libsigrok/src/dmm/vc870.c

437 lines
13 KiB
C

/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2014-2015 Uwe Hermann <uwe@hermann-uwe.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <config.h>
#include <string.h>
#include <ctype.h>
#include <math.h>
#include <glib.h>
#include <libsigrok/libsigrok.h>
#include "libsigrok-internal.h"
#define LOG_PREFIX "vc870"
/* Exponents for the respective measurement mode. */
static const int exponents[][8] = {
{ -4, -3, -2, -1, 0, 0, 0, 0 }, /* DCV */
{ -3, -2, -1, 0, 0, 0, 0, 0 }, /* ACV */
{ -5, 0, 0, 0, 0, 0, 0, 0 }, /* DCmV */
{ -1, 0, 0, 0, 0, 0, 0, 0 }, /* Temperature (C) */
// { -2, 0, 0, 0, 0, 0, 0, 0 }, /* TODO: Temperature (F) */
/*
* Note: The sequence -1 -> 1 for the resistance
* value is correct and verified in practice!
* Don't trust the vendor docs on this.
*/
{ -2, -1, 1, 2, 3, 4, 0, 0 }, /* Resistance */
{ -2, 0, 0, 0, 0, 0, 0, 0 }, /* Continuity */
{ -12, -11, -10, -9, -8, -7, -6, 0 }, /* Capacitance */
{ -4, 0, 0, 0, 0, 0, 0, 0 }, /* Diode */
{ -3, -2, -1, 0, 1, 2, 3, 4 }, /* Frequency */
{ -2, 0, 0, 0, 0, 0, 0, 0 }, /* Loop current */
/*
* Note: Measurements showed that AC and DC differ
* in the exponents used, although docs say they should
* be the same.
*/
{ -8, -7, 0, 0, 0, 0, 0, 0 }, /* DCµA */
{ -7, -6, 0, 0, 0, 0, 0, 0 }, /* ACµA */
{ -6, -5, 0, 0, 0, 0, 0, 0 }, /* DCmA */
{ -5, -4, 0, 0, 0, 0, 0, 0 }, /* ACmA */
{ -3, 0, 0, 0, 0, 0, 0, 0 }, /* DCA */
/* TODO: Verify exponent for ACA */
{ -3, 0, 0, 0, 0, 0, 0, 0 }, /* ACA */
{ -1, 0, 0, 0, 0, 0, 0, 0 }, /* Act+apparent power */
{ -3, 0, 0, 0, 0, 0, 0, 0 }, /* Power exponent / freq */
{ -1, 0, 0, 0, 0, 0, 0, 0 }, /* V eff + A eff */
};
static int parse_value(const uint8_t *buf, struct vc870_info *info,
float *result)
{
int i, intval;
/* Bytes 3-7: Main display value (5 decimal digits) */
if (info->is_open || info->is_ol1) {
sr_spew("Over limit.");
*result = INFINITY;
return SR_OK;
} else if (!isdigit(buf[3]) || !isdigit(buf[4]) ||
!isdigit(buf[5]) || !isdigit(buf[6]) || !isdigit(buf[7])) {
sr_dbg("Invalid digits: %02x %02x %02x %02x %02X "
"(%c %c %c %c %c).",
buf[3], buf[4], buf[5], buf[6], buf[7],
buf[3], buf[4], buf[5], buf[6], buf[7]);
return SR_ERR;
}
intval = 0;
for (i = 0; i < 5; i++)
intval = 10 * intval + (buf[i + 3] - '0'); /* Main display. */
// intval = 10 * intval + (buf[i + 8] - '0'); /* TODO: Aux display. */
/* Apply sign. */
intval *= info->is_sign1 ? -1 : 1;
// intval *= info->is_sign2 ? -1 : 1; /* TODO: Fahrenheit / aux display. */
/* Note: The decimal point position will be parsed later. */
sr_spew("The display value without comma is %05d.", intval);
*result = (float)intval;
return SR_OK;
}
static int parse_range(uint8_t b, float *floatval, int *exponent,
const struct vc870_info *info)
{
int idx, mode;
idx = b - '0';
if (idx < 0 || idx > 7) {
sr_dbg("Invalid range byte / index: 0x%02x / 0x%02x.", b, idx);
return SR_ERR;
}
/* Parse range byte (depends on the measurement mode). */
if (info->is_voltage && info->is_dc && !info->is_milli)
mode = 0; /* DCV */
else if (info->is_voltage && info->is_ac)
mode = 1; /* ACV */
else if (info->is_voltage && info->is_dc && info->is_milli)
mode = 2; /* DCmV */
else if (info->is_temperature)
mode = 3; /* Temperature */
else if (info->is_resistance || info->is_continuity)
mode = 4; /* Resistance */
else if (info->is_continuity)
mode = 5; /* Continuity */
else if (info->is_capacitance)
mode = 6; /* Capacitance */
else if (info->is_diode)
mode = 7; /* Diode */
else if (info->is_frequency)
mode = 8; /* Frequency */
else if (info->is_loop_current)
mode = 9; /* Loop current */
else if (info->is_current && info->is_micro && info->is_dc)
mode = 10; /* DCµA */
else if (info->is_current && info->is_micro && info->is_ac)
mode = 11; /* ACµA */
else if (info->is_current && info->is_milli && info->is_dc)
mode = 12; /* DCmA */
else if (info->is_current && info->is_milli && info->is_ac)
mode = 13; /* ACmA */
else if (info->is_current && !info->is_milli && !info->is_micro && info->is_dc)
mode = 14; /* DCA */
else if (info->is_current && !info->is_milli && !info->is_micro && info->is_ac)
mode = 15; /* ACA */
else if (info->is_power_apparent_power)
mode = 16; /* Act+apparent power */
else if (info->is_power_factor_freq)
mode = 17; /* Power factor / freq */
else if (info->is_v_a_rms_value)
mode = 18; /* V eff + A eff */
else {
sr_dbg("Invalid mode, range byte was: 0x%02x.", b);
return SR_ERR;
}
*exponent = exponents[mode][idx];
/* Apply respective exponent (mode-dependent) on the value. */
*floatval *= powf(10, *exponent);
sr_dbg("Applying exponent %d, new value is %f.", *exponent, *floatval);
return SR_OK;
}
static void parse_flags(const uint8_t *buf, struct vc870_info *info)
{
/* Bytes 0/1: Function / function select */
/* Note: Some of these mappings are fixed up later. */
switch (buf[0]) {
case 0x30: /* DCV / ACV */
info->is_voltage = TRUE;
info->is_dc = (buf[1] == 0x30);
info->is_ac = (buf[1] == 0x31);
break;
case 0x31: /* DCmV / Celsius */
if (buf[1] == 0x30)
info->is_voltage = info->is_milli = info->is_dc = TRUE;
else if (buf[1] == 0x31)
info->is_temperature = TRUE;
break;
case 0x32: /* Resistance / Short-circuit test */
info->is_resistance = (buf[1] == 0x30);
info->is_continuity = (buf[1] == 0x31);
break;
case 0x33: /* Capacitance */
info->is_capacitance = (buf[1] == 0x30);
break;
case 0x34: /* Diode */
info->is_diode = (buf[1] == 0x30);
break;
case 0x35: /* (4~20mA)% */
info->is_frequency = (buf[1] == 0x30);
info->is_loop_current = (buf[1] == 0x31);
break;
case 0x36: /* DCµA / ACµA */
info->is_current = info->is_micro = TRUE;
info->is_dc = (buf[1] == 0x30);
info->is_ac = (buf[1] == 0x31);
break;
case 0x37: /* DCmA / ACmA */
info->is_current = info->is_milli = TRUE;
info->is_dc = (buf[1] == 0x30);
info->is_ac = (buf[1] == 0x31);
break;
case 0x38: /* DCA / ACA */
info->is_current = TRUE;
info->is_dc = (buf[1] == 0x30);
info->is_ac = (buf[1] == 0x31);
break;
case 0x39: /* Active power + apparent power / power factor + frequency */
if (buf[1] == 0x30)
/* Active power + apparent power */
info->is_power_apparent_power = TRUE;
else if (buf[1] == 0x31)
/* Power factor + frequency */
info->is_power_factor_freq = TRUE;
else if (buf[1] == 0x32)
/* Voltage effective value + current effective value */
info->is_v_a_rms_value = TRUE;
break;
default:
sr_dbg("Invalid function bytes: %02x %02x.", buf[0], buf[1]);
break;
}
/* Byte 2: Range */
/* Byte 3-7: Main display digits */
/* Byte 8-12: Auxiliary display digits */
/* Byte 13: TODO: "Simulate strip tens digit". */
/* Byte 14: TODO: "Simulate strip the single digit". */
/* Byte 15: Status */
info->is_sign2 = (buf[15] & (1 << 3)) != 0;
info->is_sign1 = (buf[15] & (1 << 2)) != 0;
info->is_batt = (buf[15] & (1 << 1)) != 0; /* Bat. low */
info->is_ol1 = (buf[15] & (1 << 0)) != 0; /* Overflow (main display) */
/* Byte 16: Option 1 */
info->is_max = (buf[16] & (1 << 3)) != 0;
info->is_min = (buf[16] & (1 << 2)) != 0;
info->is_maxmin = (buf[16] & (1 << 1)) != 0;
info->is_rel = (buf[16] & (1 << 0)) != 0;
/* Byte 17: Option 2 */
info->is_ol2 = (buf[17] & (1 << 3)) != 0;
info->is_open = (buf[17] & (1 << 2)) != 0;
info->is_manu = (buf[17] & (1 << 1)) != 0; /* Manual mode */
info->is_hold = (buf[17] & (1 << 0)) != 0; /* Hold */
/* Byte 18: Option 3 */
info->is_light = (buf[18] & (1 << 3)) != 0;
info->is_usb = (buf[18] & (1 << 2)) != 0; /* Always on */
info->is_warning = (buf[18] & (1 << 1)) != 0; /* Never seen? */
info->is_auto_power = (buf[18] & (1 << 0)) != 0; /* Always on */
/* Byte 19: Option 4 */
info->is_misplug_warn = (buf[19] & (1 << 3)) != 0; /* Never gets set? */
info->is_lo = (buf[19] & (1 << 2)) != 0;
info->is_hi = (buf[19] & (1 << 1)) != 0;
info->is_open2 = (buf[19] & (1 << 0)) != 0; /* TODO: Unknown. */
/* Byte 20: Dual display bit */
info->is_dual_display = (buf[20] & (1 << 0)) != 0;
/* Byte 21: Always '\r' (carriage return, 0x0d, 13) */
/* Byte 22: Always '\n' (newline, 0x0a, 10) */
info->is_auto = !info->is_manu;
}
static void handle_flags(struct sr_datafeed_analog *analog,
float *floatval, const struct vc870_info *info)
{
/*
* Note: is_micro etc. are not used directly to multiply/divide
* floatval, this is handled via parse_range() and exponents[][].
*/
/* Measurement modes */
if (info->is_voltage) {
analog->meaning->mq = SR_MQ_VOLTAGE;
analog->meaning->unit = SR_UNIT_VOLT;
}
if (info->is_current) {
analog->meaning->mq = SR_MQ_CURRENT;
analog->meaning->unit = SR_UNIT_AMPERE;
}
if (info->is_resistance) {
analog->meaning->mq = SR_MQ_RESISTANCE;
analog->meaning->unit = SR_UNIT_OHM;
}
if (info->is_frequency) {
analog->meaning->mq = SR_MQ_FREQUENCY;
analog->meaning->unit = SR_UNIT_HERTZ;
}
if (info->is_capacitance) {
analog->meaning->mq = SR_MQ_CAPACITANCE;
analog->meaning->unit = SR_UNIT_FARAD;
}
if (info->is_temperature) {
analog->meaning->mq = SR_MQ_TEMPERATURE;
analog->meaning->unit = SR_UNIT_CELSIUS;
/* TODO: Handle Fahrenheit in auxiliary display. */
// analog->meaning->unit = SR_UNIT_FAHRENHEIT;
}
if (info->is_continuity) {
analog->meaning->mq = SR_MQ_CONTINUITY;
analog->meaning->unit = SR_UNIT_BOOLEAN;
/* Vendor docs: "< 20 Ohm acoustic" */
*floatval = (*floatval < 0.0 || *floatval > 20.0) ? 0.0 : 1.0;
}
if (info->is_diode) {
analog->meaning->mq = SR_MQ_VOLTAGE;
analog->meaning->unit = SR_UNIT_VOLT;
}
if (info->is_loop_current) {
/* 4mA = 0%, 20mA = 100% */
analog->meaning->mq = SR_MQ_CURRENT;
analog->meaning->unit = SR_UNIT_PERCENTAGE;
}
if (info->is_power) {
analog->meaning->mq = SR_MQ_POWER;
analog->meaning->unit = SR_UNIT_WATT;
}
if (info->is_power_apparent_power) {
analog->meaning->mq = SR_MQ_POWER;
analog->meaning->unit = SR_UNIT_WATT;
/* TODO: Handle apparent power. */
// analog->meaning->mq = SR_MQ_APPARENT_POWER;
// analog->meaning->unit = SR_UNIT_VOLT_AMPERE;
}
if (info->is_power_factor_freq) {
analog->meaning->mq = SR_MQ_POWER_FACTOR;
analog->meaning->unit = SR_UNIT_UNITLESS;
/* TODO: Handle frequency. */
// analog->meaning->mq = SR_MQ_FREQUENCY;
// analog->meaning->unit = SR_UNIT_HERTZ;
}
if (info->is_v_a_rms_value) {
analog->meaning->mqflags |= SR_MQFLAG_RMS;
analog->meaning->mq = SR_MQ_VOLTAGE;
analog->meaning->unit = SR_UNIT_VOLT;
/* TODO: Handle effective current value */
// analog->meaning->mq = SR_MQ_CURRENT;
// analog->meaning->unit = SR_UNIT_AMPERE;
}
/* Measurement related flags */
if (info->is_ac)
analog->meaning->mqflags |= SR_MQFLAG_AC;
if (info->is_dc)
analog->meaning->mqflags |= SR_MQFLAG_DC;
if (info->is_auto)
analog->meaning->mqflags |= SR_MQFLAG_AUTORANGE;
if (info->is_diode)
analog->meaning->mqflags |= SR_MQFLAG_DIODE;
if (info->is_hold)
/*
* Note: HOLD only affects the number displayed on the LCD,
* but not the value sent via the protocol! It also does not
* affect the bargraph on the LCD.
*/
analog->meaning->mqflags |= SR_MQFLAG_HOLD;
if (info->is_max)
analog->meaning->mqflags |= SR_MQFLAG_MAX;
if (info->is_min)
analog->meaning->mqflags |= SR_MQFLAG_MIN;
if (info->is_rel)
analog->meaning->mqflags |= SR_MQFLAG_RELATIVE;
/* Other flags */
if (info->is_batt)
sr_spew("Battery is low.");
if (info->is_auto_power)
sr_spew("Auto-Power-Off enabled.");
}
static gboolean flags_valid(const struct vc870_info *info)
{
(void)info;
/* TODO: Implement. */
return TRUE;
}
SR_PRIV gboolean sr_vc870_packet_valid(const uint8_t *buf)
{
struct vc870_info info;
/* Byte 21: Always '\r' (carriage return, 0x0d, 13) */
/* Byte 22: Always '\n' (newline, 0x0a, 10) */
if (buf[21] != '\r' || buf[22] != '\n')
return FALSE;
parse_flags(buf, &info);
return flags_valid(&info);
}
SR_PRIV int sr_vc870_parse(const uint8_t *buf, float *floatval,
struct sr_datafeed_analog *analog, void *info)
{
int ret, exponent = 0;
struct vc870_info *info_local;
info_local = (struct vc870_info *)info;
memset(info_local, 0, sizeof(struct vc870_info));
if (!sr_vc870_packet_valid(buf))
return SR_ERR;
parse_flags(buf, info_local);
if ((ret = parse_value(buf, info_local, floatval)) != SR_OK) {
sr_dbg("Error parsing value: %d.", ret);
return ret;
}
if ((ret = parse_range(buf[2], floatval, &exponent, info_local)) != SR_OK)
return ret;
handle_flags(analog, floatval, info_local);
analog->encoding->digits = -exponent;
analog->spec->spec_digits = -exponent;
return SR_OK;
}