libsigrok/src/dmm/ut71x.c

362 lines
10 KiB
C

/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2014 Uwe Hermann <uwe@hermann-uwe.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/*
* UNI-T UT71x protocol parser.
*
* Communication parameters: Unidirectional, 2400/7o1
*/
#include <config.h>
#include <string.h>
#include <ctype.h>
#include <math.h>
#include <glib.h>
#include <libsigrok/libsigrok.h>
#include "libsigrok-internal.h"
#define LOG_PREFIX "ut71x"
/*
* Exponents for the respective measurement mode.
*
* The Conrad/Voltcraft protocol descriptions have a typo (they suggest
* index 0 for the 10A range (which is incorrect, it's range 1).
*/
static const int exponents[16][8] = {
{ -5, 0, 0, 0, 0, 0, 0, 0 }, /* AC mV */
{ 0, -4, -3, -2, -1, 0, 0, 0 }, /* DC V */
{ 0, -4, -3, -2, -1, 0, 0, 0 }, /* AC V */
{ -5, 0, 0, 0, 0, 0, 0, 0 }, /* DC mV */
{ 0, -2, -1, 0, 1, 2, 3, 0 }, /* Resistance */
{ 0, -12, -11, -10, -9, -8, -7, -6 }, /* Capacitance */
{ -1, 0, 0, 0, 0, 0, 0, 0 }, /* Temp (C) */
{ -8, -7, 0, 0, 0, 0, 0, 0 }, /* uA */
{ -6, -5, 0, 0, 0, 0, 0, 0 }, /* mA */
{ 0, -3, 0, 0, 0, 0, 0, 0 }, /* 10A */
{ -1, 0, 0, 0, 0, 0, 0, 0 }, /* Continuity */
{ -4, 0, 0, 0, 0, 0, 0, 0 }, /* Diode */
{ -3, -2, -1, 0, 1, 2, 3, 4 }, /* Frequency */
{ -1, 0, 0, 0, 0, 0, 0, 0 }, /* Temp (F) */
{ 0, 0, 0, 0, 0, 0, 0, 0 }, /* Power */
{ -2, 0, 0, 0, 0, 0, 0, 0 }, /* Loop current */
};
static int parse_value(const uint8_t *buf, struct ut71x_info *info, float *result)
{
int i, intval, num_digits = 5;
/* Bytes 0-4: Value (5 decimal digits) */
if (!strncmp((const char *)buf, "::0<:", 5)) {
sr_spew("Over limit.");
*result = INFINITY;
return SR_OK;
} else if (!strncmp((const char *)buf, ":<0::", 5)) {
sr_spew("Under limit.");
*result = INFINITY;
return SR_OK;
} else if (buf[4] == ':') {
sr_dbg("4000 count mode, only 4 digits used.");
num_digits = 4;
} else if (!isdigit(buf[0]) || !isdigit(buf[1]) ||
!isdigit(buf[2]) || !isdigit(buf[3]) || !isdigit(buf[4])) {
sr_dbg("Invalid digits: %02x %02x %02x %02x %02x (%c %c "
"%c %c %c).", buf[0], buf[1], buf[2], buf[3], buf[4],
buf[0], buf[1], buf[2], buf[3], buf[4]);
return SR_ERR;
}
for (i = 0, intval = 0; i < num_digits; i++)
intval = 10 * intval + (buf[i] - '0');
/*
* For measurements that only have 4000 instead of 40000 counts
* (resistance, continuity) we have to use an additional factor of 10.
*
* This seems to vary between DMMs. E.g. the Voltcraft VC920 and VC940
* have 4000 counts for resistance, whereas the Tenma 72-9380A,
* 72-7730 and 72-7732 have 40000 counts for resistance.
*/
if (num_digits == 4)
intval *= 10;
/* Apply sign. */
intval *= info->is_sign ? -1 : 1;
/* Note: The decimal point position will be parsed later. */
*result = (float)intval;
sr_spew("The display value is %f.", *result);
return SR_OK;
}
static int parse_range(const uint8_t *buf, float *floatval, int *exponent)
{
int idx, mode;
idx = buf[5] - '0';
if (idx < 0 || idx > 7) {
sr_dbg("Invalid range byte 0x%02x (idx 0x%02x).", buf[5], idx);
return SR_ERR;
}
mode = buf[6] - '0';
if (mode < 0 || mode > 15) {
sr_dbg("Invalid mode byte 0x%02x (idx 0x%02x).", buf[6], mode);
return SR_ERR;
}
sr_spew("mode/idx = %d/%d", mode, idx);
*exponent = exponents[mode][idx];
/* Apply respective exponent (mode-dependent) on the value. */
*floatval *= powf(10, *exponent);
sr_dbg("Applying exponent %d, new value is %g.", *exponent, *floatval);
return SR_OK;
}
static void parse_flags(const uint8_t *buf, struct ut71x_info *info)
{
/* Function byte */
switch (buf[6] - '0') {
case 0: /* AC mV */
info->is_voltage = info->is_ac = TRUE;
break;
case 1: /* DC V */
info->is_voltage = info->is_dc = TRUE;
break;
case 2: /* AC V */
info->is_voltage = info->is_ac = TRUE;
break;
case 3: /* DC mV */
info->is_voltage = info->is_dc = TRUE;
break;
case 4: /* Resistance */
info->is_resistance = TRUE;
break;
case 5: /* Capacitance */
info->is_capacitance = TRUE;
break;
case 6: /* Temperature (Celsius) */
info->is_temperature = info->is_celsius = TRUE;
break;
case 7: /* uA */
info->is_current = info->is_dc = TRUE;
break;
case 8: /* mA */
info->is_current = info->is_dc = TRUE;
break;
case 9: /* 10A */
info->is_current = info->is_dc = TRUE;
break;
case 10: /* Continuity */
info->is_continuity = TRUE;
break;
case 11: /* Diode */
info->is_diode = TRUE;
break;
case 12: /* Frequency */
info->is_frequency = TRUE;
break;
case 13: /* Temperature (F) */
info->is_temperature = info->is_fahrenheit = TRUE;
break;
case 14: /* Power */
/* Note: Only available on UT71E (range 0-2500W). */
info->is_power = TRUE;
break;
case 15: /* DC loop current, percentage display (range 4-20mA) */
info->is_loop_current = TRUE;
break;
default:
sr_dbg("Invalid function byte: 0x%02x.", buf[6]);
break;
}
/*
* State 1 byte: bit 0 = AC, bit 1 = DC
* Either AC or DC or both or none can be set at the same time.
*/
info->is_ac = (buf[7] & (1 << 0)) != 0;
info->is_dc = (buf[7] & (1 << 1)) != 0;
/*
* State 2 byte: bit 0 = auto, bit 1 = manual, bit 2 = sign
*
* The Conrad/Voltcraft protocol descriptions have a typo
* (they suggest bit 3 as sign bit, which is incorrect).
*
* For modes where there's only one possible range (e.g. AC mV)
* neither the "auto" nor the "manual" bits will be set.
*/
info->is_auto = (buf[8] & (1 << 0)) != 0;
info->is_manual = (buf[8] & (1 << 1)) != 0;
info->is_sign = (buf[8] & (1 << 2)) != 0;
/* Note: "Frequency mode + sign bit" means "duty cycle mode". */
if (info->is_frequency && info->is_sign) {
info->is_duty_cycle = TRUE;
info->is_frequency = info->is_sign = FALSE;
}
}
static void handle_flags(struct sr_datafeed_analog *analog,
float *floatval, const struct ut71x_info *info)
{
/* Measurement modes */
if (info->is_voltage) {
analog->meaning->mq = SR_MQ_VOLTAGE;
analog->meaning->unit = SR_UNIT_VOLT;
}
if (info->is_current) {
analog->meaning->mq = SR_MQ_CURRENT;
analog->meaning->unit = SR_UNIT_AMPERE;
}
if (info->is_resistance) {
analog->meaning->mq = SR_MQ_RESISTANCE;
analog->meaning->unit = SR_UNIT_OHM;
}
if (info->is_frequency) {
analog->meaning->mq = SR_MQ_FREQUENCY;
analog->meaning->unit = SR_UNIT_HERTZ;
}
if (info->is_capacitance) {
analog->meaning->mq = SR_MQ_CAPACITANCE;
analog->meaning->unit = SR_UNIT_FARAD;
}
if (info->is_temperature && info->is_celsius) {
analog->meaning->mq = SR_MQ_TEMPERATURE;
analog->meaning->unit = SR_UNIT_CELSIUS;
}
if (info->is_temperature && info->is_fahrenheit) {
analog->meaning->mq = SR_MQ_TEMPERATURE;
analog->meaning->unit = SR_UNIT_FAHRENHEIT;
}
if (info->is_continuity) {
analog->meaning->mq = SR_MQ_CONTINUITY;
analog->meaning->unit = SR_UNIT_BOOLEAN;
*floatval = (*floatval < 0.0 || *floatval > 60.0) ? 0.0 : 1.0;
}
if (info->is_diode) {
analog->meaning->mq = SR_MQ_VOLTAGE;
analog->meaning->unit = SR_UNIT_VOLT;
}
if (info->is_duty_cycle) {
analog->meaning->mq = SR_MQ_DUTY_CYCLE;
analog->meaning->unit = SR_UNIT_PERCENTAGE;
}
if (info->is_power) {
analog->meaning->mq = SR_MQ_POWER;
analog->meaning->unit = SR_UNIT_WATT;
}
if (info->is_loop_current) {
/* 4mA = 0%, 20mA = 100% */
analog->meaning->mq = SR_MQ_CURRENT;
analog->meaning->unit = SR_UNIT_PERCENTAGE;
}
/* Measurement related flags */
if (info->is_ac)
analog->meaning->mqflags |= SR_MQFLAG_AC;
if (info->is_dc)
analog->meaning->mqflags |= SR_MQFLAG_DC;
if (info->is_ac)
/* All AC modes do True-RMS measurements. */
analog->meaning->mqflags |= SR_MQFLAG_RMS;
if (info->is_auto)
analog->meaning->mqflags |= SR_MQFLAG_AUTORANGE;
if (info->is_diode)
analog->meaning->mqflags |= SR_MQFLAG_DIODE | SR_MQFLAG_DC;
}
static gboolean flags_valid(const struct ut71x_info *info)
{
int count;
/* Does the packet "measure" more than one type of value? */
count = (info->is_voltage) ? 1 : 0;
count += (info->is_current) ? 1 : 0;
count += (info->is_resistance) ? 1 : 0;
count += (info->is_capacitance) ? 1 : 0;
count += (info->is_frequency) ? 1 : 0;
count += (info->is_temperature) ? 1 : 0;
count += (info->is_continuity) ? 1 : 0;
count += (info->is_diode) ? 1 : 0;
count += (info->is_power) ? 1 : 0;
count += (info->is_loop_current) ? 1 : 0;
if (count > 1) {
sr_dbg("More than one measurement type detected in packet.");
return FALSE;
}
/* Auto and manual can't be active at the same time. */
if (info->is_auto && info->is_manual) {
sr_dbg("Auto and manual modes are both active.");
return FALSE;
}
return TRUE;
}
SR_PRIV gboolean sr_ut71x_packet_valid(const uint8_t *buf)
{
struct ut71x_info info;
memset(&info, 0, sizeof(struct ut71x_info));
if (buf[9] != '\r' || buf[10] != '\n')
return FALSE;
parse_flags(buf, &info);
return flags_valid(&info);
}
SR_PRIV int sr_ut71x_parse(const uint8_t *buf, float *floatval,
struct sr_datafeed_analog *analog, void *info)
{
int ret, exponent = 0;
struct ut71x_info *info_local;
info_local = info;
memset(info_local, 0, sizeof(struct ut71x_info));
if (!sr_ut71x_packet_valid(buf))
return SR_ERR;
parse_flags(buf, info_local);
if ((ret = parse_value(buf, info, floatval)) != SR_OK) {
sr_dbg("Error parsing value: %d.", ret);
return ret;
}
if ((ret = parse_range(buf, floatval, &exponent)) != SR_OK)
return ret;
handle_flags(analog, floatval, info);
analog->encoding->digits = -exponent;
analog->spec->spec_digits = -exponent;
return SR_OK;
}