libsigrok/src/hardware/asix-sigma/api.c

429 lines
10 KiB
C

/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2010-2012 Håvard Espeland <gus@ping.uio.no>,
* Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
* Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* ASIX SIGMA/SIGMA2 logic analyzer driver
*/
#include <config.h>
#include "protocol.h"
/*
* Channel numbers seem to go from 1-16, according to this image:
* http://tools.asix.net/img/sigma_sigmacab_pins_720.jpg
* (the cable has two additional GND pins, and a TI and TO pin)
*/
static const char *channel_names[] = {
"1", "2", "3", "4", "5", "6", "7", "8",
"9", "10", "11", "12", "13", "14", "15", "16",
};
static const uint32_t drvopts[] = {
SR_CONF_LOGIC_ANALYZER,
};
static const uint32_t devopts[] = {
SR_CONF_LIMIT_MSEC | SR_CONF_GET | SR_CONF_SET,
SR_CONF_LIMIT_SAMPLES | SR_CONF_GET | SR_CONF_SET,
SR_CONF_SAMPLERATE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
#if ASIX_SIGMA_WITH_TRIGGER
SR_CONF_TRIGGER_MATCH | SR_CONF_LIST,
SR_CONF_CAPTURE_RATIO | SR_CONF_GET | SR_CONF_SET,
#endif
};
static const int32_t trigger_matches[] = {
SR_TRIGGER_ZERO,
SR_TRIGGER_ONE,
SR_TRIGGER_RISING,
SR_TRIGGER_FALLING,
};
static int dev_clear(const struct sr_dev_driver *di)
{
return std_dev_clear(di, sigma_clear_helper);
}
static GSList *scan(struct sr_dev_driver *di, GSList *options)
{
struct sr_dev_inst *sdi;
struct dev_context *devc;
struct ftdi_device_list *devlist;
char serial_txt[10];
uint32_t serial;
int ret;
unsigned int i;
(void)options;
devc = g_malloc0(sizeof(struct dev_context));
ftdi_init(&devc->ftdic);
/* Look for SIGMAs. */
if ((ret = ftdi_usb_find_all(&devc->ftdic, &devlist,
USB_VENDOR, USB_PRODUCT)) <= 0) {
if (ret < 0)
sr_err("ftdi_usb_find_all(): %d", ret);
goto free;
}
/* Make sure it's a version 1 or 2 SIGMA. */
ftdi_usb_get_strings(&devc->ftdic, devlist->dev, NULL, 0, NULL, 0,
serial_txt, sizeof(serial_txt));
sscanf(serial_txt, "%x", &serial);
if (serial < 0xa6010000 || serial > 0xa602ffff) {
sr_err("Only SIGMA and SIGMA2 are supported "
"in this version of libsigrok.");
goto free;
}
sr_info("Found ASIX SIGMA - Serial: %s", serial_txt);
devc->cur_samplerate = samplerates[0];
devc->period_ps = 0;
devc->limit_msec = 0;
devc->limit_samples = 0;
devc->cur_firmware = -1;
devc->num_channels = 0;
devc->samples_per_event = 0;
devc->capture_ratio = 50;
devc->use_triggers = 0;
/* Register SIGMA device. */
sdi = g_malloc0(sizeof(struct sr_dev_inst));
sdi->status = SR_ST_INITIALIZING;
sdi->vendor = g_strdup(USB_VENDOR_NAME);
sdi->model = g_strdup(USB_MODEL_NAME);
for (i = 0; i < ARRAY_SIZE(channel_names); i++)
sr_channel_new(sdi, i, SR_CHANNEL_LOGIC, TRUE, channel_names[i]);
sdi->priv = devc;
/* We will open the device again when we need it. */
ftdi_list_free(&devlist);
return std_scan_complete(di, g_slist_append(NULL, sdi));
free:
ftdi_deinit(&devc->ftdic);
g_free(devc);
return NULL;
}
static int dev_open(struct sr_dev_inst *sdi)
{
struct dev_context *devc;
int ret;
devc = sdi->priv;
/* Make sure it's an ASIX SIGMA. */
if ((ret = ftdi_usb_open_desc(&devc->ftdic,
USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
sr_err("ftdi_usb_open failed: %s",
ftdi_get_error_string(&devc->ftdic));
return 0;
}
sdi->status = SR_ST_ACTIVE;
return SR_OK;
}
static int dev_close(struct sr_dev_inst *sdi)
{
struct dev_context *devc;
devc = sdi->priv;
/* TODO */
if (sdi->status == SR_ST_ACTIVE)
ftdi_usb_close(&devc->ftdic);
sdi->status = SR_ST_INACTIVE;
return SR_OK;
}
static int config_get(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_channel_group *cg)
{
struct dev_context *devc;
(void)cg;
if (!sdi)
return SR_ERR;
devc = sdi->priv;
switch (key) {
case SR_CONF_SAMPLERATE:
*data = g_variant_new_uint64(devc->cur_samplerate);
break;
case SR_CONF_LIMIT_MSEC:
*data = g_variant_new_uint64(devc->limit_msec);
break;
case SR_CONF_LIMIT_SAMPLES:
*data = g_variant_new_uint64(devc->limit_samples);
break;
#if ASIX_SIGMA_WITH_TRIGGER
case SR_CONF_CAPTURE_RATIO:
*data = g_variant_new_uint64(devc->capture_ratio);
break;
#endif
default:
return SR_ERR_NA;
}
return SR_OK;
}
static int config_set(uint32_t key, GVariant *data, const struct sr_dev_inst *sdi,
const struct sr_channel_group *cg)
{
struct dev_context *devc;
uint64_t tmp;
int ret;
(void)cg;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
devc = sdi->priv;
ret = SR_OK;
switch (key) {
case SR_CONF_SAMPLERATE:
ret = sigma_set_samplerate(sdi, g_variant_get_uint64(data));
break;
case SR_CONF_LIMIT_MSEC:
tmp = g_variant_get_uint64(data);
if (tmp > 0)
devc->limit_msec = g_variant_get_uint64(data);
else
ret = SR_ERR;
break;
case SR_CONF_LIMIT_SAMPLES:
tmp = g_variant_get_uint64(data);
devc->limit_samples = tmp;
devc->limit_msec = sigma_limit_samples_to_msec(devc, tmp);
break;
#if ASIX_SIGMA_WITH_TRIGGER
case SR_CONF_CAPTURE_RATIO:
tmp = g_variant_get_uint64(data);
if (tmp > 100)
return SR_ERR;
devc->capture_ratio = tmp;
break;
#endif
default:
ret = SR_ERR_NA;
}
return ret;
}
static int config_list(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_channel_group *cg)
{
GVariant *gvar;
GVariantBuilder gvb;
(void)cg;
switch (key) {
case SR_CONF_DEVICE_OPTIONS:
if (!sdi)
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
drvopts, ARRAY_SIZE(drvopts), sizeof(uint32_t));
else
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
devopts, ARRAY_SIZE(devopts), sizeof(uint32_t));
break;
case SR_CONF_SAMPLERATE:
g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"), samplerates,
samplerates_count, sizeof(samplerates[0]));
g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar);
*data = g_variant_builder_end(&gvb);
break;
#if ASIX_SIGMA_WITH_TRIGGER
case SR_CONF_TRIGGER_MATCH:
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
trigger_matches, ARRAY_SIZE(trigger_matches),
sizeof(int32_t));
break;
#endif
default:
return SR_ERR_NA;
}
return SR_OK;
}
static int dev_acquisition_start(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct clockselect_50 clockselect;
int frac, triggerpin, ret;
uint8_t triggerselect;
struct triggerinout triggerinout_conf;
struct triggerlut lut;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
devc = sdi->priv;
if (sigma_convert_trigger(sdi) != SR_OK) {
sr_err("Failed to configure triggers.");
return SR_ERR;
}
/* If the samplerate has not been set, default to 200 kHz. */
if (devc->cur_firmware == -1) {
if ((ret = sigma_set_samplerate(sdi, SR_KHZ(200))) != SR_OK)
return ret;
}
/* Enter trigger programming mode. */
sigma_set_register(WRITE_TRIGGER_SELECT1, 0x20, devc);
triggerselect = 0;
if (devc->cur_samplerate >= SR_MHZ(100)) {
/* 100 and 200 MHz mode. */
sigma_set_register(WRITE_TRIGGER_SELECT1, 0x81, devc);
/* Find which pin to trigger on from mask. */
for (triggerpin = 0; triggerpin < 8; triggerpin++)
if ((devc->trigger.risingmask | devc->trigger.fallingmask) &
(1 << triggerpin))
break;
/* Set trigger pin and light LED on trigger. */
triggerselect = (1 << LEDSEL1) | (triggerpin & 0x7);
/* Default rising edge. */
if (devc->trigger.fallingmask)
triggerselect |= 1 << 3;
} else if (devc->cur_samplerate <= SR_MHZ(50)) {
/* All other modes. */
sigma_build_basic_trigger(&lut, devc);
sigma_write_trigger_lut(&lut, devc);
triggerselect = (1 << LEDSEL1) | (1 << LEDSEL0);
}
/* Setup trigger in and out pins to default values. */
memset(&triggerinout_conf, 0, sizeof(struct triggerinout));
triggerinout_conf.trgout_bytrigger = 1;
triggerinout_conf.trgout_enable = 1;
sigma_write_register(WRITE_TRIGGER_OPTION,
(uint8_t *) &triggerinout_conf,
sizeof(struct triggerinout), devc);
/* Go back to normal mode. */
sigma_set_register(WRITE_TRIGGER_SELECT1, triggerselect, devc);
/* Set clock select register. */
if (devc->cur_samplerate == SR_MHZ(200))
/* Enable 4 channels. */
sigma_set_register(WRITE_CLOCK_SELECT, 0xf0, devc);
else if (devc->cur_samplerate == SR_MHZ(100))
/* Enable 8 channels. */
sigma_set_register(WRITE_CLOCK_SELECT, 0x00, devc);
else {
/*
* 50 MHz mode (or fraction thereof). Any fraction down to
* 50 MHz / 256 can be used, but is not supported by sigrok API.
*/
frac = SR_MHZ(50) / devc->cur_samplerate - 1;
clockselect.async = 0;
clockselect.fraction = frac;
clockselect.disabled_channels = 0;
sigma_write_register(WRITE_CLOCK_SELECT,
(uint8_t *) &clockselect,
sizeof(clockselect), devc);
}
/* Setup maximum post trigger time. */
sigma_set_register(WRITE_POST_TRIGGER,
(devc->capture_ratio * 255) / 100, devc);
/* Start acqusition. */
gettimeofday(&devc->start_tv, 0);
sigma_set_register(WRITE_MODE, 0x0d, devc);
std_session_send_df_header(sdi);
/* Add capture source. */
sr_session_source_add(sdi->session, -1, 0, 10, sigma_receive_data, (void *)sdi);
devc->state.state = SIGMA_CAPTURE;
return SR_OK;
}
static int dev_acquisition_stop(struct sr_dev_inst *sdi)
{
struct dev_context *devc;
devc = sdi->priv;
devc->state.state = SIGMA_IDLE;
sr_session_source_remove(sdi->session, -1);
return SR_OK;
}
static struct sr_dev_driver asix_sigma_driver_info = {
.name = "asix-sigma",
.longname = "ASIX SIGMA/SIGMA2",
.api_version = 1,
.init = std_init,
.cleanup = std_cleanup,
.scan = scan,
.dev_list = std_dev_list,
.dev_clear = dev_clear,
.config_get = config_get,
.config_set = config_set,
.config_list = config_list,
.dev_open = dev_open,
.dev_close = dev_close,
.dev_acquisition_start = dev_acquisition_start,
.dev_acquisition_stop = dev_acquisition_stop,
.context = NULL,
};
SR_REGISTER_DEV_DRIVER(asix_sigma_driver_info);