|
|
int ret;
|
|
GVariant *data;
|
|
uint64_t user_count, user_msecs;
|
|
uint64_t worst_cluster_time_ms;
|
|
uint64_t count_msecs, acquire_msecs;
|
|
|
|
sr_sw_limits_init(&devc->acq_limits);
|
|
|
|
/* Get sample count limit, convert to msecs. */
|
|
ret = sr_sw_limits_config_get(&devc->cfg_limits,
|
|
SR_CONF_LIMIT_SAMPLES, &data);
|
|
if (ret != SR_OK)
|
|
return ret;
|
|
user_count = g_variant_get_uint64(data);
|
|
g_variant_unref(data);
|
|
count_msecs = 0;
|
|
if (user_count)
|
|
count_msecs = 1000 * user_count / devc->samplerate + 1;
|
|
|
|
/* Get time limit, which is in msecs. */
|
|
ret = sr_sw_limits_config_get(&devc->cfg_limits,
|
|
SR_CONF_LIMIT_MSEC, &data);
|
|
if (ret != SR_OK)
|
|
return ret;
|
|
user_msecs = g_variant_get_uint64(data);
|
|
g_variant_unref(data);
|
|
|
|
/* Get the lesser of them, with both being optional. */
|
|
acquire_msecs = ~0ull;
|
|
if (user_count && count_msecs < acquire_msecs)
|
|
acquire_msecs = count_msecs;
|
|
if (user_msecs && user_msecs < acquire_msecs)
|
|
acquire_msecs = user_msecs;
|
|
if (acquire_msecs == ~0ull)
|
|
return SR_OK;
|
|
|
|
/* Add some slack, and use that timeout for acquisition. */
|
|
worst_cluster_time_ms = 1000 * 65536 / devc->samplerate;
|
|
acquire_msecs += 2 * worst_cluster_time_ms;
|
|
data = g_variant_new_uint64(acquire_msecs);
|
|
ret = sr_sw_limits_config_set(&devc->acq_limits,
|
|
SR_CONF_LIMIT_MSEC, data);
|
|
g_variant_unref(data);
|
|
if (ret != SR_OK)
|
|
return ret;
|
|
|
|
sr_sw_limits_acquisition_start(&devc->acq_limits);
|
|
return SR_OK;
|
|
}
|
|
|
|
/*
|
|
* Check whether a caller specified samplerate matches the device's
|
|
* hardware constraints (can be used for acquisition). Optionally yield
|
|
* a value that approximates the original spec.
|
|
*
|
|
* This routine assumes that input specs are in the 200kHz to 200MHz
|
|
* range of supported rates, and callers typically want to normalize a
|
|
* given value to the hardware capabilities. Values in the 50MHz range
|
|
* get rounded up by default, to avoid a more expensive check for the
|
|
* closest match, while higher sampling rate is always desirable during
|
|
* measurement. Input specs which exactly match hardware capabilities
|
|
* remain unaffected. Because 100/200MHz rates also limit the number of
|
|
* available channels, they are not suggested by this routine, instead
|
|
* callers need to pick them consciously.
|
|
*/
|
|
SR_PRIV int sigma_normalize_samplerate(uint64_t want_rate, uint64_t *have_rate)
|
|
{
|
|
uint64_t div, rate;
|
|
|
|
/* Accept exact matches for 100/200MHz. */
|
|
if (want_rate == SR_MHZ(200) || want_rate == SR_MHZ(100)) {
|
|
if (have_rate)
|
|
*have_rate = want_rate;
|
|
return SR_OK;
|
|
}
|
|
|
|
/* Accept 200kHz to 50MHz range, and map to near value. */
|
|
if (want_rate >= SR_KHZ(200) && want_rate <= SR_MHZ(50)) {
|
|
div = SR_MHZ(50) / want_rate;
|
|
rate = SR_MHZ(50) / div;
|
|
if (have_rate)
|
|
*have_rate = rate;
|
|
return SR_OK;
|
|
}
|
|
|
|
return SR_ERR_ARG;
|
|
}
|
|
|
|
SR_PRIV int sigma_set_samplerate(const struct sr_dev_inst *sdi)
|
|
{
|
|
struct dev_context *devc;
|
|
struct drv_context *drvc;
|
|
uint64_t samplerate;
|
|
int ret;
|
|
int num_channels;
|
|
|
|
devc = sdi->priv;
|
|
drvc = sdi->driver->context;
|
|
|
|
/* Accept any caller specified rate which the hardware supports. */
|
|
ret = sigma_normalize_samplerate(devc->samplerate, &samplerate);
|
|
if (ret != SR_OK)
|
|
return ret;
|
|
|
|
/*
|
|
* Depending on the samplerates of 200/100/50- MHz, specific
|
|
* firmware is required and higher rates might limit the set
|
|
* of available channels.
|
|
*/
|
|
num_channels = devc->num_channels;
|
|
if (samplerate <= SR_MHZ(50)) {
|
|
ret = upload_firmware(drvc->sr_ctx, devc, SIGMA_FW_50MHZ);
|
|
num_channels = 16;
|
|
} else if (samplerate == SR_MHZ(100)) {
|
|
ret = upload_firmware(drvc->sr_ctx, devc, SIGMA_FW_100MHZ);
|
|
num_channels = 8;
|
|
} else if (samplerate == SR_MHZ(200)) {
|
|
ret = upload_firmware(drvc->sr_ctx, devc, SIGMA_FW_200MHZ);
|
|
num_channels = 4;
|
|
}
|
|
|
|
/*
|
|
* The samplerate affects the number of available logic channels
|
|
* as well as a sample memory layout detail (the number of samples
|
|
* which the device will communicate within an "event").
|
|
*/
|
|
if (ret == SR_OK) {
|
|
devc->num_channels = num_channels;
|
|
devc->samples_per_event = 16 / devc->num_channels;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Arrange for a session feed submit buffer. A queue where a number of
|
|
* samples gets accumulated to reduce the number of send calls. Which
|
|
* also enforces an optional sample count limit for data acquisition.
|
|
*
|
|
* The buffer holds up to CHUNK_SIZE bytes. The unit size is fixed (the
|
|
* driver provides a fixed channel layout regardless of samplerate).
|
|
*/
|
|
|
|
#define CHUNK_SIZE (4 * 1024 * 1024)
|
|
|
|
struct submit_buffer {
|
|
size_t unit_size;
|
|
size_t max_samples, curr_samples;
|
|
uint8_t *sample_data;
|
|
uint8_t *write_pointer;
|
|
struct sr_dev_inst *sdi;
|
|
struct sr_datafeed_packet packet;
|
|
struct sr_datafeed_logic logic;
|
|
};
|
|
|
|
static int alloc_submit_buffer(struct sr_dev_inst *sdi)
|
|
{
|
|
struct dev_context *devc;
|
|
struct submit_buffer *buffer;
|
|
size_t size;
|
|
|
|
devc = sdi->priv;
|
|
|
|
buffer = g_malloc0(sizeof(*buffer));
|
|
devc->buffer = buffer;
|
|
|
|
buffer->unit_size = sizeof(uint16_t);
|
|
size = CHUNK_SIZE;
|
|
size /= buffer->unit_size;
|
|
buffer->max_samples = size;
|
|
size *= buffer->unit_size;
|
|
buffer->sample_data = g_try_malloc0(size);
|
|
if (!buffer->sample_data)
|
|
return SR_ERR_MALLOC;
|
|
buffer->write_pointer = buffer->sample_data;
|
|
sr_sw_limits_init(&devc->feed_limits);
|
|
|
|
buffer->sdi = sdi;
|
|
memset(&buffer->logic, 0, sizeof(buffer->logic));
|
|
buffer->logic.unitsize = buffer->unit_size;
|
|
buffer->logic.data = buffer->sample_data;
|
|
memset(&buffer->packet, 0, sizeof(buffer->packet));
|
|
buffer->packet.type = SR_DF_LOGIC;
|
|
buffer->packet.payload = &buffer->logic;
|
|
|
|
return SR_OK;
|
|
}
|
|
|
|
static int setup_submit_limit(struct dev_context *devc)
|
|
{
|
|
struct sr_sw_limits *limits;
|
|
int ret;
|
|
GVariant *data;
|
|
uint64_t total;
|
|
|
|
limits = &devc->feed_limits;
|
|
|
|
ret = sr_sw_limits_config_get(&devc->cfg_limits,
|
|
SR_CONF_LIMIT_SAMPLES, &data);
|
|
if (ret != SR_OK)
|
|
return ret;
|
|
total = g_variant_get_uint64(data);
|
|
g_variant_unref(data);
|
|
|
|
sr_sw_limits_init(limits);
|
|
if (total) {
|
|
data = g_variant_new_uint64(total);
|
|
ret = sr_sw_limits_config_set(limits,
|
|
SR_CONF_LIMIT_SAMPLES, data);
|
|
g_variant_unref(data);
|
|
if (ret != SR_OK)
|
|
return ret;
|
|
}
|
|
|
|
sr_sw_limits_acquisition_start(limits);
|
|
|
|
return SR_OK;
|
|
}
|
|
|
|
static void free_submit_buffer(struct dev_context *devc)
|
|
{
|
|
struct submit_buffer *buffer;
|
|
|
|
if (!devc)
|
|
return;
|
|
|
|
buffer = devc->buffer;
|
|
if (!buffer)
|
|
return;
|
|
devc->buffer = NULL;
|
|
|
|
g_free(buffer->sample_data);
|
|
g_free(buffer);
|
|
}
|
|
|
|
static int flush_submit_buffer(struct dev_context *devc)
|
|
{
|
|
struct submit_buffer *buffer;
|
|
int ret;
|
|
|
|
buffer = devc->buffer;
|
|
|
|
/* Is queued sample data available? */
|
|
if (!buffer->curr_samples)
|
|
return SR_OK;
|
|
|
|
/* Submit to the session feed. */
|
|
buffer->logic.length = buffer->curr_samples * buffer->unit_size;
|
|
ret = sr_session_send(buffer->sdi, &buffer->packet);
|
|
if (ret != SR_OK)
|
|
return ret;
|
|
|
|
/* Rewind queue position. */
|
|
buffer->curr_samples = 0;
|
|
buffer->write_pointer = buffer->sample_data;
|
|
|
|
return SR_OK;
|
|
}
|
|
|
|
static int addto_submit_buffer(struct dev_context *devc,
|
|
uint16_t sample, size_t count)
|
|
{
|
|
struct submit_buffer *buffer;
|
|
struct sr_sw_limits *limits;
|
|
int ret;
|
|
|
|
buffer = devc->buffer;
|
|
limits = &devc->feed_limits;
|
|
if (sr_sw_limits_check(limits))
|
|
count = 0;
|
|
|
|
/*
|
|
* Individually accumulate and check each sample, such that
|
|
* accumulation between flushes won't exceed local storage, and
|
|
* enforcement of user specified limits is exact.
|
|
*/
|
|
while (count--) {
|
|
write_u16le_inc(&buffer->write_pointer, sample);
|
|
buffer->curr_samples++;
|
|
if (buffer->curr_samples == buffer->max_samples) {
|
|
ret = flush_submit_buffer(devc);
|
|
if (ret != SR_OK)
|
|
return ret;
|
|
}
|
|
sr_sw_limits_update_samples_read(limits, 1);
|
|
if (sr_sw_limits_check(limits))
|
|
break;
|
|
}
|
|
|
|
return SR_OK;
|
|
}
|
|
|
|
/*
|
|
* In 100 and 200 MHz mode, only a single pin rising/falling can be
|
|
* set as trigger. In other modes, two rising/falling triggers can be set,
|
|
* in addition to value/mask trigger for any number of channels.
|
|
*
|
|
* The Sigma supports complex triggers using boolean expressions, but this
|
|
* has not been implemented yet.
|
|
*/
|
|
SR_PRIV int sigma_convert_trigger(const struct sr_dev_inst *sdi)
|
|
{
|
|
struct dev_context *devc;
|
|
struct sr_trigger *trigger;
|
|
struct sr_trigger_stage *stage;
|
|
struct sr_trigger_match *match;
|
|
const GSList *l, *m;
|
|
int channelbit, trigger_set;
|
|
|
|
devc = sdi->priv;
|
|
memset(&devc->trigger, 0, sizeof(struct sigma_trigger));
|
|
if (!(trigger = sr_session_trigger_get(sdi->session)))
|
|
return SR_OK;
|
|
|
|
trigger_set = 0;
|
|
for (l = trigger->stages; l; l = l->next) {
|
|
stage = l->data;
|
|
for (m = stage->matches; m; m = m->next) {
|
|
match = m->data;
|
|
/* Ignore disabled channels with a trigger. */
|
|
if (!match->channel->enabled)
|
|
continue;
|
|
channelbit = 1 << match->channel->index;
|
|
if (devc->samplerate >= SR_MHZ(100)) {
|
|
/* Fast trigger support. */
|
|
if (trigger_set) {
|
|
sr_err("Only a single pin trigger is "
|
|
"supported in 100 and 200MHz mode.");
|
|
return SR_ERR;
|
|
}
|
|
if (match->match == SR_TRIGGER_FALLING) {
|
|
devc->trigger.fallingmask |= channelbit;
|
|
} else if (match->match == SR_TRIGGER_RISING) {
|
|
devc->trigger.risingmask |= channelbit;
|
|
} else {
|
|
sr_err("Only rising/falling trigger is "
|
|
"supported in 100 and 200MHz mode.");
|
|
return SR_ERR;
|
|
}
|
|
|
|
trigger_set++;
|
|
} else {
|
|
/* Simple trigger support (event). */
|
|
if (match->match == SR_TRIGGER_ONE) {
|
|
devc->trigger.simplevalue |= channelbit;
|
|
devc->trigger.simplemask |= channelbit;
|
|
} else if (match->match == SR_TRIGGER_ZERO) {
|
|
devc->trigger.simplevalue &= ~channelbit;
|
|
devc->trigger.simplemask |= channelbit;
|
|
} else if (match->match == SR_TRIGGER_FALLING) {
|
|
devc->trigger.fallingmask |= channelbit;
|
|
trigger_set++;
|
|
} else if (match->match == SR_TRIGGER_RISING) {
|
|
devc->trigger.risingmask |= channelbit;
|
|
trigger_set++;
|
|
}
|
|
|
|
/*
|
|
* Actually, Sigma supports 2 rising/falling triggers,
|
|
* but they are ORed and the current trigger syntax
|
|
* does not permit ORed triggers.
|
|
*/
|
|
if (trigger_set > 1) {
|
|
sr_err("Only 1 rising/falling trigger is supported.");
|
|
return SR_ERR;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return SR_OK;
|
|
}
|
|
|
|
/* Software trigger to determine exact trigger position. */
|
|
static int get_trigger_offset(uint8_t *samples, uint16_t last_sample,
|
|
struct sigma_trigger *t)
|
|
{
|
|
const uint8_t *rdptr;
|
|
int i;
|
|
uint16_t sample;
|
|
|
|
rdptr = samples;
|
|
sample = 0;
|
|
for (i = 0; i < 8; i++) {
|
|
if (i > 0)
|
|
last_sample = sample;
|
|
sample = read_u16le_inc(&rdptr);
|
|
|
|
/* Simple triggers. */
|
|
if ((sample & t->simplemask) != t->simplevalue)
|
|
continue;
|
|
|
|
/* Rising edge. */
|
|
if (((last_sample & t->risingmask) != 0) ||
|
|
((sample & t->risingmask) != t->risingmask))
|
|
continue;
|
|
|
|
/* Falling edge. */
|
|
if ((last_sample & t->fallingmask) != t->fallingmask ||
|
|
(sample & t->fallingmask) != 0)
|
|
continue;
|
|
|
|
break;
|
|
}
|
|
|
|
/* If we did not match, return original trigger pos. */
|
|
return i & 0x7;
|
|
}
|
|
|
|
static gboolean sample_matches_trigger(struct dev_context *devc, uint16_t sample)
|
|
{
|
|
/* TODO
|
|
* Check whether the combination of this very sample and the
|
|
* previous state match the configured trigger condition. This
|
|
* improves the resolution of the trigger marker's position.
|
|
* The hardware provided position is coarse, and may point to
|
|
* a position before the actual match.
|
|
*
|
|
* See the previous get_trigger_offset() implementation. This
|
|
* code needs to get re-used here.
|
|
*/
|
|
(void)devc;
|
|
(void)sample;
|
|
(void)get_trigger_offset;
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
static int check_and_submit_sample(struct dev_context *devc,
|
|
uint16_t sample, size_t count, gboolean check_trigger)
|
|
{
|
|
gboolean triggered;
|
|
int ret;
|
|
|
|
triggered = check_trigger && sample_matches_trigger(devc, sample);
|
|
if (triggered) {
|
|
ret = flush_submit_buffer(devc);
|
|
if (ret != SR_OK)
|
|
return ret;
|
|
ret = std_session_send_df_trigger(devc->buffer->sdi);
|
|
if (ret != SR_OK)
|
|
return ret;
|
|
}
|
|
|
|
ret = addto_submit_buffer(devc, sample, count);
|
|
if (ret != SR_OK)
|
|
return ret;
|
|
|
|
return SR_OK;
|
|
}
|
|
|
|
/*
|
|
* Return the timestamp of "DRAM cluster".
|
|
*/
|
|
static uint16_t sigma_dram_cluster_ts(struct sigma_dram_cluster *cluster)
|
|
{
|
|
return read_u16le(&cluster->timestamp[0]);
|
|
}
|
|
|
|
/*
|
|
* Return one 16bit data entity of a DRAM cluster at the specified index.
|
|
*/
|
|
static uint16_t sigma_dram_cluster_data(struct sigma_dram_cluster *cl, int idx)
|
|
{
|
|
return read_u16le(&cl->samples[idx].sample[0]);
|
|
}
|
|
|
|
/*
|
|
* Deinterlace sample data that was retrieved at 100MHz samplerate.
|
|
* One 16bit item contains two samples of 8bits each. The bits of
|
|
* multiple samples are interleaved.
|
|
*/
|
|
static uint16_t sigma_deinterlace_100mhz_data(uint16_t indata, int idx)
|
|
{
|
|
uint16_t outdata;
|
|
|
|
indata >>= idx;
|
|
outdata = 0;
|
|
outdata |= (indata >> (0 * 2 - 0)) & (1 << 0);
|
|
outdata |= (indata >> (1 * 2 - 1)) & (1 << 1);
|
|
outdata |= (indata >> (2 * 2 - 2)) & (1 << 2);
|
|
outdata |= (indata >> (3 * 2 - 3)) & (1 << 3);
|
|
outdata |= (indata >> (4 * 2 - 4)) & (1 << 4);
|
|
outdata |= (indata >> (5 * 2 - 5)) & (1 << 5);
|
|
outdata |= (indata >> (6 * 2 - 6)) & (1 << 6);
|
|
outdata |= (indata >> (7 * 2 - 7)) & (1 << 7);
|
|
return outdata;
|
|
}
|
|
|
|
/*
|
|
* Deinterlace sample data that was retrieved at 200MHz samplerate.
|
|
* One 16bit item contains four samples of 4bits each. The bits of
|
|
* multiple samples are interleaved.
|
|
*/
|
|
static uint16_t sigma_deinterlace_200mhz_data(uint16_t indata, int idx)
|
|
{
|
|
uint16_t outdata;
|
|
|
|
indata >>= idx;
|
|
outdata = 0;
|
|
outdata |= (indata >> (0 * 4 - 0)) & (1 << 0);
|
|
outdata |= (indata >> (1 * 4 - 1)) & (1 << 1);
|
|
outdata |= (indata >> (2 * 4 - 2)) & (1 << 2);
|
|
outdata |= (indata >> (3 * 4 - 3)) & (1 << 3);
|
|
return outdata;
|
|
}
|
|
|
|
static void sigma_decode_dram_cluster(struct dev_context *devc,
|
|
struct sigma_dram_cluster *dram_cluster,
|
|
size_t events_in_cluster, gboolean triggered)
|
|
{
|
|
struct sigma_state *ss;
|
|
uint16_t tsdiff, ts, sample, item16;
|
|
unsigned int i;
|
|
|
|
if (!devc->use_triggers || !ASIX_SIGMA_WITH_TRIGGER)
|
|
triggered = FALSE;
|
|
|
|
/*
|
|
* If this cluster is not adjacent to the previously received
|
|
* cluster, then send the appropriate number of samples with the
|
|
* previous values to the sigrok session. This "decodes RLE".
|
|
*
|
|
* These samples cannot match the trigger since they just repeat
|
|
* the previously submitted data pattern. (This assumption holds
|
|
* for simple level and edge triggers. It would not for timed or
|
|
* counted conditions, which currently are not supported.)
|
|
*/
|
|
ss = &devc->state;
|
|
ts = sigma_dram_cluster_ts(dram_cluster);
|
|
tsdiff = ts - ss->lastts;
|
|
if (tsdiff > 0) {
|
|
size_t count;
|
|
sample = ss->lastsample;
|
|
count = tsdiff * devc->samples_per_event;
|
|
(void)check_and_submit_sample(devc, sample, count, FALSE);
|
|
}
|
|
ss->lastts = ts + EVENTS_PER_CLUSTER;
|
|
|
|
/*
|
|
* Grab sample data from the current cluster and prepare their
|
|
* submission to the session feed. Handle samplerate dependent
|
|
* memory layout of sample data. Accumulation of data chunks
|
|
* before submission is transparent to this code path, specific
|
|
* buffer depth is neither assumed nor required here.
|
|
*/
|
|
sample = 0;
|
|
for (i = 0; i < events_in_cluster; i++) {
|
|
item16 = sigma_dram_cluster_data(dram_cluster, i);
|
|
if (devc->samplerate == SR_MHZ(200)) {
|
|
sample = sigma_deinterlace_200mhz_data(item16, 0);
|
|
check_and_submit_sample(devc, sample, 1, triggered);
|
|
sample = sigma_deinterlace_200mhz_data(item16, 1);
|
|
check_and_submit_sample(devc, sample, 1, triggered);
|
|
sample = sigma_deinterlace_200mhz_data(item16, 2);
|
|
check_and_submit_sample(devc, sample, 1, triggered);
|
|
sample = sigma_deinterlace_200mhz_data(item16, 3);
|
|
check_and_submit_sample(devc, sample, 1, triggered);
|
|
} else if (devc->samplerate == SR_MHZ(100)) {
|
|
sample = sigma_deinterlace_100mhz_data(item16, 0);
|
|
check_and_submit_sample(devc, sample, 1, triggered);
|
|
sample = sigma_deinterlace_100mhz_data(item16, 1);
|
|
check_and_submit_sample(devc, sample, 1, triggered);
|
|
} else {
|
|
sample = item16;
|
|
check_and_submit_sample(devc, sample, 1, triggered);
|
|
}
|
|
}
|
|
ss->lastsample = sample;
|
|
}
|
|
|
|
/*
|
|
* Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster.
|
|
* Each event is 20ns apart, and can contain multiple samples.
|
|
*
|
|
* For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart.
|
|
* For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart.
|
|
* For 50 MHz and below, events contain one sample for each channel,
|
|
* spread 20 ns apart.
|
|
*/
|
|
static int decode_chunk_ts(struct dev_context *devc,
|
|
struct sigma_dram_line *dram_line,
|
|
size_t events_in_line, size_t trigger_event)
|
|
{
|
|
struct sigma_dram_cluster *dram_cluster;
|
|
unsigned int clusters_in_line;
|
|
unsigned int events_in_cluster;
|
|
unsigned int i;
|
|
uint32_t trigger_cluster;
|
|
|
|
clusters_in_line = events_in_line;
|
|
clusters_in_line += EVENTS_PER_CLUSTER - 1;
|
|
clusters_in_line /= EVENTS_PER_CLUSTER;
|
|
trigger_cluster = ~0;
|
|
|
|
/* Check if trigger is in this chunk. */
|
|
if (trigger_event < EVENTS_PER_ROW) {
|
|
if (devc->samplerate <= SR_MHZ(50)) {
|
|
trigger_event -= MIN(EVENTS_PER_CLUSTER - 1,
|
|
trigger_event);
|
|
}
|
|
|
|
/* Find in which cluster the trigger occurred. */
|
|
trigger_cluster = trigger_event / EVENTS_PER_CLUSTER;
|
|
}
|
|
|
|
/* For each full DRAM cluster. */
|
|
for (i = 0; i < clusters_in_line; i++) {
|
|
dram_cluster = &dram_line->cluster[i];
|
|
|
|
/* The last cluster might not be full. */
|
|
if ((i == clusters_in_line - 1) &&
|
|
(events_in_line % EVENTS_PER_CLUSTER)) {
|
|
events_in_cluster = events_in_line % EVENTS_PER_CLUSTER;
|
|
} else {
|
|
events_in_cluster = EVENTS_PER_CLUSTER;
|
|
}
|
|
|
|
sigma_decode_dram_cluster(devc, dram_cluster,
|
|
events_in_cluster, i == trigger_cluster);
|
|
}
|
|
|
|
return SR_OK;
|
|
}
|
|
|
|
static int download_capture(struct sr_dev_inst *sdi)
|
|
{
|
|
const uint32_t chunks_per_read = 32;
|
|
|
|
struct dev_context *devc;
|
|
struct sigma_dram_line *dram_line;
|
|
int bufsz;
|
|
uint32_t stoppos, triggerpos;
|
|
uint8_t modestatus;
|
|
uint32_t i;
|
|
uint32_t dl_lines_total, dl_lines_curr, dl_lines_done;
|
|
uint32_t dl_first_line, dl_line;
|
|
uint32_t dl_events_in_line;
|
|
uint32_t trg_line, trg_event;
|
|
int ret;
|
|
|
|
devc = sdi->priv;
|
|
dl_events_in_line = EVENTS_PER_ROW;
|
|
|
|
sr_info("Downloading sample data.");
|
|
devc->state.state = SIGMA_DOWNLOAD;
|
|
|
|
/*
|
|
* Ask the hardware to stop data acquisition. Reception of the
|
|
* FORCESTOP request makes the hardware "disable RLE" (store
|
|
* clusters to DRAM regardless of whether pin state changes) and
|
|
* raise the POSTTRIGGERED flag.
|
|
*/
|
|
sigma_set_register(devc, WRITE_MODE, WMR_FORCESTOP | WMR_SDRAMWRITEEN);
|
|
do {
|
|
ret = sigma_read_register(devc, READ_MODE,
|
|
&modestatus, sizeof(modestatus));
|
|
if (ret != sizeof(modestatus)) {
|
|
sr_err("Could not poll for post-trigger condition.");
|
|
return FALSE;
|
|
}
|
|
} while (!(modestatus & RMR_POSTTRIGGERED));
|
|
|
|
/* Set SDRAM Read Enable. */
|
|
sigma_set_register(devc, WRITE_MODE, WMR_SDRAMREADEN);
|
|
|
|
/* Get the current position. */
|
|
sigma_read_pos(devc, &stoppos, &triggerpos);
|
|
|
|
/* Check if trigger has fired. */
|
|
ret = sigma_read_register(devc, READ_MODE,
|
|
&modestatus, sizeof(modestatus));
|
|
if (ret != sizeof(modestatus)) {
|
|
sr_err("Could not query trigger hit.");
|
|
return FALSE;
|
|
}
|
|
trg_line = ~0;
|
|
trg_event = ~0;
|
|
if (modestatus & RMR_TRIGGERED) {
|
|
trg_line = triggerpos >> ROW_SHIFT;
|
|
trg_event = triggerpos & ROW_MASK;
|
|
}
|
|
|
|
/*
|
|
* Determine how many "DRAM lines" of 1024 bytes each we need to
|
|
* retrieve from the Sigma hardware, so that we have a complete
|
|
* set of samples. Note that the last line need not contain 64
|
|
* clusters, it might be partially filled only.
|
|
*
|
|
* When RMR_ROUND is set, the circular buffer in DRAM has wrapped
|
|
* around. Since the status of the very next line is uncertain in
|
|
* that case, we skip it and start reading from the next line.
|
|
*/
|
|
dl_first_line = 0;
|
|
dl_lines_total = (stoppos >> ROW_SHIFT) + 1;
|
|
if (modestatus & RMR_ROUND) {
|
|
dl_first_line = dl_lines_total + 1;
|
|
dl_lines_total = ROW_COUNT - 2;
|
|
}
|
|
dram_line = g_try_malloc0(chunks_per_read * sizeof(*dram_line));
|
|
if (!dram_line)
|
|
return FALSE;
|
|
ret = alloc_submit_buffer(sdi);
|
|
if (ret != SR_OK)
|
|
return FALSE;
|
|
ret = setup_submit_limit(devc);
|
|
if (ret != SR_OK)
|
|
return FALSE;
|
|
dl_lines_done = 0;
|
|
while (dl_lines_total > dl_lines_done) {
|
|
/* We can download only up-to 32 DRAM lines in one go! */
|
|
dl_lines_curr = MIN(chunks_per_read, dl_lines_total - dl_lines_done);
|
|
|
|
dl_line = dl_first_line + dl_lines_done;
|
|
dl_line %= ROW_COUNT;
|
|
bufsz = sigma_read_dram(devc, dl_line, dl_lines_curr,
|
|
(uint8_t *)dram_line);
|
|
/* TODO: Check bufsz. For now, just avoid compiler warnings. */
|
|
(void)bufsz;
|
|
|
|
/* This is the first DRAM line, so find the initial timestamp. */
|
|
if (dl_lines_done == 0) {
|
|
devc->state.lastts =
|
|
sigma_dram_cluster_ts(&dram_line[0].cluster[0]);
|
|
devc->state.lastsample = 0;
|
|
}
|
|
|
|
for (i = 0; i < dl_lines_curr; i++) {
|
|
uint32_t trigger_event = ~0;
|
|
/* The last "DRAM line" need not span its full length. */
|
|
if (dl_lines_done + i == dl_lines_total - 1)
|
|
dl_events_in_line = stoppos & ROW_MASK;
|
|
|
|
/* Test if the trigger happened on this line. */
|
|
if (dl_lines_done + i == trg_line)
|
|
trigger_event = trg_event;
|
|
|
|
decode_chunk_ts(devc, dram_line + i,
|
|
dl_events_in_line, trigger_event);
|
|
}
|
|
|
|
dl_lines_done += dl_lines_curr;
|
|
}
|
|
flush_submit_buffer(devc);
|
|
free_submit_buffer(devc);
|
|
g_free(dram_line);
|
|
|
|
std_session_send_df_end(sdi);
|
|
|
|
devc->state.state = SIGMA_IDLE;
|
|
sr_dev_acquisition_stop(sdi);
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/*
|
|
* Periodically check the Sigma status when in CAPTURE mode. This routine
|
|
* checks whether the configured sample count or sample time have passed,
|
|
* and will stop acquisition and download the acquired samples.
|
|
*/
|
|
static int sigma_capture_mode(struct sr_dev_inst *sdi)
|
|
{
|
|
struct dev_context *devc;
|
|
|
|
devc = sdi->priv;
|
|
if (sr_sw_limits_check(&devc->acq_limits))
|
|
return download_capture(sdi);
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
SR_PRIV int sigma_receive_data(int fd, int revents, void *cb_data)
|
|
{
|
|
struct sr_dev_inst *sdi;
|
|
struct dev_context *devc;
|
|
|
|
(void)fd;
|
|
(void)revents;
|
|
|
|
sdi = cb_data;
|
|
devc = sdi->priv;
|
|
|
|
if (devc->state.state == SIGMA_IDLE)
|
|
return TRUE;
|
|
|
|
/*
|
|
* When the application has requested to stop the acquisition,
|
|
* then immediately start downloading sample data. Otherwise
|
|
* keep checking configured limits which will terminate the
|
|
* acquisition and initiate download.
|
|
*/
|
|
if (devc->state.state == SIGMA_STOPPING)
|
|
return download_capture(sdi);
|
|
if (devc->state.state == SIGMA_CAPTURE)
|
|
return sigma_capture_mode(sdi);
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Build a LUT entry used by the trigger functions. */
|
|
static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry)
|
|
{
|
|
int i, j, k, bit;
|
|
|
|
/* For each quad channel. */
|
|
for (i = 0; i < 4; i++) {
|
|
entry[i] = 0xffff;
|
|
|
|
/* For each bit in LUT. */
|
|
for (j = 0; j < 16; j++) {
|
|
|
|
/* For each channel in quad. */
|
|
for (k = 0; k < 4; k++) {
|
|
bit = 1 << (i * 4 + k);
|
|
|
|
/* Set bit in entry */
|
|
if ((mask & bit) && ((!(value & bit)) !=
|
|
(!(j & (1 << k)))))
|
|
entry[i] &= ~(1 << j);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Add a logical function to LUT mask. */
|
|
static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
|
|
int index, int neg, uint16_t *mask)
|
|
{
|
|
int i, j;
|
|
int x[2][2], tmp, a, b, aset, bset, rset;
|
|
|
|
memset(x, 0, 4 * sizeof(int));
|
|
|
|
/* Trigger detect condition. */
|
|
switch (oper) {
|
|
case OP_LEVEL:
|
|
x[0][1] = 1;
|
|
x[1][1] = 1;
|
|
break;
|
|
case OP_NOT:
|
|
x[0][0] = 1;
|
|
x[1][0] = 1;
|
|
break;
|
|
case OP_RISE:
|
|
x[0][1] = 1;
|
|
break;
|
|
case OP_FALL:
|
|
x[1][0] = 1;
|
|
break;
|
|
case OP_RISEFALL:
|
|
x[0][1] = 1;
|
|
x[1][0] = 1;
|
|
break;
|
|
case OP_NOTRISE:
|
|
x[1][1] = 1;
|
|
x[0][0] = 1;
|
|
x[1][0] = 1;
|
|
break;
|
|
case OP_NOTFALL:
|
|
x[1][1] = 1;
|
|
x[0][0] = 1;
|
|
x[0][1] = 1;
|
|
break;
|
|
case OP_NOTRISEFALL:
|
|
x[1][1] = 1;
|
|
x[0][0] = 1;
|
|
break;
|
|
}
|
|
|
|
/* Transpose if neg is set. */
|
|
if (neg) {
|
|
for (i = 0; i < 2; i++) {
|
|
for (j = 0; j < 2; j++) {
|
|
tmp = x[i][j];
|
|
x[i][j] = x[1 - i][1 - j];
|
|
x[1 - i][1 - j] = tmp;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Update mask with function. */
|
|
for (i = 0; i < 16; i++) {
|
|
a = (i >> (2 * index + 0)) & 1;
|
|
b = (i >> (2 * index + 1)) & 1;
|
|
|
|
aset = (*mask >> i) & 1;
|
|
bset = x[b][a];
|
|
|
|
rset = 0;
|
|
if (func == FUNC_AND || func == FUNC_NAND)
|
|
rset = aset & bset;
|
|
else if (func == FUNC_OR || func == FUNC_NOR)
|
|
rset = aset | bset;
|
|
else if (func == FUNC_XOR || func == FUNC_NXOR)
|
|
rset = aset ^ bset;
|
|
|
|
if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR)
|
|
rset = !rset;
|
|
|
|
*mask &= ~(1 << i);
|
|
|
|
if (rset)
|
|
*mask |= 1 << i;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Build trigger LUTs used by 50 MHz and lower sample rates for supporting
|
|
* simple pin change and state triggers. Only two transitions (rise/fall) can be
|
|
* set at any time, but a full mask and value can be set (0/1).
|
|
*/
|
|
SR_PRIV int sigma_build_basic_trigger(struct dev_context *devc,
|
|
struct triggerlut *lut)
|
|
{
|
|
int i,j;
|
|
uint16_t masks[2] = { 0, 0 };
|
|
|
|
memset(lut, 0, sizeof(struct triggerlut));
|
|
|
|
/* Constant for simple triggers. */
|
|
lut->m4 = 0xa000;
|
|
|
|
/* Value/mask trigger support. */
|
|
build_lut_entry(devc->trigger.simplevalue, devc->trigger.simplemask,
|
|
lut->m2d);
|
|
|
|
/* Rise/fall trigger support. */
|
|
for (i = 0, j = 0; i < 16; i++) {
|
|
if (devc->trigger.risingmask & (1 << i) ||
|
|
devc->trigger.fallingmask & (1 << i))
|
|
masks[j++] = 1 << i;
|
|
}
|
|
|
|
build_lut_entry(masks[0], masks[0], lut->m0d);
|
|
build_lut_entry(masks[1], masks[1], lut->m1d);
|
|
|
|
/* Add glue logic */
|
|
if (masks[0] || masks[1]) {
|
|
/* Transition trigger. */
|
|
if (masks[0] & devc->trigger.risingmask)
|
|
add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3);
|
|
if (masks[0] & devc->trigger.fallingmask)
|
|
add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3);
|
|
if (masks[1] & devc->trigger.risingmask)
|
|
add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3);
|
|
if (masks[1] & devc->trigger.fallingmask)
|
|
add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3);
|
|
} else {
|
|
/* Only value/mask trigger. */
|
|
lut->m3 = 0xffff;
|
|
}
|
|
|
|
/* Triggertype: event. */
|
|
lut->params.selres = 3;
|
|
|
|
return SR_OK;
|
|
}
|