libsigrok/src/hardware/hantek-dso/api.c

997 lines
26 KiB
C

/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2012 Bert Vermeulen <bert@biot.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <math.h>
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>
#include <sys/time.h>
#include <inttypes.h>
#include <glib.h>
#include <libusb.h>
#include <libsigrok/libsigrok.h>
#include "libsigrok-internal.h"
#include "protocol.h"
/* Max time in ms before we want to check on USB events */
/* TODO tune this properly */
#define TICK 1
#define NUM_TIMEBASE 10
#define NUM_VDIV 8
#define NUM_BUFFER_SIZES 2
static const uint32_t scanopts[] = {
SR_CONF_CONN,
};
static const uint32_t drvopts[] = {
SR_CONF_OSCILLOSCOPE,
};
static const uint32_t devopts[] = {
SR_CONF_CONTINUOUS,
SR_CONF_CONN | SR_CONF_GET,
SR_CONF_LIMIT_FRAMES | SR_CONF_SET,
SR_CONF_TIMEBASE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_NUM_HDIV | SR_CONF_GET,
SR_CONF_HORIZ_TRIGGERPOS | SR_CONF_GET | SR_CONF_SET,
SR_CONF_TRIGGER_SOURCE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_TRIGGER_SLOPE | SR_CONF_GET | SR_CONF_SET,
SR_CONF_BUFFERSIZE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_NUM_VDIV | SR_CONF_GET,
};
static const uint32_t devopts_cg[] = {
SR_CONF_VDIV | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_COUPLING | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_FILTER | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
};
static const char *channel_names[] = {
"CH1", "CH2",
};
static const uint64_t buffersizes_32k[] = {
(10 * 1024), (32 * 1024),
};
static const uint64_t buffersizes_512k[] = {
(10 * 1024), (512 * 1024),
};
static const uint64_t buffersizes_14k[] = {
(10 * 1024), (14 * 1024),
};
static const struct dso_profile dev_profiles[] = {
{ 0x04b4, 0x2090, 0x04b5, 0x2090,
"Hantek", "DSO-2090",
buffersizes_32k,
"hantek-dso-2090.fw" },
{ 0x04b4, 0x2150, 0x04b5, 0x2150,
"Hantek", "DSO-2150",
buffersizes_32k,
"hantek-dso-2150.fw" },
{ 0x04b4, 0x2250, 0x04b5, 0x2250,
"Hantek", "DSO-2250",
buffersizes_512k,
"hantek-dso-2250.fw" },
{ 0x04b4, 0x5200, 0x04b5, 0x5200,
"Hantek", "DSO-5200",
buffersizes_14k,
"hantek-dso-5200.fw" },
{ 0x04b4, 0x520a, 0x04b5, 0x520a,
"Hantek", "DSO-5200A",
buffersizes_512k,
"hantek-dso-5200A.fw" },
ALL_ZERO
};
static const uint64_t timebases[][2] = {
/* microseconds */
{ 10, 1000000 },
{ 20, 1000000 },
{ 40, 1000000 },
{ 100, 1000000 },
{ 200, 1000000 },
{ 400, 1000000 },
/* milliseconds */
{ 1, 1000 },
{ 2, 1000 },
{ 4, 1000 },
{ 10, 1000 },
{ 20, 1000 },
{ 40, 1000 },
{ 100, 1000 },
{ 200, 1000 },
{ 400, 1000 },
};
static const uint64_t vdivs[][2] = {
/* millivolts */
{ 10, 1000 },
{ 20, 1000 },
{ 50, 1000 },
{ 100, 1000 },
{ 200, 1000 },
{ 500, 1000 },
/* volts */
{ 1, 1 },
{ 2, 1 },
{ 5, 1 },
};
static const char *trigger_sources[] = {
"CH1",
"CH2",
"EXT",
/* TODO: forced */
};
static const char *trigger_slopes[] = {
"r",
"f",
};
static const char *coupling[] = {
"AC",
"DC",
"GND",
};
static struct sr_dev_inst *dso_dev_new(const struct dso_profile *prof)
{
struct sr_dev_inst *sdi;
struct sr_channel *ch;
struct sr_channel_group *cg;
struct dev_context *devc;
unsigned int i;
sdi = g_malloc0(sizeof(struct sr_dev_inst));
sdi->status = SR_ST_INITIALIZING;
sdi->vendor = g_strdup(prof->vendor);
sdi->model = g_strdup(prof->model);
/*
* Add only the real channels -- EXT isn't a source of data, only
* a trigger source internal to the device.
*/
for (i = 0; i < ARRAY_SIZE(channel_names); i++) {
ch = sr_channel_new(sdi, i, SR_CHANNEL_ANALOG, TRUE, channel_names[i]);
cg = g_malloc0(sizeof(struct sr_channel_group));
cg->name = g_strdup(channel_names[i]);
cg->channels = g_slist_append(cg->channels, ch);
sdi->channel_groups = g_slist_append(sdi->channel_groups, cg);
}
devc = g_malloc0(sizeof(struct dev_context));
devc->profile = prof;
devc->dev_state = IDLE;
devc->timebase = DEFAULT_TIMEBASE;
devc->ch_enabled[0] = TRUE;
devc->ch_enabled[1] = TRUE;
devc->voltage[0] = DEFAULT_VOLTAGE;
devc->voltage[1] = DEFAULT_VOLTAGE;
devc->coupling[0] = DEFAULT_COUPLING;
devc->coupling[1] = DEFAULT_COUPLING;
devc->voffset_ch1 = DEFAULT_VERT_OFFSET;
devc->voffset_ch2 = DEFAULT_VERT_OFFSET;
devc->voffset_trigger = DEFAULT_VERT_TRIGGERPOS;
devc->framesize = DEFAULT_FRAMESIZE;
devc->triggerslope = SLOPE_POSITIVE;
devc->triggersource = g_strdup(DEFAULT_TRIGGER_SOURCE);
devc->triggerposition = DEFAULT_HORIZ_TRIGGERPOS;
sdi->priv = devc;
return sdi;
}
static int configure_channels(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct sr_channel *ch;
const GSList *l;
int p;
devc = sdi->priv;
g_slist_free(devc->enabled_channels);
devc->ch_enabled[0] = devc->ch_enabled[1] = FALSE;
for (l = sdi->channels, p = 0; l; l = l->next, p++) {
ch = l->data;
if (p == 0)
devc->ch_enabled[0] = ch->enabled;
else
devc->ch_enabled[1] = ch->enabled;
if (ch->enabled)
devc->enabled_channels = g_slist_append(devc->enabled_channels, ch);
}
return SR_OK;
}
static void clear_helper(struct dev_context *devc)
{
g_free(devc->triggersource);
g_slist_free(devc->enabled_channels);
}
static int dev_clear(const struct sr_dev_driver *di)
{
return std_dev_clear_with_callback(di, (std_dev_clear_callback)clear_helper);
}
static GSList *scan(struct sr_dev_driver *di, GSList *options)
{
struct drv_context *drvc;
struct dev_context *devc;
struct sr_dev_inst *sdi;
struct sr_usb_dev_inst *usb;
struct sr_config *src;
const struct dso_profile *prof;
GSList *l, *devices, *conn_devices;
struct libusb_device_descriptor des;
libusb_device **devlist;
int i, j;
const char *conn;
char connection_id[64];
drvc = di->context;
devices = 0;
conn = NULL;
for (l = options; l; l = l->next) {
src = l->data;
if (src->key == SR_CONF_CONN) {
conn = g_variant_get_string(src->data, NULL);
break;
}
}
if (conn)
conn_devices = sr_usb_find(drvc->sr_ctx->libusb_ctx, conn);
else
conn_devices = NULL;
/* Find all Hantek DSO devices and upload firmware to all of them. */
libusb_get_device_list(drvc->sr_ctx->libusb_ctx, &devlist);
for (i = 0; devlist[i]; i++) {
if (conn) {
usb = NULL;
for (l = conn_devices; l; l = l->next) {
usb = l->data;
if (usb->bus == libusb_get_bus_number(devlist[i])
&& usb->address == libusb_get_device_address(devlist[i]))
break;
}
if (!l)
/* This device matched none of the ones that
* matched the conn specification. */
continue;
}
libusb_get_device_descriptor(devlist[i], &des);
usb_get_port_path(devlist[i], connection_id, sizeof(connection_id));
prof = NULL;
for (j = 0; dev_profiles[j].orig_vid; j++) {
if (des.idVendor == dev_profiles[j].orig_vid
&& des.idProduct == dev_profiles[j].orig_pid) {
/* Device matches the pre-firmware profile. */
prof = &dev_profiles[j];
sr_dbg("Found a %s %s.", prof->vendor, prof->model);
sdi = dso_dev_new(prof);
sdi->connection_id = g_strdup(connection_id);
devices = g_slist_append(devices, sdi);
devc = sdi->priv;
if (ezusb_upload_firmware(drvc->sr_ctx, devlist[i],
USB_CONFIGURATION, prof->firmware) == SR_OK)
/* Remember when the firmware on this device was updated */
devc->fw_updated = g_get_monotonic_time();
else
sr_err("Firmware upload failed");
/* Dummy USB address of 0xff will get overwritten later. */
sdi->conn = sr_usb_dev_inst_new(
libusb_get_bus_number(devlist[i]), 0xff, NULL);
break;
} else if (des.idVendor == dev_profiles[j].fw_vid
&& des.idProduct == dev_profiles[j].fw_pid) {
/* Device matches the post-firmware profile. */
prof = &dev_profiles[j];
sr_dbg("Found a %s %s.", prof->vendor, prof->model);
sdi = dso_dev_new(prof);
sdi->connection_id = g_strdup(connection_id);
sdi->status = SR_ST_INACTIVE;
devices = g_slist_append(devices, sdi);
sdi->inst_type = SR_INST_USB;
sdi->conn = sr_usb_dev_inst_new(
libusb_get_bus_number(devlist[i]),
libusb_get_device_address(devlist[i]), NULL);
break;
}
}
if (!prof)
/* not a supported VID/PID */
continue;
}
libusb_free_device_list(devlist, 1);
return std_scan_complete(di, devices);
}
static int dev_open(struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct sr_usb_dev_inst *usb;
int64_t timediff_us, timediff_ms;
int err;
devc = sdi->priv;
usb = sdi->conn;
/*
* If the firmware was recently uploaded, wait up to MAX_RENUM_DELAY_MS
* for the FX2 to renumerate.
*/
err = SR_ERR;
if (devc->fw_updated > 0) {
sr_info("Waiting for device to reset.");
/* Takes >= 300ms for the FX2 to be gone from the USB bus. */
g_usleep(300 * 1000);
timediff_ms = 0;
while (timediff_ms < MAX_RENUM_DELAY_MS) {
if ((err = dso_open(sdi)) == SR_OK)
break;
g_usleep(100 * 1000);
timediff_us = g_get_monotonic_time() - devc->fw_updated;
timediff_ms = timediff_us / 1000;
sr_spew("Waited %" PRIi64 " ms.", timediff_ms);
}
sr_info("Device came back after %" PRIi64 " ms.", timediff_ms);
} else {
err = dso_open(sdi);
}
if (err != SR_OK) {
sr_err("Unable to open device.");
return SR_ERR;
}
err = libusb_claim_interface(usb->devhdl, USB_INTERFACE);
if (err != 0) {
sr_err("Unable to claim interface: %s.",
libusb_error_name(err));
return SR_ERR;
}
return SR_OK;
}
static int dev_close(struct sr_dev_inst *sdi)
{
dso_close(sdi);
return SR_OK;
}
static int config_get(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_channel_group *cg)
{
struct dev_context *devc;
struct sr_usb_dev_inst *usb;
char str[128];
const char *s;
const uint64_t *vdiv;
int ch_idx;
switch (key) {
case SR_CONF_NUM_HDIV:
*data = g_variant_new_int32(NUM_TIMEBASE);
break;
case SR_CONF_NUM_VDIV:
*data = g_variant_new_int32(NUM_VDIV);
break;
}
if (!sdi)
return SR_ERR_ARG;
devc = sdi->priv;
if (!cg) {
switch (key) {
case SR_CONF_CONN:
if (!sdi->conn)
return SR_ERR_ARG;
usb = sdi->conn;
if (usb->address == 255)
/* Device still needs to re-enumerate after firmware
* upload, so we don't know its (future) address. */
return SR_ERR;
snprintf(str, 128, "%d.%d", usb->bus, usb->address);
*data = g_variant_new_string(str);
break;
case SR_CONF_TIMEBASE:
*data = g_variant_new("(tt)", timebases[devc->timebase][0],
timebases[devc->timebase][1]);
break;
case SR_CONF_BUFFERSIZE:
*data = g_variant_new_uint64(devc->framesize);
break;
case SR_CONF_TRIGGER_SOURCE:
*data = g_variant_new_string(devc->triggersource);
break;
case SR_CONF_TRIGGER_SLOPE:
s = (devc->triggerslope == SLOPE_POSITIVE) ? "r" : "f";
*data = g_variant_new_string(s);
break;
case SR_CONF_HORIZ_TRIGGERPOS:
*data = g_variant_new_double(devc->triggerposition);
break;
default:
return SR_ERR_NA;
}
} else {
if (sdi->channel_groups->data == cg)
ch_idx = 0;
else if (sdi->channel_groups->next->data == cg)
ch_idx = 1;
else
return SR_ERR_ARG;
switch (key) {
case SR_CONF_FILTER:
*data = g_variant_new_boolean(devc->filter[ch_idx]);
break;
case SR_CONF_VDIV:
vdiv = vdivs[devc->voltage[ch_idx]];
*data = g_variant_new("(tt)", vdiv[0], vdiv[1]);
break;
case SR_CONF_COUPLING:
*data = g_variant_new_string(coupling[devc->coupling[ch_idx]]);
break;
}
}
return SR_OK;
}
static int config_set(uint32_t key, GVariant *data, const struct sr_dev_inst *sdi,
const struct sr_channel_group *cg)
{
struct dev_context *devc;
double tmp_double;
uint64_t tmp_u64, p, q;
int tmp_int, ch_idx;
unsigned int i;
const char *tmp_str;
devc = sdi->priv;
if (!cg) {
switch (key) {
case SR_CONF_LIMIT_FRAMES:
devc->limit_frames = g_variant_get_uint64(data);
break;
case SR_CONF_TRIGGER_SLOPE:
tmp_str = g_variant_get_string(data, NULL);
if (!tmp_str || !(tmp_str[0] == 'f' || tmp_str[0] == 'r'))
return SR_ERR_ARG;
devc->triggerslope = (tmp_str[0] == 'r')
? SLOPE_POSITIVE : SLOPE_NEGATIVE;
break;
case SR_CONF_HORIZ_TRIGGERPOS:
tmp_double = g_variant_get_double(data);
if (tmp_double < 0.0 || tmp_double > 1.0) {
sr_err("Trigger position should be between 0.0 and 1.0.");
return SR_ERR_ARG;
} else
devc->triggerposition = tmp_double;
break;
case SR_CONF_BUFFERSIZE:
tmp_u64 = g_variant_get_uint64(data);
for (i = 0; i < NUM_BUFFER_SIZES; i++) {
if (devc->profile->buffersizes[i] == tmp_u64) {
devc->framesize = tmp_u64;
break;
}
}
if (i == NUM_BUFFER_SIZES)
return SR_ERR_ARG;
break;
case SR_CONF_TIMEBASE:
g_variant_get(data, "(tt)", &p, &q);
tmp_int = -1;
for (i = 0; i < ARRAY_SIZE(timebases); i++) {
if (timebases[i][0] == p && timebases[i][1] == q) {
tmp_int = i;
break;
}
}
if (tmp_int >= 0)
devc->timebase = tmp_int;
else
return SR_ERR_ARG;
break;
case SR_CONF_TRIGGER_SOURCE:
tmp_str = g_variant_get_string(data, NULL);
for (i = 0; trigger_sources[i]; i++) {
if (!strcmp(tmp_str, trigger_sources[i])) {
devc->triggersource = g_strdup(tmp_str);
break;
}
}
if (trigger_sources[i] == 0)
return SR_ERR_ARG;
break;
default:
return SR_ERR_NA;
}
} else {
if (sdi->channel_groups->data == cg)
ch_idx = 0;
else if (sdi->channel_groups->next->data == cg)
ch_idx = 1;
else
return SR_ERR_ARG;
switch (key) {
case SR_CONF_FILTER:
devc->filter[ch_idx] = g_variant_get_boolean(data);
break;
case SR_CONF_VDIV:
g_variant_get(data, "(tt)", &p, &q);
tmp_int = -1;
for (i = 0; i < ARRAY_SIZE(vdivs); i++) {
if (vdivs[i][0] == p && vdivs[i][1] == q) {
tmp_int = i;
break;
}
}
if (tmp_int >= 0) {
devc->voltage[ch_idx] = tmp_int;
} else
return SR_ERR_ARG;
break;
case SR_CONF_COUPLING:
tmp_str = g_variant_get_string(data, NULL);
for (i = 0; coupling[i]; i++) {
if (!strcmp(tmp_str, coupling[i])) {
devc->coupling[ch_idx] = i;
break;
}
}
if (coupling[i] == 0)
return SR_ERR_ARG;
break;
default:
return SR_ERR_NA;
}
}
return SR_OK;
}
static int config_list(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_channel_group *cg)
{
struct dev_context *devc;
GVariant *tuple, *rational[2];
GVariantBuilder gvb;
unsigned int i;
if (key == SR_CONF_SCAN_OPTIONS) {
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
scanopts, ARRAY_SIZE(scanopts), sizeof(uint32_t));
return SR_OK;
} else if (key == SR_CONF_DEVICE_OPTIONS && !sdi) {
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
drvopts, ARRAY_SIZE(drvopts), sizeof(uint32_t));
return SR_OK;
}
if (!sdi)
return SR_ERR_ARG;
if (!cg) {
switch (key) {
case SR_CONF_DEVICE_OPTIONS:
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
devopts, ARRAY_SIZE(devopts), sizeof(uint32_t));
break;
case SR_CONF_BUFFERSIZE:
if (!sdi)
return SR_ERR_ARG;
devc = sdi->priv;
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT64,
devc->profile->buffersizes, NUM_BUFFER_SIZES, sizeof(uint64_t));
break;
case SR_CONF_TIMEBASE:
g_variant_builder_init(&gvb, G_VARIANT_TYPE_ARRAY);
for (i = 0; i < ARRAY_SIZE(timebases); i++) {
rational[0] = g_variant_new_uint64(timebases[i][0]);
rational[1] = g_variant_new_uint64(timebases[i][1]);
tuple = g_variant_new_tuple(rational, 2);
g_variant_builder_add_value(&gvb, tuple);
}
*data = g_variant_builder_end(&gvb);
break;
case SR_CONF_TRIGGER_SOURCE:
*data = g_variant_new_strv(trigger_sources,
ARRAY_SIZE(trigger_sources));
break;
case SR_CONF_TRIGGER_SLOPE:
*data = g_variant_new_strv(trigger_slopes,
ARRAY_SIZE(trigger_slopes));
break;
default:
return SR_ERR_NA;
}
} else {
switch (key) {
case SR_CONF_DEVICE_OPTIONS:
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
devopts_cg, ARRAY_SIZE(devopts_cg), sizeof(uint32_t));
break;
case SR_CONF_COUPLING:
*data = g_variant_new_strv(coupling, ARRAY_SIZE(coupling));
break;
case SR_CONF_VDIV:
g_variant_builder_init(&gvb, G_VARIANT_TYPE_ARRAY);
for (i = 0; i < ARRAY_SIZE(vdivs); i++) {
rational[0] = g_variant_new_uint64(vdivs[i][0]);
rational[1] = g_variant_new_uint64(vdivs[i][1]);
tuple = g_variant_new_tuple(rational, 2);
g_variant_builder_add_value(&gvb, tuple);
}
*data = g_variant_builder_end(&gvb);
break;
default:
return SR_ERR_NA;
}
}
return SR_OK;
}
static void send_chunk(struct sr_dev_inst *sdi, unsigned char *buf,
int num_samples)
{
struct sr_datafeed_packet packet;
struct sr_datafeed_analog analog;
struct sr_analog_encoding encoding;
struct sr_analog_meaning meaning;
struct sr_analog_spec spec;
struct dev_context *devc = sdi->priv;
GSList *channels = devc->enabled_channels;
packet.type = SR_DF_ANALOG;
packet.payload = &analog;
/* TODO: support for 5xxx series 9-bit samples */
sr_analog_init(&analog, &encoding, &meaning, &spec, 0);
analog.num_samples = num_samples;
analog.meaning->mq = SR_MQ_VOLTAGE;
analog.meaning->unit = SR_UNIT_VOLT;
analog.meaning->mqflags = 0;
/* TODO: Check malloc return value. */
analog.data = g_try_malloc(num_samples * sizeof(float));
for (int ch = 0; ch < 2; ch++) {
if (!devc->ch_enabled[ch])
continue;
float range = ((float)vdivs[devc->voltage[ch]][0] / vdivs[devc->voltage[ch]][1]) * 8;
float vdivlog = log10f(range / 255);
int digits = -(int)vdivlog + (vdivlog < 0.0);
analog.encoding->digits = digits;
analog.spec->spec_digits = digits;
analog.meaning->channels = g_slist_append(NULL, channels->data);
for (int i = 0; i < num_samples; i++) {
/*
* The device always sends data for both channels. If a channel
* is disabled, it contains a copy of the enabled channel's
* data. However, we only send the requested channels to
* the bus.
*
* Voltage values are encoded as a value 0-255 (0-512 on the
* DSO-5200*), where the value is a point in the range
* represented by the vdiv setting. There are 8 vertical divs,
* so e.g. 500mV/div represents 4V peak-to-peak where 0 = -2V
* and 255 = +2V.
*/
/* TODO: Support for DSO-5xxx series 9-bit samples. */
((float *)analog.data)[i] = range / 255 * *(buf + i * 2 + 1 - ch) - range / 2;
}
sr_session_send(sdi, &packet);
g_slist_free(analog.meaning->channels);
channels = channels->next;
}
g_free(analog.data);
}
/*
* Called by libusb (as triggered by handle_event()) when a transfer comes in.
* Only channel data comes in asynchronously, and all transfers for this are
* queued up beforehand, so this just needs to chuck the incoming data onto
* the libsigrok session bus.
*/
static void LIBUSB_CALL receive_transfer(struct libusb_transfer *transfer)
{
struct sr_datafeed_packet packet;
struct sr_dev_inst *sdi;
struct dev_context *devc;
int num_samples, pre;
sdi = transfer->user_data;
devc = sdi->priv;
sr_spew("receive_transfer(): status %s received %d bytes.",
libusb_error_name(transfer->status), transfer->actual_length);
if (transfer->actual_length == 0)
/* Nothing to send to the bus. */
return;
num_samples = transfer->actual_length / 2;
sr_spew("Got %d-%d/%d samples in frame.", devc->samp_received + 1,
devc->samp_received + num_samples, devc->framesize);
/*
* The device always sends a full frame, but the beginning of the frame
* doesn't represent the trigger point. The offset at which the trigger
* happened came in with the capture state, so we need to start sending
* from there up the session bus. The samples in the frame buffer
* before that trigger point came after the end of the device's frame
* buffer was reached, and it wrapped around to overwrite up until the
* trigger point.
*/
if (devc->samp_received < devc->trigger_offset) {
/* Trigger point not yet reached. */
if (devc->samp_received + num_samples < devc->trigger_offset) {
/* The entire chunk is before the trigger point. */
memcpy(devc->framebuf + devc->samp_buffered * 2,
transfer->buffer, num_samples * 2);
devc->samp_buffered += num_samples;
} else {
/*
* This chunk hits or overruns the trigger point.
* Store the part before the trigger fired, and
* send the rest up to the session bus.
*/
pre = devc->trigger_offset - devc->samp_received;
memcpy(devc->framebuf + devc->samp_buffered * 2,
transfer->buffer, pre * 2);
devc->samp_buffered += pre;
/* The rest of this chunk starts with the trigger point. */
sr_dbg("Reached trigger point, %d samples buffered.",
devc->samp_buffered);
/* Avoid the corner case where the chunk ended at
* exactly the trigger point. */
if (num_samples > pre)
send_chunk(sdi, transfer->buffer + pre * 2,
num_samples - pre);
}
} else {
/* Already past the trigger point, just send it all out. */
send_chunk(sdi, transfer->buffer, num_samples);
}
devc->samp_received += num_samples;
/* Everything in this transfer was either copied to the buffer or
* sent to the session bus. */
g_free(transfer->buffer);
libusb_free_transfer(transfer);
if (devc->samp_received >= devc->framesize) {
/* That was the last chunk in this frame. Send the buffered
* pre-trigger samples out now, in one big chunk. */
sr_dbg("End of frame, sending %d pre-trigger buffered samples.",
devc->samp_buffered);
send_chunk(sdi, devc->framebuf, devc->samp_buffered);
/* Mark the end of this frame. */
packet.type = SR_DF_FRAME_END;
sr_session_send(sdi, &packet);
if (devc->limit_frames && ++devc->num_frames == devc->limit_frames) {
/* Terminate session */
devc->dev_state = STOPPING;
} else {
devc->dev_state = NEW_CAPTURE;
}
}
}
static int handle_event(int fd, int revents, void *cb_data)
{
const struct sr_dev_inst *sdi;
struct sr_datafeed_packet packet;
struct timeval tv;
struct sr_dev_driver *di;
struct dev_context *devc;
struct drv_context *drvc;
int num_channels;
uint32_t trigger_offset;
uint8_t capturestate;
(void)fd;
(void)revents;
sdi = cb_data;
di = sdi->driver;
drvc = di->context;
devc = sdi->priv;
if (devc->dev_state == STOPPING) {
/* We've been told to wind up the acquisition. */
sr_dbg("Stopping acquisition.");
/*
* TODO: Doesn't really cancel pending transfers so they might
* come in after SR_DF_END is sent.
*/
usb_source_remove(sdi->session, drvc->sr_ctx);
std_session_send_df_end(sdi);
devc->dev_state = IDLE;
return TRUE;
}
/* Always handle pending libusb events. */
tv.tv_sec = tv.tv_usec = 0;
libusb_handle_events_timeout(drvc->sr_ctx->libusb_ctx, &tv);
/* TODO: ugh */
if (devc->dev_state == NEW_CAPTURE) {
if (dso_capture_start(sdi) != SR_OK)
return TRUE;
if (dso_enable_trigger(sdi) != SR_OK)
return TRUE;
// if (dso_force_trigger(sdi) != SR_OK)
// return TRUE;
sr_dbg("Successfully requested next chunk.");
devc->dev_state = CAPTURE;
return TRUE;
}
if (devc->dev_state != CAPTURE)
return TRUE;
if ((dso_get_capturestate(sdi, &capturestate, &trigger_offset)) != SR_OK)
return TRUE;
sr_dbg("Capturestate %d.", capturestate);
sr_dbg("Trigger offset 0x%.6x.", trigger_offset);
switch (capturestate) {
case CAPTURE_EMPTY:
if (++devc->capture_empty_count >= MAX_CAPTURE_EMPTY) {
devc->capture_empty_count = 0;
if (dso_capture_start(sdi) != SR_OK)
break;
if (dso_enable_trigger(sdi) != SR_OK)
break;
// if (dso_force_trigger(sdi) != SR_OK)
// break;
sr_dbg("Successfully requested next chunk.");
}
break;
case CAPTURE_FILLING:
/* No data yet. */
break;
case CAPTURE_READY_8BIT:
/* Remember where in the captured frame the trigger is. */
devc->trigger_offset = trigger_offset;
num_channels = (devc->ch_enabled[0] && devc->ch_enabled[1]) ? 2 : 1;
devc->framebuf = g_malloc(devc->framesize * num_channels * 2);
devc->samp_buffered = devc->samp_received = 0;
/* Tell the scope to send us the first frame. */
if (dso_get_channeldata(sdi, receive_transfer) != SR_OK)
break;
/*
* Don't hit the state machine again until we're done fetching
* the data we just told the scope to send.
*/
devc->dev_state = FETCH_DATA;
/* Tell the frontend a new frame is on the way. */
packet.type = SR_DF_FRAME_BEGIN;
sr_session_send(sdi, &packet);
break;
case CAPTURE_READY_9BIT:
/* TODO */
sr_err("Not yet supported.");
break;
case CAPTURE_TIMEOUT:
/* Doesn't matter, we'll try again next time. */
break;
default:
sr_dbg("Unknown capture state: %d.", capturestate);
break;
}
return TRUE;
}
static int dev_acquisition_start(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct sr_dev_driver *di = sdi->driver;
struct drv_context *drvc = di->context;
devc = sdi->priv;
if (configure_channels(sdi) != SR_OK) {
sr_err("Failed to configure channels.");
return SR_ERR;
}
if (dso_init(sdi) != SR_OK)
return SR_ERR;
if (dso_capture_start(sdi) != SR_OK)
return SR_ERR;
devc->dev_state = CAPTURE;
usb_source_add(sdi->session, drvc->sr_ctx, TICK, handle_event, (void *)sdi);
std_session_send_df_header(sdi);
return SR_OK;
}
static int dev_acquisition_stop(struct sr_dev_inst *sdi)
{
struct dev_context *devc;
devc = sdi->priv;
devc->dev_state = STOPPING;
return SR_OK;
}
static struct sr_dev_driver hantek_dso_driver_info = {
.name = "hantek-dso",
.longname = "Hantek DSO",
.api_version = 1,
.init = std_init,
.cleanup = std_cleanup,
.scan = scan,
.dev_list = std_dev_list,
.dev_clear = dev_clear,
.config_get = config_get,
.config_set = config_set,
.config_list = config_list,
.dev_open = dev_open,
.dev_close = dev_close,
.dev_acquisition_start = dev_acquisition_start,
.dev_acquisition_stop = dev_acquisition_stop,
.context = NULL,
};
SR_REGISTER_DEV_DRIVER(hantek_dso_driver_info);